Field-strength measurements along a route with geographical coordinate registrations

Similar documents
Measurement uncertainty as it applies to test limits for the terrestrial component of International Mobile Telecommunications-2000

Radio-frequency channel arrangements for fixed wireless systems operating in the band GHz

Test procedure for measuring the scanning speed of radio monitoring receivers

Radio-frequency channel arrangements for fixed wireless systems operating in the GHz band

Test procedure for measuring the sensitivity of radio monitoring receivers using analogue-modulated signals. Recommendation ITU-R SM.

Protection criteria for arrival time difference receivers operating in the meteorological aids service in the frequency band 9-11.

Recommendation ITU-R M (12/2013)

Technical and operational characteristics of land mobile MF/HF systems

Methods for measurements on digital broadcasting signals

Use of International Radio for Disaster Relief (IRDR) frequencies for emergency broadcasts in the High Frequency (HF) bands

Method of measuring the maximum frequency deviation of FM broadcast emissions at monitoring stations. Recommendation ITU-R SM.

Spectrum limit masks for digital terrestrial television broadcasting

Alternative BSS earth station antenna radiation pattern for 12 GHz BSS bands with effective apertures in the range cm

Method of measuring the maximum frequency deviation of FM broadcast emissions at monitoring stations

Protection of fixed monitoring stations against interference from nearby or strong transmitters

Radio-frequency arrangements for systems of the fixed service operating in the 25, 26 and 28 GHz bands. Recommendation ITU-R F.

Radio-frequency arrangements for systems of the fixed service operating in sub-bands in the GHz band

Common formats for the exchange of information between monitoring stations

Assessment of impairment caused to digital television reception by a wind turbine

Radio-frequency channel arrangements for fixed wireless systems operating in the 8 GHz (7 725 to MHz) band

Use of the frequency bands between MHz by the aeronautical mobile (R) service for data transmission using class of emission J2D

SINPO and SINPFEMO codes

The prediction of the time and the spatial profile for broadband land mobile services using UHF and SHF bands

Recommendation ITU-R SA (07/2017)

Prediction of building entry loss

Prediction of clutter loss

Recommendation ITU-R SF.1843 (10/2007)

Water vapour: surface density and total columnar content

Radio-frequency channel arrangements for fixed wireless systems operating in the band GHz

Channel access requirements for HF adaptive systems in the fixed and land mobile services

Bandwidths, signal-to-noise ratios and fading allowances in complete systems

Protection criteria for non-gso data collection platforms in the band MHz

Performance and interference criteria for satellite passive remote sensing

Frequency bands and transmission directions for data relay satellite networks/systems

Recommendation ITU-R M (06/2005)

Characteristics of precipitation for propagation modelling

Frequency sharing between SRS and FSS (space-to-earth) systems in the GHz band

Radio-frequency channel arrangements based on a homogeneous pattern for fixed wireless systems operating in the 4 GHz band

Interference criteria for meteorological aids operated in the MHz and MHz bands

Test procedure for measuring direction finder sensitivity in the VHF/UHF frequency range

Frequency block arrangements for fixed wireless access systems in the range MHz

Radio-frequency channel arrangements for medium- and high-capacity digital fixed wireless systems operating in the MHz band

Availability objective for radio-relay systems over a hypothetical reference digital path

Recommendation ITU-R F (03/2012)

Bandwidths, signal-to-noise ratios and fading allowances in HF fixed and land mobile radiocommunication systems

Characteristics and protection criteria for non-geostationary mobile-satellite service systems operating in the band

Antenna rotation variability and effects on antenna coupling for radar interference analysis

Calculation of the maximum power density (averaged over 4 khz or 1 MHz) of angle-modulated and digital carriers

Systems characteristics of automotive radars operating in the frequency band GHz for intelligent transport systems applications

Recommendation ITU-R F (05/2011)

Service requirements for digital sound broadcasting to vehicular, portable and fixed receivers using terrestrial transmitters in the VHF/UHF bands

Attenuation due to clouds and fog

Protection criteria related to the operation of data relay satellite systems

The use of diversity for voice-frequency telegraphy on HF radio circuits

, 16:9 progressively-captured image format for production and international programme exchange in the 50 Hz environment

General requirements for broadcastoriented applications of integrated

Electronic data file format for earth station antenna patterns

Propagation curves for aeronautical mobile and radionavigation services using the VHF, UHF and SHF bands

