Integrated Photonic Devices and Materials

Similar documents
Recent Progress in Pulsed Optical Synchronization Systems

Introduction Fundamentals of laser Types of lasers Semiconductor lasers

Compact, stable 1 ghz femtosecond er-doped fiber lasers

Optoelectronics ELEC-E3210

GaSb based high power single spatial mode and distributed feedback lasers at 2.0 μm

High-efficiency, high-speed VCSELs with deep oxidation layers

Vertical External Cavity Surface Emitting Laser

Integrated Photonic Devices and Materials

Development of near and mid-ir ultrashort pulse laser systems at Q-Peak. Evgueni Slobodtchikov Q-Peak, Inc.

A continuous-wave Raman silicon laser

Quantum-Well Semiconductor Saturable Absorber Mirror

Surface-Emitting Single-Mode Quantum Cascade Lasers

Ultrafast Optical Physics II (SoSe 2017) Lecture 8, June 2

Progress in ultrafast Cr:ZnSe Lasers. Evgueni Slobodtchikov, Peter Moulton

Generation of 15-nJ pulses from a highly efficient, low-cost. multipass-cavity Cr 3+ :LiCAF laser

Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity

Fabrication of High-Speed Resonant Cavity Enhanced Schottky Photodiodes

taccor Optional features Overview Turn-key GHz femtosecond laser

Integrated photonic circuit in silicon on insulator for Fourier domain optical coherence tomography

Advanced semiconductor lasers

VERTICAL CAVITY SURFACE EMITTING LASER

SUPPLEMENTARY INFORMATION DOI: /NPHOTON

Micro-sensors - what happens when you make "classical" devices "small": MEMS devices and integrated bolometric IR detectors

Frequency Noise Reduction of Integrated Laser Source with On-Chip Optical Feedback

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University

Introduction and concepts Types of devices

DBR based passively mode-locked 1.5m semiconductor laser with 9 nm tuning range Moskalenko, V.; Williams, K.A.; Bente, E.A.J.M.

Hybrid vertical-cavity laser integration on silicon

MBE Growth of Terahertz Quantum Cascade Lasers Harvey Beere

rd IEEE International Semiconductor Laser Conference (ISLC 2012) San Diego, California, USA 7 10 October IEEE Catalog Number: ISBN:

Lecture: Integration of silicon photonics with electronics. Prepared by Jean-Marc FEDELI CEA-LETI

High repetition rate fiber laser

Microphotonics Readiness for Commercial CMOS Manufacturing. Marco Romagnoli

Simultaneous pulse amplification and compression in all-fiber-integrated pre-chirped large-mode-area Er-doped fiber amplifier

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1

TIGER Femtosecond and Picosecond Ti:Sapphire Lasers. Customized systems with SESAM technology*

Semiconductor Optical Communication Components and Devices Lecture 18: Introduction to Diode Lasers - I

Modal and Thermal Characteristics of 670nm VCSELs

Design and fabrication of indium phosphide air-bridge waveguides with MEMS functionality

OPTICAL COMMUNICATIONS S

Single-frequency operation of a Cr:YAG laser from nm

Miniature Mid-Infrared Thermooptic Switch with Photonic Crystal Waveguide Based Silicon-on-Sapphire Mach Zehnder Interferometers

Photonic Integrated Circuits Made in Berlin

Spontaneous Hyper Emission: Title of Talk

S Optical Networks Course Lecture 2: Essential Building Blocks

64 Channel Flip-Chip Mounted Selectively Oxidized GaAs VCSEL Array

InP-based Waveguide Photodetector with Integrated Photon Multiplication

Robert G. Hunsperger. Integrated Optics. Theory and Technology. Sixth Edition. 4ü Spri rineer g<

Integrated disruptive components for 2µm fibre Lasers ISLA. 2 µm Sub-Picosecond Fiber Lasers

Testing with Femtosecond Pulses

High-Power, Passively Q-switched Microlaser - Power Amplifier System

Optical MEMS in Compound Semiconductors Advanced Engineering Materials, Cal Poly, SLO November 16, 2007

Principles of Optics for Engineers

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

Nano electro-mechanical optoelectronic tunable VCSEL

Diode lasers for sensor applications. Bernd Sumpf Ferdinand-Braun-Institut Lichtenwalde, October 18, 2012

E. U. Rafailov Optoelectronics and Biomedical Photonics Group School of Engineering and Applied Science Aston University Aston Triangle Birmingham

