NXDN. White Paper A Knowledge Base document from CML Microcircuits. High Integration SDR Approach

Similar documents
Product Preview CMX7241/CMX7341

Function Image Air Interface Roadmap NXDN, ARIB STD-T102, ARIB STD-T98, PDT... Tx en Rx en C-BUS SSP. Rx in. Rx I. Rx Q

Function Image Roadmap includes: DMR Air Interface NXDN Air Interface PDT Air Interface. Features Function Image 7241/7341FI-1.x

Speed your Radio Frequency (RF) Development with a Building-Block Approach

RF Products (CMX994) CML s Flexible Family of RF IC Products

CMX7164 Wireless Data Modem

CML Low Power Wireless Modem Solutions. Presented By :- Tom Mailey and David Falp

Wireless Data Modems. Product Information Pack. March Quick Links Home. CMX7164 Overview Introduction. GMSK/GFSK Evaluation

Step Change in Cost/Benefit Enables New Business

NXDN Forum: Product Showcase

CML. Marine AIS. Product Information Pack. (Automatic Identification System) Home CMX910 CMX7032/42. Resources. Slide 1. June 2009

NXDN Forum: Product Showcase

System-on-Chip Two-Way Radio

White Paper. Whitepaper. 4 Level FSK/FDMA 6.25 khz Technology. New dpmr

A new generation Cartesian loop transmitter for fl exible radio solutions

Pick Me! Choosing the Right Digital PTT Technology for Your Needs

NXDN Introduction. Copyright 2019 NXDN Forum.

Session 3. CMOS RF IC Design Principles

PMR Common Platform Processor

CMX7164 Multi Mode Modem

Broadband Communications at mmwave Frequencies: An MSK system for Multi-Gb/s Wireless Communications at 60GHz. IBM Research

RDA1845 SINGLE CHIP TRANSCEIVER FOR WALKIE TALKIE. 1. General Description. Rev.1.0 Feb.2008

Wavedancer A new ultra low power ISM band transceiver RFIC

Testing Motorola DMR MOTOTRBO Radios with the Cobham 3920B Radio Test Platform

Faculty of Information Engineering & Technology. The Communications Department. Course: Advanced Communication Lab [COMM 1005] Lab 6.

Introduction to DMR and the DMR Association

Open Standard DMR Tier III Trunking

INTRODUCTION TO TRANSCEIVER DESIGN ECE3103 ADVANCED TELECOMMUNICATION SYSTEMS

GDM1101: CMOS Single-Chip Bluetooth Integrated Radio/Baseband IC

Analogue Radio ICs. Two-Way Radio Baseband Processor ICs. FirmASIC Product. C-BUS Control. Audio Processing. Sub Audio... CTCSS DCS. In-Band...

DMR (Digital Mobile Radio)

ADVANCED EMBEDDED MONITORING SYSTEM FOR ELECTROMAGNETIC RADIATION

Audio Hub Evolution. May

CMX7131/CMX7141 Digital PMR Processor DCR Operation

CMX994/CMX994A/CMX994E Direct Conversion Receivers

Challenging Communication Boundaries. RoIP Gateways. Radio over IP for Optimal Analog & Digital Radio Network Performance

Flexible and Modular Approaches to Multi-Device Testing

Today s mobile devices

CNS - Opportunity for technology convergence

Figure 1. MSM6000 Chipset Architecture Using QCT's radione Zero Intermediate Frequency (ZIF) PM6O0O HK ADC. Ringer. Backlight Driver.

Project 25 Today An Overview

Today s communication

CMX991/CMX992 RF Quadrature Transmitter and RF Quadrature/Low IF Receiver

Course Project. Project team forming deadline has passed Project teams will be announced soon Next step: project proposal presentation

Pick Me! Choosing the Right Technology for Your Project

DE9945/DE9945E SDR Demonstrator: PMR Common Platform

Leading the way in professional radio communications

Project in Wireless Communication Lecture 7: Software Defined Radio

ICOM IC-R8600 Specifications, Features & Options

Roger Kane Managing Director, Vicom Australia

Certified Interoperability

F8101ALE User s Guide

CELETRA DMR. Korean Telecommunications Technology Association member since European ETSI standard DMR Association Category-1 member since 2014

Specifications and Interfaces

TECHNOLOGY CHOICES NEIL HORDEN CHIEF CONSULTANT FEDERAL ENGINEERING, INC. August 13, Copyright 2017 by Federal Engineering, Inc.

