BIOGRAPHY ABSTRACT. This paper will present the design of the dual-frequency L1/L2 S-CRPA and the measurement results of the antenna elements.

Similar documents
BIOGRAPHY ABSTRACT. This paper will present the design of the dual-frequency L1/L2 S-CRPA and the measurement results of the antenna elements.

Test Results of a 7-Element Small Controlled Reception Pattern Antenna

KINEMATIC TEST RESULTS OF A MINIATURIZED GPS ANTENNA ARRAY WITH DIGITAL BEAMSTEERING ELECTRONICS

Small Controlled Reception Pattern Antenna (S-CRPA) Design and Test Results

Investigation of a Forward Looking Conformal Broadband Antenna for Airborne Wide Area Surveillance

Loop-Dipole Antenna Modeling using the FEKO code

Miniaturized GPS Antenna Array Technology and Predicted Anti-Jam Performance

SA Joint USN/USMC Spectrum Conference. Gerry Fitzgerald. Organization: G036 Project: 0710V250-A1

TEST RESULTS OF A DIGITAL BEAMFORMING GPS RECEIVER FOR MOBILE APPLICATIONS

Performance and Jamming Test Results of a Digital Beamforming GPS Receiver

DIELECTRIC ROTMAN LENS ALTERNATIVES FOR BROADBAND MULTIPLE BEAM ANTENNAS IN MULTI-FUNCTION RF APPLICATIONS. O. Kilic U.S. Army Research Laboratory

Simulation Comparisons of Three Different Meander Line Dipoles

GLOBAL POSITIONING SYSTEM SHIPBORNE REFERENCE SYSTEM

Lattice Spacing Effect on Scan Loss for Bat-Wing Phased Array Antennas

MINIATURIZED ANTENNAS FOR COMPACT SOLDIER COMBAT SYSTEMS

Automatic Payload Deployment System (APDS)

Durable Aircraft. February 7, 2011

Underwater Intelligent Sensor Protection System

Modeling Antennas on Automobiles in the VHF and UHF Frequency Bands, Comparisons of Predictions and Measurements

Multipath Mitigation Algorithm Results using TOA Beacons for Integrated Indoor Navigation

A RENEWED SPIRIT OF DISCOVERY

SYSTEMATIC EFFECTS IN GPS AND WAAS TIME TRANSFERS

INTEGRATIVE MIGRATORY BIRD MANAGEMENT ON MILITARY BASES: THE ROLE OF RADAR ORNITHOLOGY

COM DEV AIS Initiative. TEXAS II Meeting September 03, 2008 Ian D Souza

Coherent distributed radar for highresolution

Strategic Technical Baselines for UK Nuclear Clean-up Programmes. Presented by Brian Ensor Strategy and Engineering Manager NDA

PSEUDO-RANDOM CODE CORRELATOR TIMING ERRORS DUE TO MULTIPLE REFLECTIONS IN TRANSMISSION LINES

REPORT DOCUMENTATION PAGE

August 9, Attached please find the progress report for ONR Contract N C-0230 for the period of January 20, 2015 to April 19, 2015.

VHF/UHF Imagery of Targets, Decoys, and Trees

Octave Bandwidth Printed Circuit Phased Array Element

Active Denial Array. Directed Energy. Technology, Modeling, and Assessment

REPORT DOCUMENTATION PAGE

0.18 μm CMOS Fully Differential CTIA for a 32x16 ROIC for 3D Ladar Imaging Systems

Solar Radar Experiments

Hybrid QR Factorization Algorithm for High Performance Computing Architectures. Peter Vouras Naval Research Laboratory Radar Division

Presentation to TEXAS II

NEURAL NETWORKS IN ANTENNA ENGINEERING BEYOND BLACK-BOX MODELING

RECENT TIMING ACTIVITIES AT THE U.S. NAVAL RESEARCH LABORATORY

Remote Sediment Property From Chirp Data Collected During ASIAEX

Report Documentation Page

MICROSTRIP PATCH RADIATING ELEMENTS FOR CIRCULARLY- POLARIZED PHASED ARRAY

Effects of Fiberglass Poles on Radiation Patterns of Log-Periodic Antennas

The Algorithm Theoretical Basis Document for the Atmospheric Delay Correction to GLAS Laser Altimeter Ranges

REPORT DOCUMENTATION PAGE

REPORT DOCUMENTATION PAGE. Thermal transport and measurement of specific heat in artificially sculpted nanostructures. Dr. Mandar Madhokar Deshmukh

PHASING CAPABILITY. Abstract ARRAY. level. up to. to 12 GW. device s outpu antenna array. Electric Mode. same physical dimensions.