Optical Interconnection in Silicon LSI

Realization of Polarization-Insensitive Optical Polymer Waveguide Devices

How to build an Er:fiber femtosecond laser

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber

Novel Integrable Semiconductor Laser Diodes

CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

Designing for Femtosecond Pulses

Fabrication and Characterization of Broad-Area Lasers with Dry-Etched Mirrors

3550 Aberdeen Ave SE, Kirtland AFB, NM 87117, USA ABSTRACT 1. INTRODUCTION

Ph 77 ADVANCED PHYSICS LABORATORY ATOMIC AND OPTICAL PHYSICS

Survey Report: Laser R&D

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers

Photonics and Optical Communication

Femtosecond pulse generation

Improved Output Performance of High-Power VCSELs

Mode-locking and frequency beating in. compact semiconductor lasers. Michael J. Strain

Fiber-based components. by: Khanh Kieu

Tapered Amplifiers. For Amplification of Seed Sources or for External Cavity Laser Setups. 750 nm to 1070 nm COHERENT.COM DILAS.

Semiconductor Lasers Semiconductors were originally pumped by lasers or e-beams First diode types developed in 1962: Create a pn junction in

Visible Superluminescent LEDs for Smart Lighting

Optical phase-coherent link between an optical atomic clock. and 1550 nm mode-locked lasers

Large spontaneous emission rate enhancement in a III-V antenna-led

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 2, NO. 3, SEPTEMBER

Optical Communications and Networking 朱祖勍. Sept. 25, 2017

Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode

Yb-doped Mode-locked fiber laser based on NLPR Yan YOU

Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p.

Grating-waveguide structures and their applications in high-power laser systems

IST IP NOBEL "Next generation Optical network for Broadband European Leadership"

Survey Report: Laser R&D

Wavelength switching using multicavity semiconductor laser diodes

The Theta Laser A Low Noise Chirped Pulse Laser. Dimitrios Mandridis

SUPPLEMENTARY INFORMATION

New Waveguide Fabrication Techniques for Next-generation PLCs

High brightness semiconductor lasers M.L. Osowski, W. Hu, R.M. Lammert, T. Liu, Y. Ma, S.W. Oh, C. Panja, P.T. Rudy, T. Stakelon and J.E.

Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm

Fiber Laser Chirped Pulse Amplifier

Implant Confined 1850nm VCSELs

Ring cavity tunable fiber laser with external transversely chirped Bragg grating

AIR-COUPLED PHOTOCONDUCTIVE ANTENNAS

High-power semiconductor lasers for applications requiring GHz linewidth source

Cavity QED with quantum dots in semiconductor microcavities

Transcription:

Integrated Photonic Devices and Materials Professor Leslie A. Kolodziejski Department of Electrical Engineering and Computer Science MIT in Japan 13 th Annual Symposium for Japanese Industry January 21, 2011

Research Highlights Nanoprecision Deposition Laboratory Saturable Bragg Reflectors (SBRs) Long Wavelength Optical Sources Ultra-Broadband Modulators at 800nm

Nanoprecision Deposition Laboratory Molecular Beam Epitaxy Platen Sizes: 14x2, 7x3, 4x4, 1x6, 1x8

Molecular Beam Epitaxy (MBE) pumping UHV 10-10 to 10-12 Torr substrate GaAs/InP shutters molecular beam Ga heating elements

Dual-Reactor Multi-Wafer MBE (As,P)-based Reactor sources: 2-Ga, 2-In, Al crackers: As, P dopants: Si, Be, C gas sources: H 2, N 2 Sb-based Reactor sources: 2-Ga, 2-In, Al crackers: As, P, Sb dopants: Si, Be, C, Te gas source: H 2

Band Gap Energy (ev) Wavelength (nm) Semiconductor Material Capability AlAs AlGaAs AlSb GaAs InP InGaAs GaSb Lattice Constant (Å)

Research Highlights MIT s Nanoprecision Deposition Laboratory Saturable Bragg Reflectors (SBRs) Long Wavelength Optical Sources Ultra-Broadband Modulators at 800nm

SBRs to Modelock Short Pulse Lasers a) Example Laser pump pump laser (977nm) output of output laser multiplexer WDM SBR Er-doped EDF fiber SMF output Output coupler coupler (coated ferrule) SBR laser cavity packaged in a box

