Diffractive optical elements for high gain lasers with arbitrary output beam profiles

Similar documents
Tuneable Gaussian to flat-top resonator by amplitude beam shaping

Improving the output beam quality of multimode laser resonators

Adaptive optics for laser-based manufacturing processes

Design and Analysis of Resonant Leaky-mode Broadband Reflectors

Opto-VLSI-based reconfigurable photonic RF filter

Analysis and optimization on single-zone binary flat-top beam shaper

Tuneable Gaussian to flat-top resonator by amplitude beam shaping using a digital laser

High power infrared super-gaussian beams: generation, propagation and application

Supplementary Figure 1. Effect of the spacer thickness on the resonance properties of the gold and silver metasurface layers.

A novel tunable diode laser using volume holographic gratings

Coherent addition of spatially incoherent light beams

Computer Generated Holograms for Optical Testing

CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT

Diffractive Axicon application note

Narrowing spectral width of green LED by GMR structure to expand color mixing field

Exposure schedule for multiplexing holograms in photopolymer films

Ablation of microstructures applying diffractive elements and UV femtosecond laser pulses

Multi-frequency and multiple phase-shift sinusoidal fringe projection for 3D profilometry

Supplementary Figure 1. GO thin film thickness characterization. The thickness of the prepared GO thin

Numerical simulation of a gradient-index fibre probe and its properties of light propagation

Asphere testing with a Fizeau interferometer based on a combined computer-generated hologram

Diffuser / Homogenizer - diffractive optics

Principles of Optics for Engineers

Very high-order pure Laguerre-Gaussian mode selection in a passive Q-switched Nd:YAG laser

Optical RI sensor based on an in-fiber Bragg grating. Fabry-Perot cavity embedded with a micro-channel

Fiber Optic Sensing Applications Based on Optical Propagation Mode Time Delay Measurement

Bragg and fiber gratings. Mikko Saarinen

Si-EPIC Workshop: Silicon Nanophotonics Fabrication Directional Couplers

Compact OAM Microscope for Edge Enhancement of Biomedical and Object Samples

Pulse stretching and compressing using grating pairs

Width of the apodization area in the case of diffractive optical elements with variable efficiency

CREATING ROUND AND SQUARE FLATTOP LASER SPOTS IN MICROPROCESSING SYSTEMS WITH SCANNING OPTICS Paper M305

Development of a Low Cost 3x3 Coupler. Mach-Zehnder Interferometric Optical Fibre Vibration. Sensor

Laser Beam Splitting. By Diffractive Optics. Michael A. Golub

Tutorial Zemax 9: Physical optical modelling I

Integrated into Nanowire Waveguides

Title. Author(s)Saitoh, Fumiya; Saitoh, Kunimasa; Koshiba, Masanori. CitationOptics Express, 18(5): Issue Date Doc URL.

Optical Components for Laser Applications. Günter Toesko - Laserseminar BLZ im Dezember

Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy

Active transverse mode control and optimisation of an all-solid-state laser using an intracavity adaptive-optic mirror

Intracavity, common resonator, Nd:YAG pumped KTP OPO

Experimental Physics. Experiment C & D: Pulsed Laser & Dye Laser. Course: FY12. Project: The Pulsed Laser. Done by: Wael Al-Assadi & Irvin Mangwiza

Micro- and Nano-Technology... for Optics

Supporting Information: Achromatic Metalens over 60 nm Bandwidth in the Visible and Metalens with Reverse Chromatic Dispersion

Multiple wavelength resonant grating filters at oblique incidence with broad angular acceptance

Cavity with a deformable mirror for tailoring the shape of the eigenmode

Using Stock Optics. ECE 5616 Curtis

Electronically switchable Bragg gratings provide versatility

CHIRPED FIBER BRAGG GRATING (CFBG) BY ETCHING TECHNIQUE FOR SIMULTANEOUS TEMPERATURE AND REFRACTIVE INDEX SENSING

Dynamic beam shaping with programmable diffractive optics

Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber

Fiber-optic Michelson Interferometer Sensor Fabricated by Femtosecond Lasers

Stabilisation of Linear-cavity Fibre Laser Using a Saturable Absorber

Applying of refractive beam shapers of circular symmetry to generate non-circular shapes of homogenized laser beams