Technology Maturation Planning for the Autonomous Approach and Landing Capability (AALC) Program

U.S. Army Training and Doctrine Command (TRADOC) Virtual World Project

Wavelength Division Multiplexing (WDM) Technology for Naval Air Applications

UNCLASSIFIED UNCLASSIFIED 1

RF Performance Predictions for Real Time Shipboard Applications

IREAP. MURI 2001 Review. John Rodgers, T. M. Firestone,V. L. Granatstein, M. Walter

Modeling an HF NVIS Towel-Bar Antenna on a Coast Guard Patrol Boat A Comparison of WIPL-D and the Numerical Electromagnetics Code (NEC)

Improving the Detection of Near Earth Objects for Ground Based Telescopes

Test Results from a Digital P(Y) Code Beamsteering Receiver for Multipath Minimization Alison Brown and Neil Gerein, NAVSYS Corporation

Signal Processing Architectures for Ultra-Wideband Wide-Angle Synthetic Aperture Radar Applications

Department of Defense Partners in Flight

14. Model Based Systems Engineering: Issues of application to Soft Systems

NPAL Acoustic Noise Field Coherence and Broadband Full Field Processing

Drexel Object Occlusion Repository (DOOR) Trip Denton, John Novatnack and Ali Shokoufandeh

Bistatic Underwater Optical Imaging Using AUVs

Rump Session: Advanced Silicon Technology Foundry Access Options for DoD Research. Prof. Ken Shepard. Columbia University

Frequency Stabilization Using Matched Fabry-Perots as References

REPORT DOCUMENTATION PAGE

Experimental Observation of RF Radiation Generated by an Explosively Driven Voltage Generator

Robotics and Artificial Intelligence. Rodney Brooks Director, MIT Computer Science and Artificial Intelligence Laboratory CTO, irobot Corp

CFDTD Solution For Large Waveguide Slot Arrays

A GPS RECEIVER DESIGNED FOR CARRIER-PHASE TIME TRANSFER

Report Documentation Page

Advancing Autonomy on Man Portable Robots. Brandon Sights SPAWAR Systems Center, San Diego May 14, 2008

Reduced Power Laser Designation Systems

UNCLASSIFIED INTRODUCTION TO THE THEME: AIRBORNE ANTI-SUBMARINE WARFARE

Modeling of Ionospheric Refraction of UHF Radar Signals at High Latitudes

EFFECTS OF ELECTROMAGNETIC PULSES ON A MULTILAYERED SYSTEM

Innovative 3D Visualization of Electro-optic Data for MCM

Marine~4 Pbscl~ PHYS(O laboratory -Ip ISUt

Key Issues in Modulating Retroreflector Technology

FAST DIRECT-P(Y) GPS SIGNAL ACQUISITION USING A SPECIAL PORTABLE CLOCK

PULSED BREAKDOWN CHARACTERISTICS OF HELIUM IN PARTIAL VACUUM IN KHZ RANGE

COMMON-VIEW TIME TRANSFER WITH COMMERCIAL GPS RECEIVERS AND NIST/NBS-TYPE REXEIVERS*

THE NATIONAL SHIPBUILDING RESEARCH PROGRAM

Ground Based GPS Phase Measurements for Atmospheric Sounding

REPORT DOCUMENTATION PAGE

Experimental Studies of Vulnerabilities in Devices and On-Chip Protection

TRANSMISSION LINE AND ELECTROMAGNETIC MODELS OF THE MYKONOS-2 ACCELERATOR*

A Multi-Use Low-Cost, Integrated, Conductivity/Temperature Sensor

Joint Milli-Arcsecond Pathfinder Survey (JMAPS): Overview and Application to NWO Mission

HIGH TEMPERATURE (250 C) SIC POWER MODULE FOR MILITARY HYBRID ELECTRICAL VEHICLE APPLICATIONS

Radar Detection of Marine Mammals

Buttress Thread Machining Technical Report Summary Final Report Raytheon Missile Systems Company NCDMM Project # NP MAY 12, 2006

Basic Studies in Microwave Sciences FA

A Comparison of Two Computational Technologies for Digital Pulse Compression

Student Independent Research Project : Evaluation of Thermal Voltage Converters Low-Frequency Errors

3. Faster, Better, Cheaper The Fallacy of MBSE?

Reconfigurable RF Systems Using Commercially Available Digital Capacitor Arrays

A HIGH-PRECISION COUNTER USING THE DSP TECHNIQUE

Southern California 2011 Behavioral Response Study - Marine Mammal Monitoring Support