Broadcasting of multimedia and data applications for mobile reception by handheld receivers

User requirements for codecs for transmission of television signals through contribution, primary distribution, and SNG networks

The concept of transmission loss for radio links

Acquisition, presentation and analysis of data in studies of radiowave propagation

Conversion of annual statistics to worst-month statistics

Essential requirements for a spectrum monitoring system for developing countries

Frequency ranges for operation of non-beam wireless power transmission systems

Recommendation ITU-R BT (03/2010)

Recommendation ITU-R M (09/2015)

Impact of audio signal processing and compression techniques on terrestrial FM sound broadcasting emissions at VHF

Characteristics of data relay satellite systems

Error performance and availability objectives and requirements for real point-to-point packet-based radio links

The radio refractive index: its formula and refractivity data

Characteristics of and protection criteria for systems operating in the mobile service in the frequency range GHz

Recommendation ITU-R SA (07/2017)

Allowable short-term error performance for a satellite hypothetical reference digital path

Serial digital interface for production and international exchange of HDTV 3DTV programmes

Telegraphic alphabet for data communication by phase shift keying at 31 Bd in the amateur and amateur-satellite services. Recommendation ITU-R M.

Radio-frequency channel and block arrangements for fixed wireless systems operating in the 42 GHz (40.5 to 43.5 GHz) band. Recommendation ITU-R F.

Parameters for international exchange of multi-channel sound recordings with or without accompanying picture

Guide to the application of the propagation methods of Radiocommunication Study Group 3

Common application environment for interactive digital broadcasting services

Objectives, characteristics and functional requirements of wide-area sensor and/or actuator network (WASN) systems

Preferred frequency bands for radio astronomical measurements

Characteristics of systems operating in the amateur and amateur-satellite services for use in sharing studies

Technical characteristics and protection criteria for aeronautical mobile service systems in the frequency range GHz

Morse telegraphy procedures in the maritime mobile service

Radio interface standards of vehicle-tovehicle and vehicle-to-infrastructure communications for Intelligent Transport System applications

Radio-frequency arrangements for fixed service systems

Colour conversion from Recommendation ITU-R BT.709 to Recommendation ITU-R BT.2020

International maritime VHF radiotelephone system with automatic facilities based on DSC signalling format

Protection criteria for Cospas-Sarsat local user terminals in the band MHz

Minimum requirements related to technical performance for IMT-2020 radio interface(s)

Report ITU-R SM.2181 (09/2010)

Spectrum occupancy measurements and evaluation

Role of the amateur and amateur-satellite services in support of disaster mitigation and relief

Characteristics and protection criteria for radars operating in the aeronautical radionavigation service in the frequency band

Guidelines for narrow-band wireless home networking transceivers Specification of spectrum related components

Interference mitigation techniques for use by high altitude platform stations in the GHz and GHz bands

Global harmonization of short-range devices categories

Reliability calculations for adaptive HF fixed service networks

Recommendation ITU-R F.1571 (05/2002)

Transcription:

Recommendation ITU-R SM.1708-1 (09/2011) Field-strength measurements along a route with geographical coordinate registrations SM Series Spectrum management

ii Rec. ITU-R SM.1708-1 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Annex 1 of Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/itu-r/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Recommendations (Also available online at http://www.itu.int/publ/r-rec/en) Series BO BR BS BT F M P RA RS S SA SF SM SNG TF V Title Satellite delivery Recording for production, archival and play-out; film for television Broadcasting service (sound) Broadcasting service (television) Fixed service Mobile, radiodetermination, amateur and related satellite services Radiowave propagation Radio astronomy Remote sensing systems Fixed-satellite service Space applications and meteorology Frequency sharing and coordination between fixed-satellite and fixed service systems Spectrum management Satellite news gathering Time signals and frequency standards emissions Vocabulary and related subjects Note: This ITU-R Recommendation was approved in English under the procedure detailed in Resolution ITU-R 1. Electronic Publication Geneva, 2011 ITU 2011 All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without written permission of ITU.