Pulsing with a Saturable Bragg Reflector Saturable Bragg Reflector (SBR) light pulses gain medium mirror + saturable absorber = SBR mirror Purpose: To reflect light back into the laser cavity Purpose: Introduces an intensity-dependent absorption for initiating pulses Low intensities fully absorbed High intensities partially absorbed

Short Pulses need Wide Bandwidth 10 fs Pulse-width limited by the component with the smallest bandwidth Dn ~ 40 THz => Dl ~ 200 nm time frequency l c =1230 nm Laser System Gain medium Passive Components Mirror + Saturable Absorber = SBR mirror

intensity (dbm) intensity (a.u.) IAC (a.u.) a) a) b) 1 sech 2 fit Example 0.8 measured Laser pump 0.6 laser pump (977nm) 0.4 output of laser output 0.2 SBRs to Modelock Short Pulse Lasers 0 multiplexer WDM 17.5nm 1540 1560 1580 1600 wavelength (nm) packaged in a box c) 0 d) -10-20 -30-40 -50-60 -70 1 2 3 4 5 6 7 8 9 10 frequency (GHz) 8 6 SBR Er-doped EDF fiber SMF 4 output Output coupler coupler 2 (coated ferrule) SBR 0 laser cavity -500 0 500 time delay (fs) 0 1.54x187fs NEED -20 for SBRs: -40 self-starting sustain pulses -60 compact -80 robust user-friendly -100 967.1 967.7 frequency (MHz)

intensity (dbm) intensity (a.u.) IAC (a.u.) a) a) b) 1 sech 2 fit Example 0.8 measured Laser pump 0.6 laser pump (977nm) 0.4 output of laser output 0.2 0 packaged in a box c) 0 d) -10-20 -30-40 SBRs to Modelock Short Pulse Lasers multiplexer WDM 17.5nm 4 SBRs used to modelock : fiber-based lasers solid-state lasers 1540 1560 1580 1600 wavelength (nm) -50-60 -70 1 2 3 4 5 6 7 8 9 10 frequency (GHz) 8 6 SBR Er-doped EDF Fiber SMF output Output coupler coupler 2 (coated ferrule) SBR 0 laser cavity variety of wavelengths (visible to IR) variety of pulsewidths (fs to ps) -500 0 500 time delay (fs) variety of repetition rates (MHz to GHz) 0 1.54x187fs NEED -20 for SBRs: -40 self-starting sustain pulses -60 compact -80 robust user-friendly -100 967.1 967.7 frequency (MHz)

Technology Needing Short Pulse Lasers medical diagnostics (imaging, multi-photon microscopy/spectroscopy) micromachining laser eye surgery photonic A-to-D converters 100GSa/s @10bits 3D optical data storage optical clocks frequency combs MIT SBR 500 MHz laser SBR pulse interleaver amplifier (14.8-a2/2) cm passive Er-doped Waveguide Laser Chip 5cm gain ßpump loop: a2 cm 10% out 500MHz output 15cm 2GHz output Specs: 10 mw, 200 fsec, 2GHz,1550nm Can ONLY be modelocked with SBR Cost for waveguide laser: $130! ( + $2k for pump laser) 13

Design of Saturable Bragg Reflectors pump λ n layers reflecting layers resonant layers to increase absorption saturable absorber for laser cavity: bulk layer or QW* (? thickness) number of QWs absorber placement mirror design: center wavelength λ 0 bandwidth (index contrast) absorber lifetime or response time: strain proton bombardment choice of cladding layer GaAs substrate * QW = quantum well

Typical Distributed Bragg Reflector 22 pairs of Al 0.95 Ga 0.05 As & GaAs: Bandwidth: ~ 170nm Peak Reflectivity: 99.8% l 0 = 1550nm bandwidth GaAs

Variations to Saturable Absorber InGaAs absorbs at λ = 1580 nm number of absorbing InGaAs layers GaAs GaAs InP InP cladding layer material GaAs GaAs GaAs GaAs

Variations to Saturable Absorber InGaAs absorbs at λ = 1580 nm number of absorbing InGaAs layers GaAs GaAs InP InP cladding layer material GaAs GaAs GaAs GaAs thickness of InGaAs layers placement of InGaAs layer(s) AlGaAs AlGaAs x2 resonant layers GaAs GaAs GaAs

GaAs AlGaAs GaAs Effect of Adding Resonant Layers InGaAs 60nm InGaAs absorber embedded in a half-wave cladding layer of GaAs Air 22-pair GaAs/Al 0.95 Ga 0.05 As mirror centered at 1550 nm

