TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS

Similar documents
TLC227x, TLC227xA, TLC227xY Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS190 FEBRUARY 1997

TLV226x, TLV226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS

TLC271, TLC271A, TLC271B LinCMOS PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS

TLC227x, TLC227xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS

AVAILABLE OPTIONS CERAMIC DIP (J) CERAMIC DIP (JG) TL071CPWLE 6 mv TL071ACD TL071ACP 3 mv TL071BCD TL071BCP TL072CP

TL070 JFET-INPUT OPERATIONAL AMPLIFIER

AVAILABLE OPTIONS PACKAGED DEVICES CHIP CARRIER (FK) 100 µv TLC4502IDR. 50 µv TLC4502AIDR

LM148, LM248, LM348 QUADRUPLE OPERATIONAL AMPLIFIERS

TLC2652, TLC2652A, TLC2652Y Advanced LinCMOS PRECISION CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS

TLC272, TLC272A, TLC272B, TLC272Y, TLC277 LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS

AVAILABLE OPTIONS CERAMIC DIP (J) CERAMIC DIP (JG) TL071CPWLE 6 mv TL071ACD TL071ACP 3 mv TL071BCD TL071BCP TL072CP

TLC272, TLC272A, TLC272B, TLC272Y, TLC277 LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS

NE5532, NE5532A DUAL LOW-NOISE OPERATIONAL AMPLIFIERS

15 DEVICES COVER COMMERCIAL, INDUSTRIAL, AND MILITARY TEMPERATURE RANGES AVAILABLE OPTIONS CERAMIC DIP (J) CERAMIC DIP (JG)

TLE214x, TLE214xA, TLE214xY EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS

TLE2227, TLE2227Y, TLE2237, TLE2237Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION DUAL OPERATIONAL AMPLIFIERS

RC4136, RM4136, RV4136 QUAD GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

LM101A, LM201A, LM301A HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS

LM101A, LM201A, LM301A HIGH-PERFORMANCE OPERATIONAL AMPLIFIERS

TLC274, TLC274A, TLC274B, TLC274Y, TLC279 LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS

TLC27M4, TLC27M4A, TLC27M4B, TLC27M4Y, TLC27M9 LinCMOS PRECISION QUAD OPERATIONAL AMPLIFIERS

OP07C PRECISION OPERATIONAL AMPLIFIERS

TLE2141, TLE2141A, TLE2141Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS

GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

24 DEVICES COVER COMMERCIAL, INDUSTRIAL, AND MILITARY TEMPERATURE RANGES. High Input Impedance...JFET-Input Stage Wide Common-Mode and Differential

TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS

TL03x, TL03xA, TL03xY ENHANCED-JFET LOW-POWER LOW-OFFSET OPERATIONAL AMPLIFIERS

RC4558, RC4558Y, RM4558, RV4558 DUAL GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

LM139, LM139A, LM239, LM239A, LM339, LM339A, LM339Y, LM2901 QUAD DIFFERENTIAL COMPARATORS

TLC27L2, TLC27L2A, TLC27L2B, TLC27L7 LinCMOS PRECISION DUAL OPERATIONAL AMPLIFIERS

ua747c, ua747m DUAL GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

AVAILABLE OPTIONS CERAMIC DIP (J) 6 mv ua747cd ua747cn. 5 mv ua747mj ua747mw ua747mfk

TLC2654, TLC2654A Advanced LinCMOS LOW-NOISE CHOPPER-STABILIZED OPERATIONAL AMPLIFIERS

GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

MC1458, MC1558 DUAL GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

FAMILY PACKAGE TABLE A SELECTION OF SINGLE-SUPPLY OPERATIONAL AMPLIFIER PRODUCTS VDD (V) SLEW RATE. BW (MHz)

TLV2211, TLV2211Y Advanced LinCMOS RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS

LM139, LM139A, LM239, LM239A, LM339 LM339A, LM339Y, LM2901, LM2901Q QUAD DIFFERENTIAL COMPARATORS SLCS006C OCTOBER 1979 REVISED NOVEMBER 1996

