Introduction to System Dynamics Modeling

Similar documents
Introduction to System Dynamics Modeling

System Dynamics Modeling and STEM

1.1 Students know how to use maps, globes, and other geographic tools to acquire, process, and report information from a spatial perspective.

Proposed Curriculum Master of Science in Systems Engineering for The MITRE Corporation

Distinguish between scenario parameters and system parameters:

Level Below Basic Basic Proficient Advanced. Policy PLDs. Cognitive Complexity

ESSENTIAL ELEMENT, LINKAGE LEVELS, AND MINI-MAP SCIENCE: HIGH SCHOOL BIOLOGY SCI.EE.HS-LS1-1

TENNESSEE ACADEMIC STANDARDS--FIFTH GRADE CORRELATED WITH AMERICAN CAREERS FOR KIDS. Writing

17.181/ SUSTAINABLE DEVELOPMENT Theory and Policy

NEXT GENERATION MODELS FOR PLANETARY MANAGERS

MODELING COMPLEX SOCIO-TECHNICAL ENTERPRISES. William B. Rouse November 13, 2013

Machine Learning for Computational Sustainability

NUMBERS & OPERATIONS. 1. Understand numbers, ways of representing numbers, relationships among numbers and number systems.

The In and Out Game: The Shape of Change

Tennessee Senior Bridge Mathematics

Population Dynamics: Predator/Prey Student Version

Common Core Structure Final Recommendation to the Chancellor City University of New York Pathways Task Force December 1, 2011

Missouri Educator Gateway Assessments

Population Dynamics Simulation

Gifted and Talented AIM Learning Outcomes Framework

GREATER CLARK COUNTY SCHOOLS PACING GUIDE. Algebra I MATHEMATICS G R E A T E R C L A R K C O U N T Y S C H O O L S

MULTIPLEX Foundational Research on MULTIlevel complex networks and systems

BIOLOGY 1101 LAB 6: MICROEVOLUTION (NATURAL SELECTION AND GENETIC DRIFT)

Prentice Hall. Environmental Science: Your World, Your Turn (Withgott) 2011 (SE: , TE: ) Grades 11-12

Two Modeling Cultures. Marco Janssen School of Sustainability Center for Behavior, Institutions and the Environment Arizona State University

ADAS Development using Advanced Real-Time All-in-the-Loop Simulators. Roberto De Vecchi VI-grade Enrico Busto - AddFor

Problem of the Month What s Your Angle?

A Fatal Flaw in Global Warming Science Why human CO2 does not change climate

2. Basic Control Concepts

Modeling approaches and New Realities on Ground in Central Asia. Khalid Saeed

Sixth Grade Science. Students will understand that science and technology affect the Earth's systems and provide solutions to human problems.

Conservation Biology 4554/5555. Modeling Exercise: Individual-based population models in conservation biology: the scrub jay as an example

Table of Contents SCIENTIFIC INQUIRY AND PROCESS UNDERSTANDING HOW TO MANAGE LEARNING ACTIVITIES TO ENSURE THE SAFETY OF ALL STUDENTS...

System Dynamics Modeling of Community Sustainability in NetLogo

An Introduction to Agent-based

EMT TECHNICAL GRAPHICS Lab Manual (Syllabus) Fall 08

Correlations to NATIONAL SOCIAL STUDIES STANDARDS

Sustainable Fishery Sustainable Habitat Managing Oysters in Delaware Bay. David Bushek, Kathy Alcox & Lisa Calvo

-binary sensors and actuators (such as an on/off controller) are generally more reliable and less expensive

Technology Engineering and Design Education

A collaboration between Maryland Virtual High School and the Pittsburgh Supercomputing Center

ELEMENTARY EDUCATION SUBTEST II

Summer Assignment for AP Environmental Science

Enhancing Robot Teleoperator Situation Awareness and Performance using Vibro-tactile and Graphical Feedback

Chapter 3: Complex systems and the structure of Emergence. Hamzah Asyrani Sulaiman

Dublin City Schools Science Graded Course of Study Environmental Science

EE320L Electronics I. Laboratory. Laboratory Exercise #2. Basic Op-Amp Circuits. Angsuman Roy. Department of Electrical and Computer Engineering