Reflectivity (%) Intensity (arb. units) Characterization of SBRs 1.E+0 1.E-1 Fit Data modulation depth: 2.5% non-saturable loss: 1.5% saturation fluence: 20µJ/cm 2 1.E-2 1.E-3 100 90 80 Fit Data 70 1.E-4 65.4 65.6 65.8 66.0 66.2 66.4 66.6 66.8 2-Theta (degrees) high-resolution, triple-axis x-ray diffraction 60 50 40 30 20 10 0 800 1000 1200 1400 1600 1800 2000 Wavelength (nm) ellipsometry

Desired versus Achieved Structure X 22 Structure Desired Reflectivity Fit Composite X-ray Fit Uncoupled Thickness (nm) Al or In content Thickness Al or In content Thickness (nm) Al or In Content Ellipsometer Fit: Coupled Thickness Al or In Content Ellipsometer Fit: Uncoupled Thickness GaAs 83.2 87.2 81.4 82.0 82.4 InGaAs 60 0.53 54.7 0.505 57.6 0.54 67.4 0.44 69.6 0.44 GaAs 83.2 82.6 87.3 82.0 75.9 GaAs 114.7 113.8 113.8 107.96 110.0 AlGaAs 132.9 0.95 132.1 0.96 133.7.97 132.2 0.80 128.6 0.80 GaAs Substrate Al or In Content

Proton Bombardment: Modify Carrier Lifetime Generate femtosecond pulses Shortens pulsewidth reduced carrier lifetime reduced two photon absorption (multiple pulsing suppressed)

MIT SBR 500 MHz laser SBR Er-doped Waveguide Laser pulse interleaver amplifier SBR Technology Development (14.8-a2/2) cm passive 5cm gain ßpump loop: a2 cm 10% out 500MHz output 15cm 8.8nm FWHM 285fs FWHM pulse duration 0.2mW output for 500MHz 0.4mW output for 2 GHz Pump Output WDM OC 10% Compact Fiber Free Space Fiber Laser 2GHz output 121x94x33mm 3 Output Pump Laser WDM OC 10% Erbium Fiber Collimator Lens MIT SBR 6.4nm FWHM ~400fs FWHM pulse duration 4mW output for 625MHz tunable laser Erbium Fiber + SMF28e (92mm + 11mm) MIT SBR 17.5nm FWHM 187fs FWHM pulse duration 27.4mW output for ~1GHz laser

Issues with SBR Robustness 1) Damage by 980 nm pump light Solution: Dichroic dielectric coating (HR @980nm, HT@1560nm) 2) Localized Heating Solutions: thin GaAs substrate mount on copper holders fiber spliced onto Er-doped fiber between SBR metal fiber ferrules to conduct heat away thermally-conductive epoxy to conduct heat away 10 mm Image of SBR Degradation

Reflection (%) Narrowband SBRs: Various Wavelengths 100 95 90 85 800 nm SBR 850 nm SBR 910 nm SBR 80 750 775 800 825 850 875 900 925 950 975 Wavelength (nm) Al 0.95 Ga 0.05 As/GaAs Mirror Stack

Intensity (au) Intensity (au) Intensity (au) Intensity (au) Modelocking Results Pulse energies: 1-2 nj, Peak powers: 20-40 kw, Rep rate: 100 MHz 1 0.75 0.5 Cr:LiCAF 21nm, 40fs 21 nm 1 0.75 0.5 Cr:LiSAF 19nm, 40fs 19 nm 0.25 0.25 0 750 775 800 825 850 Wavelength (nm) 0 765 790 815 840 865 Wavelength (nm) 1 Cr:LiSAF 1.00 Cr:LiSAF 0.75 0.5 34nm, 25fs 34 nm 0.75 0.50 10nm, 90fs 10 nm 0.25 0.25 0 775 800 825 850 875 900 925 Wavelength (nm) 0.00 875 890 905 920 Wavelength (nm)