RF/IF Terminology and Specs

What Is DMR (Digital Mobile Radio)

DTP4700 Next Generation Software Defined Radio Platform

Introduction to Digital Mobile Radio (DMR)

From Antenna to Bits:

Radio with COTS Technologies. ATE Systems Engineer

7163 FI-4.x QAM Modem. Aux 4 x ADC. Aux 4 x DAC. Aux 2 x CLK Synth. Aux 4 x GPIO FIFO. Modem. Configuration. Modulation- Specific Function Image

The modular system for communication, alerting and people search

FEATURES DESCRIPTION BENEFITS APPLICATIONS. Preliminary PT4501 Sub-1 GHz Wideband FSK Transceiver

Version 1.0 February Frequently Asked Questions

White Paper A Knowledge Base document from CML Microcircuits. Adaptive Delta Modulation (ADM)

Interoperability of FM Composite Multiplex Signals in an IP Based STL

Dual core architecture with custom N-PLC optimized DSP and Data Link Layer / Application 32bit controller

Further hacks on the Calypso platform

7163 FI-4.x QAM Modem. Aux 4 x ADC. Aux 4 x DAC. Aux 2 x CLK Synth. Aux 4 x GPIO FIFO. Modem. Configuration. Modulation- Specific Function Image

Digital Communication System

Digital Mobile Radio (DMR) & PNW System Primer

Digital Mobile Radio (DMR) & PNW System Primer. Andy Ruschak, KK7TR

Commsonic. Universal QAM/PSK Modulator CMS0004. Contact information. Continuous or burst-mode operation.

SOQPSK Software Defined Radio

Commsonic. DVB-C/J.83 Cable Demodulator CMS0022. Contact information

A 1.9GHz Single-Chip CMOS PHS Cellphone

DE9945/DE9945E SDR Demonstrator: PMR Common Platform

GPS and GSM Based Transmission Line Monitoring System with Fault Detection Introduction:

22. VLSI in Communications

Transceiver selection and Specs.

3.6. Cell-Site Equipment. Traffic and Cell Splitting Microcells, Picocelles and Repeaters

A SOFTWARE RE-CONFIGURABLE ARCHITECTURE FOR 3G AND WIRELESS SYSTEMS

Bluetooth Low Energy Evolving: New BLE Modules Enable Long- Range Applications

Maximize performance, minimize component count

Hardware Architecture of Software Defined Radio (SDR)

Scalable dpmr Digital Radio Trunking with Seamless Migration from MPT1327

ISSCC 2003 / SESSION 20 / WIRELESS LOCAL AREA NETWORKING / PAPER 20.2

Analog and RF circuit techniques in nanometer CMOS

Exhibit 1 - Product Description

Multiple Antenna Systems in WiMAX

Generating MSK144 directly for Beacons and Test Sources.

NXDN. NXDN is a trademark of Icom Incorporated and Kenwood Corporation

User s Guide SX SKA ADVANCED COMMUNICATIONS & SENSING SX SKA. User s Guide: Advanced Mode. Revision 0.1 March Semtech Corp.