TL05x, TL05xA ENHANCED-JFET LOW-OFFSET OPERATIONAL AMPLIFIERS

MC1458, MC1558 DUAL GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

TLC252, TLC252A, TLC252B, TLC252Y, TLC25L2, TLC25L2A, TLC25L2B TLC25L2Y, TLC25M2, TLC25M2A, TLC25M2B, TLC25M2Y LinCMOS DUAL OPERATIONAL AMPLIFIERS

TLE206x, TLE206xA, TLE206xB, TLE206xY EXCALIBUR JFET-INPUT HIGH-OUTPUT-DRIVE

LF153 LF253 - LF353 WIDE BANDWIDTH DUAL J-FET OPERATIONAL AMPLIFIERS

TLC3702, TLC3702Q DUAL MICROPOWER LinCMOS VOLTAGE COMPARATORS

description C XB V DD + OUT CLAMP INT/EXT C XA CLK IN CLK OUT OUT CLAMP C RETURN INT/EXT VDD CLK OUT OUT IN+ CLAMP CLK IN C RETURN

TLC254, TLC254A, TLC254B, TLC254Y, TLC25L4, TLC25L4A, TLC25L4B TLC25L4Y, TLC25M4, TLC25M4A, TLC25M4B, TLC25M4Y LinCMOS QUAD OPERATIONAL AMPLIFIERS

AOUT AIN- AIN+ GND 1 AOUT 2 AIN- 3 AIN+

TLC3704, TLC3704Q QUAD MICROPOWER LinCMOS VOLTAGE COMPARATORS

LM124, LM124A, LM224, LM224A LM324, LM324A, LM2902 QUADRUPLE OPERATIONAL AMPLIFIERS

TLV2711, TLV2711Y Advanced LinCMOS RAIL-TO-RAIL MICROPOWER SINGLE OPERATIONAL AMPLIFIERS

TL072 TL072A - TL072B

TLC3702 DUAL MICROPOWER LinCMOS VOLTAGE COMPARATORS

LF147 - LF247 LF347 WIDE BANDWIDTH QUAD J-FET OPERATIONAL AMPLIFIERS

LM158, LM158A, LM258, LM258A LM358, LM358A, LM2904, LM2904Q DUAL OPERATIONAL AMPLIFIERS

TLC4501, TLC4501A, TLC4502, TLC4502A FAMILY OF SELF-CALIBRATING (Self-Cal ) PRECISION CMOS RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS

THS MHz HIGH-SPEED AMPLIFIER

TLC070, TLC071, TLC072, TLC073, TLC074, TLC075, TLC07xA FAMILY OF WIDE-BANDWIDTH HIGH-OUTPUT-DRIVE SINGLE SUPPLY OPERATIONAL AMPLIFIERS

LM111, LM211, LM311, LM311Y DIFFERENTIAL COMPARATORS WITH STROBES

LM2904WH. Low-power dual operational amplifier. Description. Features

Precision, Low Noise, CMOS, Rail-to-Rail, Input/Output Operational Amplifiers AD8605/AD8606/AD8608