Thermal Simulation of Switching Pulses in an Insulated Gate Bipolar Transistor (IGBT) Power Module

Validated Antenna Models for Standard Gain Horn Antennas

Transcription:

Test Results of a Dual Frequency (L1/L2) Small Controlled Reception Pattern Antenna Huan-Wan Tseng, Randy Kurtz, Alison Brown, NAVSYS Corporation; Dean Nathans, Francis Pahr, SPAWAR Systems Center, San Diego BIOGRAPHY Huan-Wan Tseng is an Antenna & RF Engineer at NAVSYS Corporation. He has a Ph.D. from Ohio State University, an ME from University of Florida, and a BS from Tatung Institute of Technology (Taipei, Taiwan), all in Electrical Engineering. Randy Kurtz is the Production Manager at NAVSYS Corporation. He holds a BS in Electrical Engineering from Colorado Technical University. He has eight years of experience in manufacturing and materials management and was a key team member on the Kaman Aerospace/Lockheed SDIO Starlab Wavefront Control Experiment Alison Brown is the President and CEO of NAVSYS Corporation. She has a PhD in Mechanics, Aerospace, and Nuclear Engineering from UCLA, an MS in Aeronautics and Astronautics from MIT, and an MA in Engineering from Cambridge University. In 1986, she founded NAVSYS Corporation. Currently she is a member of the GPS-III Independent Review Team and Scientific Advisory Board for the USAF and serves on the GPS World editorial advisory board. Dean Nathans is the Head of the GPS and Navigation Systems Product Development Team Branch at SPAWAR Systems Center. He holds a BSEE from Rutgers College of Engineering and an MEE from Villanova University. Mr. Nathans responsibilities include Navy Navigation Warfare programs in support of the Navy s Navigation Systems Program Office at SPAWAR, as well as the Office of Naval Research and the GPS Joint Program Office. Mr. Nathans has been employed by the Navy in the Communications and Navigation Technology areas as an Engineer, Project Manager, and Supervisor for twenty three years. Francis Pahr is a Project Manager for the GPS and Navigation Systems Division at SPAWAR Systems Center, San Diego. He holds a BS in Electrical Engineering from Ohio State University. He has 18 years systems design and manufacturing experience and has held positions as Test engineer, Program Manager and supervisor. ABSTRACT The large size of conventional GPS L1/L2 controlled reception pattern antennas (CRPA) has prevented them from being installed on vehicles where available space for antennas is limited. NAVSYS Corporation has developed a miniaturized GPS L1/L2 Small CRPA (S-CRPA), under contract to SPAWAR Systems Center (SSC) in San Diego. This includes a 7-element L1/L2 antenna array packaged in a 7-inch form factor. A single-frequency L1 version of the S-CRPA has been tested by SSC to evaluate the antenna array performance when integrated with GPS antenna electronics. This paper will present the design of the dual-frequency L1/L2 S-CRPA and the measurement results of the antenna elements. INTRODUCTION This paper will present the design and test results of a GPS dual-frequency (L1/L2) S-CRPA based on the miniature antenna array technology developed at NAVSYS. The test parameters include the antenna reflection coefficient, voltage standing wave ratio, and input impedance of individual antenna elements, the mutual coupling between the antenna elements, and satellite tracking measurements of the center antenna element. Proceedings of ION NTM 2002, San Diego, CA, January 2002

Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE JAN 2002 2. REPORT TYPE 3. DATES COVERED 00-00-2002 to 00-00-2002 4. TITLE AND SUBTITLE Test Results of a Dual Frequency (L1/L2) Small Controlled Reception Pattern Antenna 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) NAVSYS Corporation,14960 Woodcarver Road,Colorado Springs,CO,80921 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR S ACRONYM(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES The original document contains color images. 14. ABSTRACT see report 15. SUBJECT TERMS 11. SPONSOR/MONITOR S REPORT NUMBER(S) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified 18. NUMBER OF PAGES 8 19a. NAME OF RESPONSIBLE PERSON Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18