SESAM/SBR Reflectivity (%) Intensity (au) SHG Intensity (au) Cr:LiSAF Laser: 25fs pulses DS1 TM DS2 TE PBS 3 % OC 75 mm 28 cm M1 DCM 75 mm Cr:LiSAF FS prism FS prism M2 DCM 75 mm 75 mm MIT-850-bulk SESAM/SBR MIT SBR DS4 TE PBS DS3 TM M4 25 fs 1.00 0.75 0.50 0.25 0.00-100 -50 0 50 100 Delay (fs) 100 1 75 50 25 34 nm 0.75 0.5 0.25 nearly transform limited, 25-fs, 1-nJ pulses at 85 MHz pulsewidth limited by SBR reflectivity and dispersion bandwidth 0 0 750 775 800 825 850 875 900 925 950 Wavelength (nm)

Total cavity GVD (fs^2) _ SBR Reflection (%) Intensity (au) SBR Reflection (%) Intensity (au) SBR Reflectivity (%) Total cavity GVD (fs^2) _ SBR Reflection (%) Wavelength Tuning of Modelocked Laser Cr:LiCAF: 767-817 nm with <200-fs pulses 1 100 Cr:LiSAF: 803-831 nm with <150-fs pulses 0 100 0.75 99-400 99 0.5 98-800 98 0.25 97-1200 97 0 96 750 760 770 780 790 800 810 820 830 Wavelength (nm) Cr:LiSAF: 828-873nm with <200-fs pulses -200 100-1600 96 760 770 780 790 800 810 820 830 840 Wavelength (nm) Cr:LiSAF: 890-922 nm with <250-fs pulses 1.0 100-450 99 0.8 99-700 98 0.5 98-950 97 0.3 97-1200 96 810 820 830 840 850 860 870 880 890 900 Wavelength (nm) 0.0 96 870 880 890 900 910 920 930 940 950 Wavelength (nm)

D4, TE 640 nm D2, TE 640 nm Intensity (au) _ Total cavity GVD (fs^2) _ Intensity (au) Reflection (%) Pulse Energy (nj) _ Pulse Width (fs) 45nm Tuning with sub 200fs Pulses 2.5 300 D1, TM 640 nm M5 DCM 100 mm 1 0.75 PBS M3 DCM f=65 mm MIT-850-bulk-HR SESAM/SBR MIT SBR M1 DCM 75 mm M4 DCM M2 DCM 75 mm Cr:LiSAF f=65 mm BR tuning plate PBS 3% OC 100 99 D3, TM 640 nm 2 240 1.5 180 1 120 pulse energy 0.5 pulse width 60 0 0 820 830 840 850 860 870 880 Wavelength (nm) 1-750 0.5 98 0.8-800 0.6-850 0.25 97 0.4 GVD -900 0 810 830 850 870 890 Wavelength (nm) continuous tuning from 828 to 873 nm (45 nm) average pulsewidth = 190 fs average pulse energy = 1.87 nj (91 MHz) 96 0.2 0-1000 820 830 840 850 860 870 880 890 Wavelength (nm) tuning range limited by the SBR reflectivity and dispersion bandwidth -950

MIT Innovation: Broadband Mirror Stack l 0 = 1550nm 7 pair Al x O y /GaAs stack: Bandwidth*: 600nm Peak Reflectivity: 100% GaAs * determined at 99% reflectivity

MIT Innovation: Broadband Mirror Stack l 0 = 1550nm Patent Pending: MIT Case 11667, US Appln. Ser. No. 11/433,736) 7 pair Al x O y /GaAs stack: Bandwidth*: 600nm Peak Reflectivity: 100% GaAs * determined at 99% reflectivity

Thermal Oxidation of AlAs AlAs + H 2 0 Al x O y + AsH 3 n = 2.9 n = 1.6 apparatus influence on oxidation rate time, temperature, steam flow sample influence on oxidation rate aluminum content, layer thickness, sample geometry

Reflection (%) Benefits to Oxidized AlAs Layers 100 90 Oxidized Bragg mirror 80 Regular Bragg mirror 70 60 50 40 30 20 10 0 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 Wavelength (nm) Replace Al x O y (n 1.6) for AlAs (n 3) Dn increases from 0.5 to 1.9 only 6-7 pairs are required in the Bragg stack >300 nm reflectivity bandwidth less toxic material greater robustness to fabrication

Transmission (%) Gain (au) L Broadband Tunability of SBRs 100 280 E c2 E c1 DE c 99.5 210 99 140 E g2 E g1 E band-gap-qw 98.5 70 98 Small signal Saturated Cr:LiSAF estimated gain 0 E v2 750 800 850 900 950 1000 1050 1100 E v1 DE v Wavelength (nm) Al 0.19 Ga 0.81 As In 0.14 Ga 0.86. As Al 0.19 Ga 0.81 As Aim: Tunability in 800-900 nm region Need flat linear and nonlinear absorption response in 800-900 nm region 6 nm thick In 0.14 Ga 0.86 As strained absorber sandwiched between Al 0.19 Ga 0.81 As 0.75% modulation depth Absorber transitions are at 920 nm and 803 nm Ref: S. W. Corzine, PhD Thesis, University of California, Santa Barbara (1993).