Rec. ITU-R SM.1708-1 1 RECOMMENDATION ITU-R SM.1708-1 Field-strength measurements along a route with geographical coordinate registrations (Questions ITU-R 214/1 and ITU-R 215/1) (2005-2011) The ITU Radiocommunication Assembly, considering a) that the number of mobile networks using different modulation types and accesses techniques is increasing; b) that in order to ensure efficient use of the spectrum administrations have a need to know the radio coverage of networks; c) that field-strength prediction needs support by practical measurements performed by monitoring; d) that mobile field-strength measurements are sometimes the only solution for determining the radio coverage of a large area; e) that regulators may need to check the coverage deployment of a network according to licence; f) different methods of mobile field-strength measurement are used by administrations, recognizing a) that common measurement procedures are necessary in order to achieve mutual acceptance of measurement results by the parties concerned, recommends 1 that the method described in Annex 1 should be used for field-strength measurements of vertically polarized signals along a route. Annex 1 1 General Influenced by the local receiving conditions, the real values of the field strength can significantly differ from their predicted values, therefore they must be checked by measurements for establishing the radio field-strength coverage of a large area. Registration of test results must be recorded along with their geographical coordinate data for locating the scenes of measurements and for mapping the results were gathered on the most accessible roads of the area in question.

2 Rec. ITU-R SM.1708-1 Instead of measuring the actual field strength, there is sometimes the necessity for measuring the output voltage of a user antenna (the typical antenna for the service under investigation) for radio coverage evaluation. Digital network systems (such as GSM, DCS1800, and UMTS or DAB, DVB-T) are sensitive to the effects of reflected reception. In this case, besides measuring the signal level, the reception quality measurement, made by the measurement of the bit-error ratio (BER) or channel impulse response measurement, is also necessary to determine the system performance evaluation. Using automatically made calls, these measurements can be made on operational digital networks without any adverse effect. For measurement purposes along a route a continuous transmission is necessary. 2 The results of mobile field-strength measurement Due to the effect of reflected signals, the field strength along a route shows severe fluctuation. The result of a single measurement can coincide with the minimum or maximum value of reflection and is also influenced by the chosen height of the receiver antenna, the season, the weather, the vegetation and the wetness of surroundings, making that false. Considering the factors mentioned above, reproducible field-strength test results can be calculated from a large number of raw data readings, by means of statistical processing of them. 3 Calculation of field strength With knowledge of the output voltage of the antenna (usually measured in db(μv)), the antenna factor and the attenuation of antenna signal path, the field-strength value can be calculated by the following equation: where: e = v o + k + a c e: electric field-strength component (db(μv/m)) v o: output voltage of the antenna (db(μv)) k: antenna factor (db(m 1 )) a c : attenuation of antenna signal path (db). Using certain test receivers it is possible to read the field-strength result directly in db(μv/m), by previously writing the summarized antenna factor and signal path attenuation into the memory of the receiver. 4 Measuring antennas During the measurement the chosen height of the test antenna is 1.5... 3 m. The result will be considered as being carried out at a height of 3 m. 5 Test receiver settings 5.1 Dynamic range The operating dynamic range of the measuring receiver should be 60 db.

Rec. ITU-R SM.1708-1 3 5.2 Detector functions and bandwidths for the respective types of signal The receiver bandwidth should be wide enough to receive the signal including the essential parts of the modulation spectrum. The detector type should be set depending on the characteristics and modulation mode of the tested signal. Example of signal types Minimum bandwidth (khz) Detector function AM double sideband 9 or 10 Linear average AM single sideband 2.4 Peak FM broadcast signal 120 Linear (or log) average TV carrier 120 Peak GSM signal 300 r.m.s. DAB signal 1 500 DVB-T signal Systems: 6 MHz 7 MHz 8 MHz 6 000 7 000 8 000 TETRA signal 30 UMTS signal 4 000 Narrow-band FM radio Channel spacing: 12.5 khz 20 khz 25 khz 7.5 12 12 Linear (or log) average Linear (or log) average Linear (or log) average GSM: Global System for Mobile Communications DAB: digital audio broadcasting DVB-T: digital video broadcasting terrestrial TETRA: terrestrial trunked radio UMTS: Universal Mobile Telecommunication System, a specific technology within the IMT-2000 family 6 The vehicle speed The vehicle speed (V) must be appropriate for the wavelength the simultaneously measured number of the tested signals with different frequencies and the applicable shortest measuring time of the test receiver: V (km/h) f 864 (MHz) t r (s) Where t r is the minimum time given by the receiver specifications to revisit a single frequency.