White-light interferometry, Hilbert transform, and noise

The Effect of Radiation Coupling in Higher Order Fiber Bragg Gratings

Polarization Experiments Using Jones Calculus

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

UV EXCIMER LASER BEAM HOMOGENIZATION FOR MICROMACHINING APPLICATIONS

Supplementary Information for. Surface Waves. Angelo Angelini, Elsie Barakat, Peter Munzert, Luca Boarino, Natascia De Leo,

Pulse energy vs. Repetition rate

Design of a digital holographic interferometer for the. ZaP Flow Z-Pinch

USE OF COMPUTER- GENERATED HOLOGRAMS IN OPTICAL TESTING

ABSTRACT 1. INTRODUCTION

Dynamic optical comb filter using opto-vlsi processing

Experimental demonstration of Generalized Phase Contrast based Gaussian beamshaper

PROCEEDINGS OF SPIE. H. Thienpont, J. Mohr, M. Kujawinska, M. R. Taghizadeh, A. J. Waddie, et al.

SUPPLEMENTARY INFORMATION

Integrated Photonics based on Planar Holographic Bragg Reflectors

Design and performance of diffractive optics for custom laser resonators

EUV Plasma Source with IR Power Recycling

Laser Beam Analysis Using Image Processing

Investigation of ultrasmall 1 x N AWG for SOI- Based AWG demodulation integration microsystem

PHY 431 Homework Set #5 Due Nov. 20 at the start of class

Testing Aspherics Using Two-Wavelength Holography

APPLICATION NOTE

Wuxi OptonTech Ltd. Structured light DOEs without requiring collimation: For surface-emitting lasers (e.g. VCSELs)

Grating-waveguide structures and their applications in high-power laser systems

Supporting Information

Mode analysis of Oxide-Confined VCSELs using near-far field approaches

Optical MEMS pressure sensor based on a mesa-diaphragm structure

ELECTRONIC HOLOGRAPHY

All-Optical Signal Processing and Optical Regeneration

Recent Developments in Fiber Optic Spectral White-Light Interferometry

Dispersion and Ultrashort Pulses II

Supplementary Materials

Dual-wavelength Fibre Biconic Tapering Technology

ADVANCED OPTICS LAB -ECEN 5606

SUPPLEMENTARY INFORMATION

In-line digital holographic interferometry

OPTICAL GUIDED WAVES AND DEVICES

Characterization of Chirped volume bragg grating (CVBG)

Increasing the output of a Littman-type laser by use of an intracavity Faraday rotator

Optical transfer function shaping and depth of focus by using a phase only filter

Outline. Motivation Experimental Set-Up Theory behind the set-up Results Acknowledgements

Polarization Dependence of an Edge Filter Based on Singlemode-Multimode-Singlemode Fibre

Synthesis of projection lithography for low k1 via interferometry

BEAM SHAPING OPTICS TO IMPROVE HOLOGRAPHIC AND INTERFEROMETRIC NANOMANUFACTURING TECHNIQUES Paper N405 ABSTRACT

R. J. Jones College of Optical Sciences OPTI 511L Fall 2017

Physics 3340 Spring Fourier Optics

Transcription:

Diffractive optical elements for high gain lasers with arbitrary output beam profiles Adam J. Caley, Martin J. Thomson 2, Jinsong Liu, Andrew J. Waddie and Mohammad R. Taghizadeh. Heriot-Watt University, School of Engineering and Physical Sciences, Edinburgh, UK 2. Optos Plc, Queensferry House, Carnegie Business Campus, Dunfermline, UK ajc4@hw.ac.uk Abstract: We introduce a previously unreported laser cavity configuration, using a diffractive optical element (DOE) in place of the output coupler. Such a configuration allows the DOE to work both in reflection, as a mode shaping element, and in transmission as a beam shaper. Employing dual wavelength DOE optimization techniques and phase delays greater than 2π, allows the two functions to be designed independently. Thus, an arbitrary output beam profile can be combined with a mode shape which maximizes energy extraction from the gain medium. Devices are designed and their performance modeled for a m cavity with 5mm diameter mirrors and a wavelength of 632.8nm. An element with 32 quantization levels and a maximum phase delay of 8π in transmission produces high quality results. 2007 Optical Society of America OCIS codes: (050.970) Diffractive Optics; (40.3300) Laser beam shaping; (40.340) Laser resonators References and links. P. A. Belanger, C. Pare, M. Vampouille, B. Colombeau, C. Froehy, and T. Dohnalik, Optical resonators using graded-phase mirrors, Opt. Lett. 6, 057 059 (99). 2. V. Kermene, A. Saviot, M. Vampouille, B. Colombeau, C. Froehy, and T. Dohnalik, Flattening of the spatial laser beam profile with low losses and minimal beam divergence, Opt. Lett. 7, 859 86 (992). 3. J. R. Leger, D. Chen, and G. Mowry, Design and performance of diffractive optics for custom laser resonators, Appl. Opt. 34, 2498 2509 (995). 4. M. J. Thomson and M. R. Taghizadeh, Diffractive elements for high-power fibre coupling applications, J. Mod. Opt. 50, 69 699 (2003). 5. M. R. Taghizadeh and A. J. Waddie, Micro-optical and optoelectronic components for optical interconnection applications, ACTA PHYSICA POLONICA SERIES A 0, 75 88 (2002). 6. M. W. Farn, M. B. Stern, W. B. Veldkamp, and S. S. Medeiros, Color separation by use of binary optics, Opt. Lett. 8, 24 26 (993). 7. J. R. Leger, D. Chen, and Z. Wang, Diffractive optical element for mode shaping of a Nd: YAG laser, Opt. Lett. 9, 08 0 (994). 8. J.-S. Liu and M.R. Taghizadeh, Design and simulated performance of transmissive phase elements for intracavity beam shaping, J. Opt. A-Pure Appl. Opt. 5 26 220 (2003). 9. H. Dammann, Color separation gratings, Appl. Opt. 7, 2273 2279 (978). 0. A. J. Caley, A. J. Waddie and M. R. Taghizadeh. A novel algorithm for designing diffractive optical elements for two colour far-field pattern formation, J. Opt. A-Pure Appl. Opt. 7, S276 S279, (2005).. J-S. Liu, A. J. Caley, and M. R. Taghizadeh, Symmetrical iterative Fourier-transform algorithm using both phase and amplitude freedoms, Opt. Commun. 67, 347 355 (2006). 2. A. J. Caley, and M. R. Taghizadeh. Analysis of the effects of bias phase and wavelength choice on the design of dual-wavelength diffractive optical elements, J. Opt. Soc. Am. A 23, 93 98, (2006). (C) 2007 OSA 20 August 2007 / Vol. 5, No. 7 / OPTICS EXPRESS 0699

3. A. G. Fox, and T. Li, Resonant modes in a maser interferometer, Bell. Syst. Tech. J. 40, 453 488 (96). 4. V.Kettunen, K. Jefimovs, J. Simonen, O. Ripoll, M. Kuittinen, and H-P. Herzig, Diffractive elements designed to suppress unwanted zeroth order due to surface depth error, J. Mod. Opt. 5 2 223 (2004).. Introduction It is often desirable to alter the fundamental mode associated with a laser cavity. Two common reasons for doing this are; to generate a more desirable output beam profile, matched to the laser application, or to make most efficient use of the gain medium. The optical devices which have been used to achieve this include variable phase mirrors[], spatial filters[2] and diffractive optical elements (DOEs)[3]. It is a DOE configuration which we consider in this paper. DOEs are lightweight optical components with a wide range of applications, including laser beam shaping [4], optical interconnection [5] and color separation[6]. Incorporating DOEs into a laser cavity allows optimization of the dominant mode by using an arbitrary phase profile to alter the field, such devices are referred to as mode selecting elements (MSEs). MSEs are very flexible in the outputs they can generate and are very efficient. Both reflective MSEs [7], where the diffractive device replaces the 00% reflective end mirror and transmissive MSEs [8], which are placed within the cavity have been demonstrated. The latter example introduces greater design complexity but offers a higher damage threshold in high power applications. Previous MSE designs have not had the flexibility to perform arbitrary mode shaping while simultaneously generating an independent, arbitrary output beam profile. In this paper, we introduce a previously unreported cavity configuration, which uses a single device to perform both of these tasks independently. The cavity layout is illustrated in figure. The output coupler, rather than the fully reflective mirror, is replaced by a DOE, in this configuration the DOE operates as a MSE in reflection and as a beam shaping element in transmission. Optimization of the element for both applications is made possible by exploiting the different phase delays produced by DOEs operating in transmission compared to those operating in reflection, and utilizing phase delays greater than 2π. The design process is carried out in a similar fashion to that employed for dual wavelength, far-field DOEs which also use phase delays beyond 2π to give the required degree of freedom in the design[9, 0]. Fig.. Schematic of proposed cavity configuration. 2. Method The desired, unquantized phase profiles for the two operations are first designed independently. 2.. MSE design When an end mirror is replaced by a MSE to optimize the use of the gain material, specific phase conjugation can be employed to analytically determine the desired phase profile of the element [7]. To carry out this operation the desired field, U(x,y), is considered at the plane mirror. The angular spectrum of the field is then considered via a Fourier transform. Multiplication by (C) 2007 OSA 20 August 2007 / Vol. 5, No. 7 / OPTICS EXPRESS 0700