New Hampshire College and Career Ready Standards Science Grade: 1 - Adopted: 2006

Policy Division New Mexico Public Education Department Transmitted via October 13, To Whom It May Concern,

Mistakes and Misunderstandings: Table Functions

the role of mobile computing in daily life

Mathematics Success Grade 8

Canadian Technology Accreditation Criteria (CTAC) PROGRAM GENERAL LEARNING OUTCOMES (PGLO) Common to all Technologist Disciplines

Case 4:74-cv DCB Document Filed 09/01/17 Page 293 of 322 APPENDIX V 156

Cuyamaca MSE PLOs. Exercise Science-1 List and define the five basic components of physical fitness. Active

VII. Future of Renewable Energy

UPG - DUAL ENROLLMENT Courses offered in Spring 2018

Simulating Simple Reaction Mechanisms

Webb s Depth of Knowledge: Transitioning to

Science Test Practice Grade 5

Concepts and Challenges

8.EE. Development from y = mx to y = mx + b DRAFT EduTron Corporation. Draft for NYSED NTI Use Only

Quantitative Reasoning: It s Not Just for Scientists & Economists Anymore

- Basics of informatics - Computer network - Software engineering - Intelligent media processing - Human interface. Professor. Professor.

The Nature of Business: redesign for resilience

Prentice Hall Biology: Exploring Life 2004 Correlated to: Pennsylvania Academic Standards for Science and Technology (By the End of Grade 10)

Fundamentals of Engineering Final Project 11/2/12 Leah Ritz. Tin Foil Circuit Board: Lie Detector. Teacher Background:

STUDENT FOR A SEMESTER SUBJECT TIMETABLE MAY 2018

Performance Task. Asteroid Aim. Chapter 8. Instructional Overview

2.6. Slope-Intercept Form Working Under Pressure. My My Notes ACTIVITY

Technologists and economists both think about the future sometimes, but they each have blind spots.

PID-control and open-loop control

A Modified Perspective of Decision Support in C 2

COMMUNITY UNIT SCHOOL DISTRICT 200 Science Curriculum Philosophy

The study of human populations involves working not PART 2. Cemetery Investigation: An Exercise in Simple Statistics POPULATIONS

Aquatic Lab Choices. The investigations on the Mobile Science Labs are aligned with the NGSS, Environmental Literacy, and Common Core standards.

SYSTEMS ANALYSIS AND MODELING OF INTEGRATED WORLD SYSTEMS - Vol. II - Models of Socioeconomic Development - A.A. Petrov

Science Curriculum Mission Statement

New Mexico Content Standards Science Grade: 4 - Adopted: 2003

GRADE 5 Science INSTRUCTIONAL PACING GUIDE

Analytic Geometry/ Trigonometry

Experiment G: Introduction to Graphical Representation of Data & the Use of Excel

Management Strategy Evaluation Process. used in the. evaluation of. Atlantic Herring Acceptable Biological Catch Control Rules.

Abstract. Introduction

MECHANICAL ENGINEERING DEGREE PLAN

ND STL Standards & Benchmarks Time Planned Activities

WWF-Canada - Technical Document

Design and Simulation of Gain Scheduled Adaptive Controller using PI Controller for Conical Tank Process

FORESIGHT. Scenarios METHOD HORIZONS. Module

Outdoor Environmental Education Programs at the Randall Davey Audubon Center & Sanctuary Connecting with Nature: Making a Difference for Conservation

Job Description. Commitment: Must be available to work full-time hours, M-F for weeks beginning Summer of 2018.

PID control. since Similarly, modern industrial

Impacts of sharks on coral reef ecosystems

Computational Synthetic Biology

9/4/2013. Math. Curriculum Council September 5, topics nouns What? rigor verbs How?

Wisconsin Academic Standards Science Grade: 9 - Adopted: 1998

Bowling Green Perspective (BGP) Assessment Data Humanities & The Arts (HA)

Iowa Core Science Standards Grade 8

Three Minute Thesis & Research Presentations.