D6, TE 640 nm D3, TE 640 nm Pulse Energy (nj) Pulse Width (fs) Intensity (au) Reflection (%) 105nm Tunability with Broadband SBR 1 Saturated reflection 100 0.75 99.75 D2, TE Dichroic 660 nm filter M1 f=65 mm 75 mm D1, TM 640 nm PBS Oxidized SAM M2 75 mm Cr:LiSAF f=65 mm M3 DCM DCM 150 mm BR tuning HR plate (cw) Broadband SBR Dichroic filter PBS 3% OC D5, TE 660 nm D4, TM 640 nm 0.5 0.25 0 99 750 800 850 900 950 Wavelength (nm) Small signal reflection 99.5 99.25 Continuous tuning from 800 to 905 nm Average pulse-width = 140 fs Average pulse-energy = 1.6 nj 2.5 2 1.5 300 240 180 1 120 0.5 pulse energy pulse width 60 0 0 780 800 820 840 860 880 900 920 Wavelength (nm)

MIT Broadband SBRs: Wavelength Range Ti:sapphire 15-30fs Er-doped fiber 155fs Cr:Forsterite 20fs

MIT Broadband SBRs: Wavelength Range Ti:sapphire 15-30fs Er-doped fiber 155fs Simulated Cr:ZnSe Cr:Forsterite 20fs GaAs 7 Pairs: GaAs 182.7nm AlAs 453.7nm

Research Highlights MIT s Nanoprecision Deposition Laboratory Saturable Bragg Reflectors (SBRs) Long Wavelength Optical Sources Ultra-Broadband Modulators at 800nm

Near- and Mid-infrared Semiconductor Lasers Infrared laser absorption spectroscopy detection and quantification of molecular trace gases (ppm to ppt by volume) chemical analysis and industrial process control toxic industrial chemical detection petrochemical gas detection combustion sources and processes e.g. early fire detection agriculture and animal facilities environmental gas monitoring spacecraft and planetary surface monitoring Werle et al, Optics and Lasers in Engineering 37 (2002), 101 114.

Near- and Mid-infrared Semiconductor Lasers Biomedical applications eye surgery infrared spectroscopy of biotissues high precision laser ablation of biotissue angioplasty breath analysis Source: NY Times Source: Serebryakov, J. Opt. Technol. 77 (1), (2010) Source: M. Ebrahim-Zadeh and I. T. Sorokina (eds.), Mid-Infrared Coherent Sources and Applications (2008), 535 555.

Long Wavelength Optical Sources In 0.47 Ga 0.53 As:Be 80nm InP:Be 2282nm In 0.52 Ga 0.38 Al 0.1 As:Be 21nm InP:Be 171nm In 0.52 Ga 0.38 Al 0.1 As 190nm In 0.52 Ga 0.38 Al 0.1 As 211nm In x Ga 1-x As 9.5nm In 0.52 Ga 0.38 Al 0.1 As 211nm InP:Si 1141nm InP substrate n Cladding Active Wave Guide Etch Stop Contact C-mounted Laser Device Threshold (ma) VA152 120 cw 1502 VA153 67 cw 1777 VA154 120 cw 1814 VA158 58 cw 1879 VA159 49 cw 1893 VA162 80 cw 1978 VA163 240 cw 1990 Wavelength (nm) slightly above threshold

Material and Structural Characterization (004)HR-XRD InP substrate 2 InGaAs quantum wells with InGaAlAs cladding layers InGaAs contact layer

PL intensity (a.u.) Power (W) Optical Characterization 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 va153 n=2 va154 n=3 va158 n=2 va159 n=3 va162 n=2 va163 n=3 1200 1400 1600 1800 2000 2200 l (nm) Photoluminescence (PL) 8.0x10-7 VA162 DC1% 1A 7.0x10-7 VA162 DC2% 1A 6.0x10-7 5.0x10-7 4.0x10-7 3.0x10-7 2.0x10-7 1.0x10-7 0.0 1700 1800 1900 2000 2100 l (nm) Electroluminescence (EL)