exp[ikl(l (λu) 2 (λv) 2 ) /2 ], () where k is the wavenumber, L the cavity length and u and v are spatial frequencies, followed by the inverse Fourier transform, models the effect of propagating along the cavity. The MSE simply alters the phase of the field, if this phase profile is chosen to be φ R (x,y ) = A (x,y )/A(x,y ) (2) where A(x,y ) is the field at the MSE and * indicates the complex conjugate, then the original field is reproduced by propagating back to the plane mirror. 2.2. Beam shaper design The use of DOEs for beam shaping is common and many techniques exist for optimizing the phase profile of the element to produce a desired output. We employ the symmetrical iterative transform algorithm, introduced by Liu et al. []. The field generated by multiple passes within the cavity using the MSE is taken as the input to the beam shaping element. A diffractive lens function can be added to the optimized phase profile to generate the desired output at a specific distance from the laser. The optimized, unquantized phase profile from the beam shaper design process is φ T (x,y ). 2.3. Designing the multifunction quantized element Having optimized the two unquantized profiles independently a quantized structure which acts as a MSE in reflection and a beam shaper in transmission is required. This is achieved using a best-fit quantization approach, previously employed for dual wavelength DOEs[0]. As indicated in the figure the phase delay, φ, is different for the two modes of operation. This property, together with phase delays greater than 2π, gives the required degree of freedom to design the element for two functions. When operating in transmission the etch depth, h, required to give a phase delay φ T is given by h = φ T λ 2π(n ) (3) where n is the refractive index of the substrate material, and λ is the wavelength. Similarly, in reflection the etch depth required to give phase delay φ 2 is given by h 2 = φ Rλ 4π In both cases it is assumed the surrounding material is air, with a refractive index equal to. Setting the phase values φ T and φ R equal to 2π gives the etch depths h and h 2, which have have no affect on the transmitted and reflected field respectively. The quantization process for a single pixel is illustrated in figure 2. h represents the etch depth which produces the phase delay required for the beam shaper, adding multiples of h will give equally valid etch depths. Similarly, h 2 represents the etch depth which produces the phase delay required for the MSE to which multiples of h 2 can be added. Dividing the maximum etch by the number of quantization levels (8 in the example shown) gives the available etch depths. and 2 are the quantization error for the beam shaper profile and the MSE profile respectively. The available quantization level which minimizes both and 2 is selected. This process is repeated for all the pixels in the design to produce the quantized dual function element. It should be noted that further optimization, via depth bias and phase bias, has been demonstrated for dual wavelength elements [2]. These techniques are not employed here. (4) (C) 2007 OSA 20 August 2007 / Vol. 5, No. 7 / OPTICS EXPRESS 070

h +6h h +5h h +4h h +3h 8 7 6 5 h 2 +4h 2 h 2 +3h 2 2 h 2 +2h 2 h +2h 4 h + h 3 h 2 +h 2 h h 2 h 2 Fig. 2. Illustration of the quantization process. 3. Modeling To examine the performance of the type of element discussed in this paper a number of designs have been carried out and their results modeled. For the examples presented a cavity of length m with 5mm diameter mirrors and a design wavelength of 632.8nm is used. The element is assumed to be fabricated in fused silica. The desired intracavity mode is described by the super-gaussian function U(x,y) = e ( x ω 0 ) 20 ( y ω 0 ) 20 (5) where ω 0 = 2.5mm. The desired output beam profile is a ring, generated at 500mm from the laser and with internal radius of 0.8mm and external radius of.9mm. The super-gaussian is a good approximation of a top hat, which enhances energy extraction from the gain medium, while the ring geometry is chosen as a distinctive beam profile, allowing easy verification of the methods success. The variables considered in the design process are the number of quantization levels and the maximum phase delay and the elements are designed with 52x52 pixels. Fig. 3. Fundamental mode generated by the bare cavity. Fox-Li analysis [3] of the cavity using 2 plane mirrors produces the fundamental mode seen in figure 3, as expected the beam has a Gaussian profile. Repeating the analysis after introducing an unquantized MSE, designed using the phase conjugation method, produces the fundamental mode seen in figure 4(a). This analysis produces a mode which is much closer to the tophat shape of a super-gaussian profile. The field from the cavity analysis is used as the input for design of the beam shaping DOE. The modeled output from the the resulting unquantized profile is shown in figure 4(b) and shows the ring geometry to be successfully recreated with sharp edges and little zeroth order energy. Having demonstrated the suitability of the two, independent, unquantized profiles for intracavity mode shaping and output beam shaping it is necessary to combine them to generate a quantized profile which performs both operations. The best fit quantization method, described (C) 2007 OSA 20 August 2007 / Vol. 5, No. 7 / OPTICS EXPRESS 0702