RF and Baseband Techniques for Software Defined Radio

DPD Toolkit: Overview


DMR Trunking Pro. Hytera Open Standard DMR Trunking Portfolio

ThinkRF R5500. Real-Time Spectrum Analyzer. 9 khz to 8 GHz / 18 GHz / 27 GHz. Product Brochure and Technical Datasheet. Featuring

1 NEXEDGE offers: Conventional

Transcription:

White Paper A Knowledge Base document from CML Microcircuits NXDN High Integration SDR Approach Reference: NXDN CMX7141/CMX994 Issue: 1 Date: 08/04/14 1

1 INTRODUCTION NXDN is an established, open standard, digital Land Mobile Radio (LMR) / Private Mobile Radio (PMR) protocol. Originally developed by ICOM Incorporated and JVC Kenwood Corporation to address the needs of the LMR market being driven towards narrow-banding and digital technology, it has become a strong contender to lead the global digital LMR market. Based on FDMA technology, the NXDN hardware platform can utilise the same basic architecture as analogue FM radio designs, therefore ensuring low complexity and cost; clear drivers throughout the standard s development. NXDN addresses all aspects of the LMR market from basic peer-to-peer and repeater operation through to all-encompassing trunking systems. The broad spectrum of functions provide flexibility and adaptation, for the deployment of real life LMR systems and networks. NXDN is supported by a group of leading international radio manufacturers and organisations that form the NXDN forum (www.nxdn-forum.com). These companies work together to maintain the standard and support the market place with a range of interoperable radio equipment. At the time of printing of this document there were 32 active members in the NXDN Forum: Aeroflex - Radio test sets ALTONIKA Ltd. - Radio manufacturer Arinc - Radio systems management and test house Anritsu Company - Radio test sets Avtec Inc. - Dispatch consoles and applications Catalyst Communications Technologies, Inc. - Dispatch consoles and applications CML Microcircuits - Silicon baseband ICs Connect Systems Inc. - Radio manufacturer CVDS - Recorder Logging Applications Daniels Electronics Ltd. - Infrastructure manufacturer Etherstack - Protocol stack supplier Eventide - Recorder Logging Applications EXACOM, Inc. - Logging recording products General Dynamics SATCOM Technologies - Radio test sets GME/Standard Communications Pty Ltd. - Radio manufacturer HigherGround Inc. - Recorder Logging Applications Hoag Electronics Inc. - Radio plug-in module manufacturer Hytera Communications Corp., Ltd. - Radio manufacturer Icom Incorporated - Radio manufacturer JVC KENWOOD Corporation - Radio manufacturer RF Technology Pty Ltd. - Infrastructure manufacturer Raven Electronics Corporation - Manufacturer and applications Ritron Inc. - Radio manufacturer Swissphone Telecom AG - Manufacturer and applications Telex Radio Dispatch Group - Dispatch consoles and applications Timco Engineering - Test House/IOP Testing Trident Micro Systems - System controllers Twisted Pair Solutions - Dispatch consoles and applications UL LLC - Test House/IOP Testing Ultratech - Test House/IOP Testing WAVECOM ELEKTRONIK AG - Decoder software solutions Zetron, Inc. - Dispatch consoles and applications 2104 CML Microsystems Plc 2 April 2014

1.1 Other FDMA standards There are a number of other two-way radio standards supporting the FDMA technology approach to digital LMR/PMR. These together with NXDN, address the needs of existing and developing digital LMR/PMR markets world-wide. There are similarities between all these systems allowing the radio designer to address the whole market with a single radio platform. The core FDMA based technologies are as follows: NXDN dpmr ARIB STD-T98 ARIB STD-T102 2 SYSTEM CONSIDERATIONS A digital two-way radio comprises a number of fixed function blocks, these being common across many digital radio systems. T R Rx Codec Vocoder Display PA Tx RF Section 4FSK Modem Soft Decision Baseband processing Physical Layer (layer 1) Air interface Data Link Layer (layer 2) Micro Application Layer MMI Key Pad Radio Support Functions ADCs, DACs, GPIO, Clock Generators Figure 1: Typical Digital Radio Function Block Diagram Key factors in the selection of suitable components for a new design include: overall size, BOM cost, flexibility to accommodate multiple radio standards, low power operation, legacy analogue backward compatibility, component longevity, RF to baseband optimisation and time to market. 2.1 RF Architecture Traditional RF receivers use the superheterodyne approach that has dominated radio receiver (Rx) architecture since the 1930s. Today this traditional RF approach has advantages when there is need to address multiple systems and standards with different operating frequencies, sensitivity, intermodulation and interference rejection requirements. In such multi-mode systems, the superhet becomes complex and costly to manufacture. 2104 CML Microsystems Plc 3 April 2014