Long Wavelength InP-based Lasers L-I-V spectrum Schematic

Fabry-Perot Ridge Lasers scanning electron micrograph 3μm ridge width and 2.3μm etch depth In collaboration with P. Heim/A. Cable Thorlabs Quantum Electronics

Normalized Intensity 2.6µm Tunable Long Wavelength Laser 1 µm n contact = 3.55 n InP = 3.132 n BCB = 1.5 n InGaAlAs = 3.62 Schematic of Tunable Laser Design 0.5 0.45 0.4 0.35 Coupled-mode Analytical Calculation Transmission through 2 rings, Kappa=0.45 Straight WG Loss = 10 db/cm 0.3 0.25 0.2 Racetrack: 25µm bends, 75µm coupling regions 0.3µm between WGs 0.15 0.1 0.05 0 1.82 1.84 1.86 1.88 1.9 1.92 1.94 l [um]

Research Highlights MIT s Nanoprecision Deposition Laboratory Saturable Bragg Reflectors (SBRs) Long Wavelength Optical Sources Ultra-Broadband Modulators at 800nm

Modulators: Technology Development Material Design: MBE growth Material characterization Device Design: Modulator- MOS based using embedded Al x O y Multimode Interferometers (MMIs) Y-splitters Fabrication Process Flow: 6 mask levels Self-aligned passive-to-powered sections NR7-3000P Photoresist Process III-V Etching with new ICP-RIE # BCB* Planarization Process Metallization with Significant Topology BCB Etch to Facilitate Cleaving *BCB: benzocyclobutene # ICP-RIE: inductively-coupled plasma reactive-ion etching

Intensity (arb. units) 800nm Modulators AlGaAs-based MOS Structure Gold dilute waveguide core Al 0.27 Ga 0.73 As AlAs transformed Al x O y 40nm to Al x O y to improve mode confinement higher operating fields push-pull operation Al 0.17 Ga 0.83 As 60nm 175nm 1E+1 1E+0 1E-1 1E-2 1E-3 (400) x-ray Fit Data 1E-4 500nm 1E-5 65.6 65.8 66.0 66.2 66.4 2-Theta (deg) Al 0.27 Ga 0.73 As 1.675µm simulated optical mode GaAs substrate

Mach-Zehnder Interferometers: llength: 3mm to 10.5mm aligned to [011] and [01-1] 6 mask level process All waveguides are placed within trenches 800nm Modulators MMI MMI Plan-view Device Schematic Length 3.0 mm 4.5 6.0 7.5 9.0 10.5 Voltage 2.57 V 1.71 1.28 1.03 0.86 0.73 Vπ L = 7.7 volt mm 2 Wafer Outline Vπ L = λ t / n eff3 (r 25 +r 12 +r 32 ) where t = thickness from oxide-to-oxide layers, assuming r s for GaAs

Waveguide Etching: Samco Reactive Ion Etcher

Waveguide Etching: Samco Reactive Ion Etcher

Waveguide Etching: Samco Reactive Ion Etcher

Waveguide Etching: Samco Reactive Ion Etcher Al x O y Layers

800nm Modulators: Cleaved Facet Al x O y BCB Die size facet-to-facet: 14.5mm Insertion loss: 14 to 23 db 9.7 db/cm loss Y-splitters work successfully Note: mask #6 used to remove BCB facilitating cleaving

Research Highlights MIT s Nanoprecision Deposition Laboratory multiwafer MBE, significant material capability Saturable Bragg Reflectors (SBRs) broadband, short pulse generation, wide tunability Long Wavelength Optical Sources widely tunable, InP-based & GaSb-based Ultra-Broadband Modulators at 800nm

A Team Effort Students: Dr. Gale Petrich, MIT Professor Erich Ippen, MIT Professor Franz Kaertner, MIT Professor James Fujimoto, MIT Dr. Abdelmajid Salhi, KACST Professor Hamad Brithen, Alfaisal Univ Professor Jaime Viegas, Masdar Institute Sponsors: DARPA, Thorlabs, KACST, AFOSR, QPeak Dr. Umit Demirbas Dr. Ali Motamedi Dr. Hanfei Shen Hyunil Byun Jeff Chen Amy Chi Chun Duo Li Sheila Nabanja Michelle Sander Orit Shamir Ta-Ming Shih