4 Rec. ITU-R SM.1708-1 7 The necessary number of measuring points and the averaging interval For statistical evaluation (Lee method) * the number of sample points should be chosen in such a way that the results should display the process of slow changing in the field strength (effect of long-term fading), and more or less, they should also reflect the local (instantaneous) individuality (effect of short-term fading) of the field-strength distribution. For obtaining 1 db confidence interval around the real mean value, the samples of test points should be chosen at each 0.8 λ (wavelength), over 40 λ averaging interval (50 measured values within 40 wavelength). 8 Navigation and positioning systems 8.1 Dead reckoning system The distance from the starting point is reckoned with the help of a distance-to-pulse transducer attached to a non-motor driven wheel of the test vehicle, while the mechanical gyroscope provides the heading information. The location accuracy depends on the accuracy of the starting point registration and the distance covered by the test vehicle. 8.2 Global positioning systems Commercialized Global positioning systems (GPS) in themselves can only give accurate position data from a few metres but do not operate accurately in tunnels, narrow streets or valleys. Nevertheless GPSs are the preferred method for positioning for field-strength measurements. The accuracy of standard GPS are quite sufficient when testing broadcasting coverage of a TV or radio station. Testing a digital micro-cell system in an urban area requires an accuracy of positioning information within several metres. 8.3 Complex navigation system This system is the combination of the above-mentioned systems. Without the need for manual operator intervention, these navigation systems continuously provide; position and time data, heading and waypoint information. 9 Data collection and processing Either the average, maximum/minimum peak values, statistical evaluation or level exceeding probability of the results can be obtained by the following measuring and evaluation methods. 9.1 Measurement result collecting without data reduction (raw field-strength data) Due to the varying fading and reflection effects, a single test result is not reproducible, therefore cannot represent directly the field-strength value of a test point. The raw data can be further processed as desired (see 9.2.1 and 9.2.2). * Mr William C.Y. Lee, Mobile communications design fundamentals, ISBN number: 0-471-57446-5

Rec. ITU-R SM.1708-1 5 9.2 Measurement result collecting with data reduction By means of statistical processing, this method allows the amount of registered raw data to be reduced considerably. 9.2.1 Averaged values Some of the test receivers are able to perform internal classification of test results over predefined user intervals. The user can select the evaluation intervals of up to some 10 000 measured samples, but each interval must contain at least 100 values. Only the arithmetic averaged values of the predefined number of test results are stored onto the hard disk and are indicated on the final map of radio coverage. 9.2.2 Classification of results according to level exceeding probability During measurements the results are classified according to exceeding probability, between 1-99%. These percentage values represent the probability of overstepping for the applicable field-strength level. Their typical values are 1, 10, 50, 90 and 99%. The median value, 50% is preferred for propagation studies. It deserves attention that receivers require some milliseconds for the evaluation of the classification, so during this time the trigger pulses are ignored, therefore no new measurements are obtained. 10 Data presentation Using the process controller s built-in monitor, colour monitor of an external PC, printer or plotter the following representations should be possible: 10.1 Representation of raw data in tabular form Advantage: Gives detailed information about local fading effects. The results can be converted into any kind of easy to view results by mathematical or statistical process. Disadvantage: Too much volume of data. The individual results are unrepeatable. 10.2 Plotting in Cartesian coordinates Graphical representation of processed field-strength data is plotted in Cartesian coordinates versus distance with indications of these calculated median values. Advantage: It gives a fast, easy to view result about distribution and locations below a given threshold level of the field strength. Disadvantage: It is difficult to relate the results to the exact places of the measurements. 10.3 Mapping A multicoloured line is displayed to represent the processed field-strength levels (e.g. with 10 db(μv/m) scale) or the level exceeding probabilities (between 1 and 99%) on the road map. The scale of the selected map should correspond to the size of the area covered by the radio signal under investigation and the required resolution of processed field-strength results. Due to the scale of the map, the represented intervals can include the multiples of the averaged intervals. The resolution of the presented result should be chosen in such a way that it can plot local peculiarities without the coloured line being too colourful.

6 Rec. ITU-R SM.1708-1 If there is a need to represent the averaged intervals with higher resolution (e.g. when representing results in microcells), the system should be able to zoom the map at disposal. If during the measurements two data series are registered simultaneously (e.g. field strength and BER) it is expedient to represent them together, by two parallel coloured lines along the plotted roads of the map. Advantage: The test results can be joined to exact spot of measurements. It gives fast, easy to view results about distribution and getting to below a given threshold level of the field strength. Disadvantage: The resolution of the plotted interval can be greater than the processed interval. Therefore it can gloss over the local characteristics of field strength.