Direct Conversion is often considered to be the Holy Grail for an RF receiver and viewed as the ultimate RF solution, due to its small size, flexibility and minimal cost when addressing a multitude of differing system requirements. There are a number of challenges with direct conversion however, these have been addressed in the CMX994 Direct Conversion Receiver IC from CML Microcircuits. On the transmit (Tx) side, the basic VCO based two-point modulation approach is still considered to be the most cost effective solution, for constant envelope modulations. 2.2 Baseband Operations At first sight, an off the shelf Digital Signal Processor (DSP) is ideally suited to covering the needs of the baseband signal processing and air interface protocol. There are however, a number of considerations to be taken into account prior to going down this route. This is not a single-chip solution therefore size and power consumption, may be quite large. Also, code development time is a lengthy process with complex signal processing algorithms and communication protocols for multiple systems can become very costly. On top of all this, the overhead of regression testing should not be underestimated. Code changes as a consequence of field testing, function enhancements, changes in the radio standard must all be regression tested. These tests can all consume a significant amount of development time and therefore the overall costs can escalate. Using a Commercial Off-The-Shelf (COTS) product such as a FirmASIC from CML Microcircuits, addresses all these issues. It can provide an all-encompassing solution, fully meeting multiple radio system specifications, in the smallest package. The CMX7141 Multi-standard FDMA digital/analogue PMR/LMR processor, is such a device. 3 HIGH INTEGRATION SDR APPROACH The CMX7141 digital/analogue PMR/LMR Processor combined with the CMX994 Direct Conversion Receiver IC, provides a unique, low risk, high integration solution for NXDN and forms the basis of a multi-standard radio platform to address the whole digital FDMA PMR/LMR market. 3.1 Multi-standard FDMA Digital/Analogue PMR Processor Platform The CMX7141 Digital/Analogue PMR processor fully meets the specific requirements of both new and emerging FDMA digital PMR radio systems and dual-mode digital/analogue two-way radio platforms. The CMX7141 is an enabler for the radio platform concept, allowing a single radio platform to encompass multiple digital PMR standards, all with backward compatibility to legacy analogue PMR. Built on CML s proprietary FirmASIC technology, the CMX7141 encompasses the elements required for the implementation of a digital radio s air interface physical and data link layers. Proven and field tested high performance is assured, with support for digital radio systems including legacy analogue 2104 CML Microsystems Plc 4 April 2014

operation by Function Image upload. The table below provides a list of the Function Images available including the new NXDN Function Image. Function Image System Standard 7131/7141FI-1.x dpmr446 (Mode 1/2) TS 102 490-7131/7141FI-2.x Digital Convenience Radio (DCR) ARIB STD-T98 Yes 7131/7141FI-3.x NXDN (Air Interface) NXDN-TS 1/2 Yes 7131/7141FI-5.x dpmr (Mode 1/2) TS 102 490 Analogue PMR (Audio + Sub Audio Signalling) EN 300 086/TIA 603C - 7131/7141FI-6.x ARIB STD-T102 (Part 2) ARIB STD-T102 Yes 7131/7141FI-7.x dpmr (Mode 1/2/3) TS 102 658 Yes 7131/7141FI-8.x Analogue PMR (Multi-function) EN 300 086/TIA 603C Yes 7031/7041FI-1.x Multi-function Analogue PMR (Operation as defined in the CMX7031/7041 Datasheet) EN 300 086/TIA 603C - Table 1: CMX7141 suite of Function Images Direct Connection to CMX994 DCRx IC 3.2 NXDN Air Interface Function Image A new NXDN Function Image release brings a new level of functionality, embedding much of the NXDN Air Interface Protocol (AI), enabling an NXDN radio to be developed quickly with a smooth transition through to production. The list below summarises the embedded operations: Air Interface Physical Layer 1 4-FSK modulation and demodulation Bit and symbol definition Frequency and symbol synchronisation Transmission burst building and splitting Air Interface Data Link Layer 2 Channel coding (FEC, CRC) Interleaving, de-interleaving and bit ordering Frame building and synchronising Burst and parameter definition Interfacing of voice applications (voice data) with the Physical Layer Data bearer services Exchanging signalling and/or user data with the Call Control Layer Automatic RAN detection Advanced Functions Rx I/Q interface for direct connection to the CMX994 DCRx IC Tx conventional output suitable for 2-point modulation or for an I/Q interface Flexible power control facility allowing the device to be placed in its optimum powersave mode when not actively processing signals Crystal clock generator, with buffered output, to provide a common system clock Automatic Tx sequencer simplifies host control RAMDAC ramping operation Tx and Rx Enable hardware signals 3.3 Direct Conversion Receiver The CMX994 DCRx is the ultimate PMR/LMR radio RF front end, providing a small high integration RF solution with optimal performance. It includes a broadband LNA with gain control followed by a high 2104 CML Microsystems Plc 5 April 2014