MINIATURE ANTENNA ARRAY TECHNOLOGY The main ideas of the miniature antenna array technology are to reduce the footprint of the antenna array and at the same time to preserve the half-wavelength (at L1 frequency) phase difference between the antenna [1, 2] elements. In order to achieve the above two objectives, the size of each individual antenna elements has to be small and the wavelength of the incoming GPS signal has to be reduced before reaching the antenna elements in the array. The wave front of the GPS signal needs to be bent before reaching the antenna element in such a way that the phase difference between the antenna elements has the same characteristic as when the antenna elements are located in the free space. In the current implementation of the dual-frequency (L1/L2) miniature antenna array, NAVSYS uses planar microstrip antenna elements above high dielectric substrates and a solid hemispherical high dielectric lens above the antenna elements. DUAL-FREQUENCY S-CRPA DESIGN The NAVSYS dual-frequency (L1/L2) S-CRPA is shown in Figure 1. This S-CRPA has been designed to fit within a 7 diameter footprint. This footprint is a 50% reduction in size from the existing 7-element GPS Antenna System (GAS), in use by the Department of Defense, which has a 14 diameter. The configuration and physical dimensions of the array are shown in Figure 2. Figure 1 Seven-inch seven-element dual-frequency (L1/L2) S-CRPA (superstrate hemisphere on the left and substrate on the right) The specifications of the 7-inch 7-element dual-frequency S-CRPA are summarized in Table 1. The antenna elements are designed to operate in the GPS L1 and L2 frequency bands with sufficient bandwidths to receive the C/A code, P(Y) code, and future M-code versions of GPS signals. The seven elements are arranged in a hexagonal pattern with a center reference element, which is similar to the conventional CRPA. Figure 2 Configuration and dimensions of NAVSYS seven-inch seven-element dual-frequency (L1/L2) S- CRPA Table 1 Summary of specifications of NAVSYS dualfrequency (L1/L2) S-CRPA Center frequencies 1575.42 MHz (at L1) 1227.60 MHz (at L2) Bandwidth 24 MHz at L1 (1575.42 +/- 12 MHz) 24 MHz at L2 (1227.60 +/-12 MHz) Input impedance 50 Ω Polarization Right-hand circular polarization (RHCP) Array size 7 inches diameter Array height above 3.7 inches metal ground plane Array configuration Hexagon Number of elements 7 Element type Stacked rectangular Feeding structure of each dual-frequency antenna element Element size Element spacing Number of substrate layers Number of superstrate layers microstrip patches Single probe-feed λ/2 by λ/2 inside substrate materials λ/2 inside superstrate at L1 2 1 (solid hemisphere with a diameter of 7 inches) ANTENNA ELEMENT MEASUREMENT RESULTS Reflection Coefficient The measured reflection coefficients of the seven antenna elements are shown in Figure 3 to Figure 8. 2

Voltage Standing Wave Ratio (VSWR) As shown in Figure 9 to Figure 11 the measured VSWR of each of the seven antenna elements is less than 2.0:1 within the frequency bands of 1227.60 +/- 12.0 MHz and 1575.42 +/- 12.0 MHz. The measured impedance bandwidths (for VSWR < 2.0:1) are wider than the specified 24 MHz in both L1 and L2 bands. Input Impedance The input impedance of each of the seven antenna elements is shown in Figure 12 to Figure 17. Figure 5 Real part of the reflection coefficient of the 1525 to 1625 MHz Figure 3 Real part of the reflection coefficient of the 1000 to 2000 MHz Figure 6 Imaginary part of the reflection coefficient of from 1000 to 2000 MHz Figure 4 Real part of the reflection coefficient of the 1175 to 1275 MHz Figure 7 Imaginary part of the reflection coefficient of from 1175 to 1275 MHz 3

Figure 8 Imaginary part of the reflection coefficient of from 1525 to 1625 MHz Figure 11 Voltage standing wave ratio of the seven antenna elements in the frequency band from 1525 to 1625 MHz Figure 9 Voltage standing wave ratio of the seven antenna elements in the frequency band from 1000 to 2000 MHz Figure 12 Real part of the input impedance of the 1000 to 2000 MHz Figure 10 Voltage standing wave ratio of the seven antenna elements in the frequency band from 1175 to 1275 MHz Figure 13 Real part of the input impedance of the 1175 to 1275 MHz 4

Figure 14 Real part of the input impedance of the 1525 to 1625 MHz Figure 17 Imaginary part of the input impedance of from 1525 to 1625 MHz MUTUAL COUPLING BETWEEN ANTENNA ELEMENTS Figure 15 Imaginary part of the input impedance of from 1000 to 2000 MHz The transmission coefficient between the elements is used to indicate the mutual coupling between them. The 21 mutual coupling measurements among the seven antenna elements are shown in Figure 18 to Figure 23. The strongest mutual couplings occur between three pairs of diagonal antenna elements (between Element 2 and 5, between Element 3 and 6, and between Element 4 and 7). The worst case is between Element 4 and 7 at L2 band with a mutual coupling of approximately 9.5 db. Except for the diagonal pairs of antenna elements, the mutual couplings between all the other pairs are always below 14 db. Figure 16 Imaginary part of the input impedance of from 1175 to 1275 MHz Figure 18 Mutual coupling between Element 1 (center element) and Element 2, 3, 4, 5, 6, and 7 5