New Hampshire College and Career Ready Standards Science Grade: K - Adopted: 2006

Transcription:

Introduction to System Dynamics Modeling Todd BenDor Associate Professor Department of City and Regional Planning bendor@unc.edu 919-962-4760 Course Website: http://todd.bendor.org/sd

Today s Syllabus Morning (10-11:10, 11:20-12:30) Introduction to Modeling Stocks and Flows Lab #1 learning to model with STELLA Afternoon (1:30-2:40, 2:50-4) Dynamic Equilibrium and System Archetypes Introduction to Feedback Course Website: http://todd.bendor.org/sd

Goals for the next two days Understand basic system dynamics modeling (SD) Concepts and terminology History Theory (e.g. stocks, flows, feedback, numerical analysis) Software platforms Understand the advantages and dis-advantages of SD modeling Understand the limitations of SD modeling relative to relative to other modeling techniques (e.g. agent-based modeling) Learn some fundamentals of the STELLA modeling platform Learn about the best practices for system dynamics modeling construction

What today is NOT An in-depth SD course See: WPI System dynamics masters degree Mastering SD takes a LOT longer than two days An in-depth course in STELLA or other modeling platforms See resources on the course website All modeling efforts are unique and confront unique challenges. Fortunately, most can be overcome with patience, perseverance, and attention to good modeling practices.

Who am I? Associate Professor of City and Regional Planning BS/MS in system dynamics modeling/environmental science PhD focused on land use modeling based on cellular automata/ agent-based modeling concepts Experience with system dynamics applications towards auto emissions policies, wetland restoration, spatial-dynamic modeling, invasive species spread, park planning in cities, and brownfield restoration, among others Experience with agent-based modeling of endangered species spread, land use change, and park planning Currently writing a book on ABM and environmental conflict

Assumptions I will make Computer literacy Comfort with general modeling concepts and impetus behind modeling systems or problems in our world [I]t is often more important to clarify the deeper causes behind a given problem and its consequences than to describe the symptoms of the problem and how frequently they occur. Bent Flyvbjerg (2006, Pg. 229) Remember that all models are wrong; the practical question is how wrong do they have to be to not be useful. George Box and Norman Draper (1987, Pg. 74)

Overview What is a model? Why model? System dynamics modeling Components of feedback in systems Modeling environmental and urban systems

What Do You See?

Modeling Lots of definitions: A model is a picture of reality Wittgenstein A representation or substitute for a real system Remember that all models are wrong; the practical question is how wrong do they have to be to not be useful. George Box and Norman Draper (1987, Pg. 74.) We use them all the time Blueprints, graphs, maps, and wind tunnels are all models Rigorous forms Econometric / statistical regression models, mathematical models representations of reality

Why Model? We already do it Human cognitive processes How do we know that a cow is a cow? Informal models mental maps Help us understand and interpret the world around us Formalized modeling also helps us to understand the world around us Make our mental models of the world explicit

Premise of System Dynamics We may be clever when thinking about geometric shapes But we are often baffled when thinking about dynamic problems and the environment Models give us a chance to practice and to learn Models give others a chance to build from our work

System Dynamics Definition An approach to understanding the behavior of complex systems over time. It deals with internal feedback loops and time delays that affect the behavior of the entire system. What makes system dynamics different from other approaches to studying complex systems is the use of feedback loops and stocks and flows.

System Dynamics Developed in 1950 s by Jay Forrester and colleagues at MIT Based on electrical engineering control theory Electrical circuits exhibit great examples of feedback Scientific process for understanding and modeling systems as they are represented dynamically Urban Dynamics Industrial Dynamics

System System A set of interacting components that influence or affect each other Environmental system Ecosystems interacting biotic and abiotic components Urban system Set of interacting social systems (social networks, communities, cultures, economies) and physical systems (air, land, water, environment, transport)

Dynamics Change over time Bathtub Faucet and drain Flows in and flows out Accumulation of water Bank Account receipts and expenditures Accumulation of money in account

System Dynamics Modeling Tools for representing changing interactions of system components Based on three fundamental ideas Flows change or movement of information or material Stocks accumulations of information of materials (system states) Feedback representation of relationships between components

So you re worried about the math? You are worried that you have not studied differential equations, and that your memory of calculus has faded over time. You do not need to have studied calculus to understand systems, change, or system dynamics.