dynamic range I/Q demodulator. The receiver baseband section includes amplifiers and precise baseband filter stages. LO generation can be provided by an integer-n PLL and a VCO negative resistance amplifier or an external LO may used. LO dividers are provided for flexible multi-band operation. The CMX994 requires minimal external components and setup. When used in conjunction with the CMX7141 the majority of system-related setup and trimming is managed within the CMX7141 s appropriate Function Image. This minimises setup and trimming required during radio manufacture on the production line. The CMX7141 and CMX994 together provide the answer to the market requirements for: Low power operation, small size, low cost, low risk, flexibility, high performance, longevity, RF to baseband optimisation. Considering the typical digital radio function block diagram shown in Fig. 1, the combination of CMX7141 and CMX994 consumes a large portion of the functionality, as shown in Fig. 2 below. Vocoder T R PA Rx CMX994 Direct Conversion Receiver Tx VCO Transmitter RF Section 4FSK Modem Soft Decision Codec Baseband processing Physical Layer (layer 1) Air interface Data Link Layer (layer 2) Serial BUS Micro Application Layer MMI Display Key Pad Radio Support Functions ADCs, DACs, GPIO, Clock Generators CMX7141 Multi-mode FDMA Digital/Analogue PMR Processor Figure 2: CMX7141 and CMX994 - The Ultimate FDMA Digital/Analogue Radio Chipset 4 GETTING TO MARKET FAST Evaluating complex devices can be very time consuming and fraught with obstacles without good technical support and assistance from the component manufacturer. To overcome these obstacles and jump start a new design, CML Microcircuits has released the DE9944 SDR Demonstrator for FDMA radio systems. The board allows a fully working radio to be established in the shortest period of time. The DE9944 is based around the CMX7141/CMX994 chip-set combo that includes keyboard, speaker and host processor to demonstrate peer-to-peer digital and analogue PMR, out-of-the-box. 2104 CML Microsystems Plc 6 April 2014

Figure 3: DE9944 SDR FDMA Radio demonstrator 5 CONCLUSIONS Developing a feature-rich NXDN digital LMR radio has never been easier. The CMX7141 and CMX994 chip combination simplifies the design and development process through to production. Utilising the available suite of CMX7141 Function Images, the same radio platform can be used to realise a number of digital and analogue PMR/LMR standards including: NXDN, dpmr, ARIB STD-T98, ARIB STD-T102 and conventional analogue PMR. References CMX7131/7141 Multi-standard Digital/Analogue PMR/LMR processor www.cmlmicro.com/products/cmx7131_cmx7141_digital_pmr_processors/ CMX994 Direct Conversion Receiver IC www.cmlmicro.com/products/cmx_994_rf_direct_conversion_receiver/ DE9944 SDR Demonstrator for FDMA Radio www.cmlmicro.com/products/de9944_demonstration_kit/ Trademarks NXDN is a trademark of JVC KENWOOD/ICOM and anyone wishing to manufacture and brand radios with NXDN must be a member of the Forum. Function Image and FirmASIC are trademarks of CML Microsystems Plc. 2104 CML Microsystems Plc 7 April 2014