Fig. 4. (a) Fundamental mode generated by unquantized MSE and (b) output at 500mm using unquantized beam shaping DOE. earlier is used to generate profiles with 6, 32 and 64 quantization levels. For the 6 level structure a maximum phase of 2π in transmission is used, for the 32 level structure two optimizations are run with maximum phase values of 4π and 8π and a maximum phase of 8π is also used for the 64 level structure. Firstly the cavity analysis was carried out using the quantized profiles. The resulting mode shapes for each of the four MSEs are shown in figure 5. Fig. 5. Fundamental mode generated by elements quantized to (a) 6 levels with a maximum phase in transmission of 2π, (b) 32 levels with a maximum phase in transmission of 4π, (c) 32 levels with a maximum phase in transmission of 8π and (d) 64 levels with a maximum phase in transmission of 8π. As might be expected, the profile with the largest number of quantization levels gives the best approximation to a super gaussian mode shape. The designs with fewer quantization levels exhibit higher intensities in the central area of the profile, this is undesirable as it will reduce the overall gain achieved. This observation is perhaps unsurprising as etch depth errors in DOEs have been shown to manifest themselves in greater zeroth order energy [4], the best fit nature of the quantization process in effect produces slight errors in the phase profile. The profiles in figure 5 demonstrate that the fewer levels are available the more pronounced this error is. The modeled fields produced during the intracavity analysis are used as the incident field onto the quantized element operating in transmission, to analyze the performance of the beam shaping part of the element. The modeled outputs at 500mm are shown in figure 6. (C) 2007 OSA 20 August 2007 / Vol. 5, No. 7 / OPTICS EXPRESS 0703

Fig. 6. Resulting output beam shape generated by elements quantized to (a) 6 levels with a maximum phase in transmission of 2π, (b) 32 levels with a maximum phase in transmission of 4π, (c) 32 levels with a maximum phase in transmission of 8π and (d) 64 levels with a maximum phase in transmission of 8π. The modeled beam profiles demonstrate that again the structures with more quantization levels are more closely matched to the desired output. In particular the 6 level structure produces a high level of zeroth order energy. There is significant zeroth order energy for the element with 32 levels and a maximum phase of 4π, this is improved by increasing the maximum phase value. Allowing 64 levels improves the sharpness of the edges in the beam profile and reduces variation in intensity. The approximations made to the profile have a twofold impact in the case of the beam-shaper. As for the MSE the phase profile will differ from the optimized, unquantized profile, in addition we have seen that the cavity mode resulting from the MSE differs from the profile in figure 4(a), which was used during the optimization process. 4. Conclusion A new configuration for DOEs within laser cavities has been introduced and its performance modeled. The modeling analysis demonstrates that such a device can successfully optimise the fundamental mode within the cavity to maximize energy extraction from the gain material, while simultaneously generating an arbitrary output beam shape. Modeling indicates that the performance of the element is significantly affected by the choice of both maximum etch depth and number of quantization levels. Satisfactory performance is observed when using 32 or more quantization levels and a maximum etch depth equivalent to a phase delay of 8π in transmission. Employing further optimization techniques, such as those used in dual wavelength DOE design, is likely to enable the number of levels and the maximum etch to be reduced. This is desirable, as reducing these parameters tends to reduce the impact of fabrication errors. The next stage in this work is to fabricate a working device for a laser system to verify the modeled performance experimentally. Should this prove successful we feel this device will provide a significant tool in laser system optimization. (C) 2007 OSA 20 August 2007 / Vol. 5, No. 7 / OPTICS EXPRESS 0704