So you re worried about the math? The SD method assumes you have learned introductory algebra and that you know how to read and interpret graphs System Dynamics premised on representing interactions between system elements in simple mathematical terms E.g. If I give you distance and speed: What is time traveled? Rest assured: you do not need to know calculus or differential equations to learn system dynamics, even in a very in-depth manner

So how does this all fit together? We build system dynamics models in a visual manner on the computer. Your job is to concentrate on the structure of the model Tedious job of numerical simulation will be left to the computer. For those of you with calculus experience: The software is integrating the effect of flows over time. Those of you that have taken differential equations Models are equivalent to a set of coupled, first-order differential equations. The great leveler for varied math experience: The equations are almost always highly nonlinear, so there is little hope of finding an analytical solution. The software will find a numerical solution (see Ford, Chapter 4)

The Most Widely Read Book using System Dynamics?

Scientific Process of System Dynamics 1. Reference Mode - Understanding past behavior Graphical Population dynamics over time Employment over time Automobile Adoption Wildlife population Bee dieoff Kaibab Plateau deer Use to understand system structure Structure vs. Behavior Measured?? Time

Scientific Process of System Dynamics 2. The dynamic hypothesis Use reference mode to understand causal linkages Based on systemic archetypes Basic: Linear growth, decline Exponential growth, decline Oscillation Combinations Logistic growth Growth with limit cycle (oscillation) Overshoot and collapse

Scientific Process of System Dynamics 3. Simulation Modeling n n n Using dynamic hypothesis, create quantitative, t dynamic model n Stocks and flows n Bathtub example Stock = ( Inflow Outflow) Test model 0 n Replication of past data Validation n Policy levers n n How does policy affect a system? n Land use policies n Economic growth policies n Transportation policies Projections based on a series of scenarios n Forecast most likely scenario Problems? - Iterative process!! n Go back to reference mode

Feedback Feedback is all around us Feedback controls how rates change Accumulations themselves determine how quickly they change! Bathtub and bank account examples no feedback!

Positive feedback Exponential growth More begets more Less begets less The vicious cycle Snowball rolling down a hill Bank account interest Unlimited population growth Tribbles in Star Trek Broken window theory Blight begets more blight

Negative feedback Goal seeking behavior Pouring water into a glass Chickens crossing a road Lower chicken population Less chickens to cross road

Environmental and Urban Dynamics Environmental and urban systems often combine feedbacks Growth and limitation Urban Dynamics (1969) Overshoot and collapse of cities Populations Overshoot and collapse Oscillation

Application to Wildlife Management Kaibab Plateau in Arizona 1920s pressure from ranchers Government-led control of coyotes, wildcats, and mountain lions Deer population skyrockets and collapses System structure Destroyed forage No new forage 10,000 Deer Population 1900 1910 1920 1930 1940

Core System Dynamics Concepts Simple processes can generate complicated behavior System dynamics provides unified approach for understanding problems Assists with your own mental models by making dynamic problems explicit Accumulations (Stocks), Change (Flows), Feedback (interactions between the two) Urban problems involve LOTS of feedback Complicated by lots of interacting factors!

System Dynamics: Systems: our focus as we learn Dynamics: our focus when we apply

Modeling for Learning Learn from comparing simulations Irreversibility of real-world actions Value of digital laboratory Expect a thirst for forecasting models but don t respond! We will reach for understanding and for good management rules of thumb

Across Time Scales (Table 1.1 on p. 10) seconds water flow through two bottles (ch 6) Joe fills the gas tank (ch 3) minutes hours hikers head up the hill (BWeb) water temperature control (BWeb) body temperature control (BWeb) spread of an epidemic (ch 8) days temperature control on daisyworld (ch 11) salmon smolts migration to ocean (ch 15) months salmon population life cycle (ch 15) The Idagon river simulator (BWeb) genetics and industrial melanism (BWeb) Mono Lake brine shrimp population (ch 5) Mono Lake water balance (ch 5) DDT accumulates in the ocean (ch 22) CO2 accumulates in the atmosphere (ch 23) years cleaner cars and feebates (ch 16) cycles in real-estate construction (ch 19) cyles in predator-prey populations (ch 20) overshoot of the Kaibab deer population (ch 21) hmyrs rock cycle (ch 6), in hundreds of millions of yrs

Perhaps we can use models for prediction in business systems? (Ford, chapter 19 on real-estate)