Figure 19 Mutual coupling between Element 2 and Element 3, 4, 5, 6, and 7 Figure 22 Mutual coupling between Element 5 and Element 6 and 7 Figure 20 Mutual coupling between Element 3 and Element 4, 5, 6, and 7 Figure 21 Mutual coupling between Element 4 and Element 5, 6, and 7 Figure 23 Mutual coupling between Element 6 and Element 7 S-CRPA GPS SATELLITE TRACKING TESTS Some of the preliminary results of GPS satellite tracking tests with the dual-frequency (L1/L2) S-CRPA are shown here. An L1/L2 GPS receiver from NovAtel is used in these measurements. Since this is a codeless receiver, the observed signal/noise ratios on the L2 channel are lower than would be expected from a P(Y) code PPS receiver. For comparison purposes, a reference L1/L2 antenna (AT2775-16 from AeroAntenna Technology, Inc.) is used with the same receiver right before the measurements with the S-CRPA. Figure 24, Figure 26, Figure 28, and Figure 30 show the measured C/N 0 of PRN 4, 9, 24, and 5, respectively, with the center element of the S-CRPA. Figure 25, Figure 27, Figure 29, and Figure 31 show the measured C/N 0 of those four PRNs, respectively, with the reference antenna. As shown in these figures, the center element of the S-CRPA can provide equivalent tracking performance as a conventional GPS dual-frequency (L1/L2) antenna. 6

Figure 24 Measured C/N 0 of PRN 4 with Element 1 of S-CRPA Figure 27 Measured C/N 0 of PRN 9 with a reference antenna (AT2775-16 from AeroAntenna Technology, Inc.) Figure 25 Measured C/N 0 of PRN 4 with a reference antenna (AT2775-16 from AeroAntenna Technology, Inc.) Figure 28 Measured C/N 0 of PRN 24 with Element 1 of S-CRPA Figure 26 Measured C/N 0 of PRN 9 with Element 1 of S-CRPA Figure 29 Measured C/N 0 of PRN 24 with a reference antenna (AT2775-16 from AeroAntenna Technology, Inc.) 7

REFERENCES Figure 30 Measured C/N 0 of PRN 5 with Element 1 of S-CRPA [1] Miniaturized GPS Antenna Array Technology, A. Brown, D. Reynolds, H. Tseng, and J. Norgard, Proceedings of ION 55 th Annual Meeting, Cambridge, MA, June 1999. [2] U.S. Patent No. 6,246,369, Miniaturized Phased Array Antenna System, A. Brown, P. Brown, A Matini, and J. Norgard, issued June 12, 2001. [3] Test Results of a 7-Element Small Controlled Reception Pattern Antenna, A. Brown and D. Morley, Proceedings of ION GPS-2001, Salt Lake City, UT, September 2001 [4] Small Controlled Reception Pattern Antenna (S- CRPA) Design and Test Results, H. Tseng and S. Atterberg, Proceedings of 26th JSDE Conference, Ventura County, CA, October 2000 [5] Advanced Mini Array Antenna Design Using High Fidelity Computer Modeling and Simulation, C. Manry, K. Rouzbehani, D. Nathans, A. Brown, H. Tseng, S Atterberg, Proceedings of ION GPS 2000, Salt Lake City, UT, September 2000 Figure 31 Measured C/N 0 of PRN 5 with a reference antenna (AT2775-16 from AeroAntenna Technology, Inc.) CONCLUSION The test results shown this paper demonstrate the performance of NAVSYS dual-frequency (L1/L2) 7- element Small CRPA (S-CRPA ). Previous testing and modeling and simulation efforts have demonstrated the performance advantages of the L1 version of this S-CRPA antenna [3,4,5]. The test results presented in this paper show that the L1/L2 S-CRPA design can provide the same performance advantages for dual-frequency GPS operation while maintaining the advantage of the small form-factor compared with a full-size CRPA antenna array. ACKNOWLEDGMENTS The authors would like to recognize the valued support of the Office of Naval Research, who sponsored this research. 8