15 MHz, Rail-to-Rail, Dual Operational Amplifier OP262-EP

LF151 LF251 - LF351 WIDE BANDWIDTH SINGLE J-FET OPERATIONAL AMPLIFIER

ua733c, ua733m DIFFERENTIAL VIDEO AMPLIFIERS

Single-Supply, Rail-to-Rail, Low Power, FET Input Op Amp AD820

UNISONIC TECHNOLOGIES CO., LTD

LM101A-LM201A LM301A SINGLE OPERATIONAL AMPLIFIERS

NE/SA5234 Matched quad high-performance low-voltage operational amplifier

TL494C, TL494I, TL494M, TL494Y PULSE-WIDTH-MODULATION CONTROL CIRCUITS

TL594 PULSE-WIDTH-MODULATION CONTROL CIRCUITS

GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

FAMILY PACKAGE TABLE PACKAGE TYPES UNIVERSAL SHUTDOWN CHANNELS MSOP PDIP SOIC TSSOP

TLC3704, TLC3704Q QUAD MICROPOWER LinCMOS VOLTAGE COMPARATORS

FAMILY PACKAGE TABLE PACKAGE TYPES UNIVERSAL SHUTDOWN CHANNELS MSOP PDIP SOIC TSSOP

THS6092, THS ma, +12 V ADSL CPE LINE DRIVERS

TL082 TL082A - TL082B

TL081 TL081A - TL081B

description/ordering information

SP435W Dual OP AMP with Voltage Regulator

LF147 - LF247 LF347 WIDE BANDWIDTH QUAD J-FET OPERATIONAL AMPLIFIERS

THS4061, THS MHz HIGH-SPEED AMPLIFIERS

MC33001/A/B MC34001/A/B MC35001/A/B GENERAL PURPOSE SINGLE JFET OPERATIONAL AMPLIFIERS.

TLV271, TLV272, TLV274 FAMILY OF 550-µA/Ch 3-MHz RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS

Micropower, Single-Supply, Rail-to-Rail, Precision Instrumentation Amplifiers MAX4194 MAX4197

TLC254, TLC254A, TLC254B, TLC254Y, TLC25L4, TLC25L4A, TLC25L4B TLC25L4Y, TLC25M4, TLC25M4A, TLC25M4B, TLC25M4Y LinCMOS QUAD OPERATIONAL AMPLIFIERS

NE/SA/SE532 LM258/358/A/2904 Low power dual operational amplifiers

THS4061, THS MHz HIGH-SPEED AMPLIFIERS

Dual, Ultralow Distortion, Ultralow Noise Op Amp AD8599

Low Power, Rail-to-Rail Output, Precision JFET Amplifiers AD8641/AD8642/AD8643

AD864/AD8642/AD8643 TABLE OF CONTENTS Specifications... 3 Electrical Characteristics... 3 Absolute Maximum Ratings... 5 ESD Caution... 5 Typical Perfo

TLC5620C, TLC5620I QUADRUPLE 8-BIT DIGITAL-TO-ANALOG CONVERTERS

CA3140, CA3140A. 4.5MHz, BiMOS Operational Amplifier with MOSFET Input/Bipolar Output. Description. Features. Applications. Ordering Information

DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO

TEB1033 TEF1033-TEC1033

FAMILY PACKAGE TABLE PACKAGE TYPES UNIVERSAL SHUTDOWN CHANNELS MSOP PDIP SOIC TSSOP

TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS

TL 072 S G Green G : Green. TL072SG-13 S SOP-8L 2500/Tape & Reel -13

LM2904AH. Low-power, dual operational amplifier. Related products. Description. Features. See LM2904WH for enhanced ESD performances

TLC555, TLC555Y LinCMOS TIMERS

General-Purpose CMOS Rail-to-Rail Amplifiers AD8541/AD8542/AD8544

TL594C, TL594I, TL594Y PULSE-WIDTH-MODULATION CONTROL CIRCUITS

Transcription:

Output Swing includes Both Supply Rails Low Noise... 2 nv/ Hz Typ at f = khz Low Input Bias Current... pa Typ Fully Specified for Both Single-Supply and Split-Supply Operation Low Power... µa Max Common-Mode Input Voltage Range Includes Negative Rail Low Input Offset Voltage 9 µv Max at T A = (TLC2262A) Macromodel Included Performance Upgrade for the TS27M2/M and TLC27M2/M Available in Q-Temp Automotive HighRel Automotive Applications Configuration Control / Print Support Qualification to Automotive Standards description The TLC2262 and TLC226 are dual and quadruple operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range in single- or split-supply applications. The TLC226x family offers a compromise between the micropower TLC22x and the ac performance of the TLC227x. It has low supply current for battery-powered applications, while still having adequate ac performance for applications that demand it. The noise performance has been dramatically improved over previous generations of CMOS amplifiers. Figure depicts the low level of noise voltage for this CMOS amplifier, which has only 2 µa (typ) of supply current per amplifier. VN Vn Equivalent Input Noise Voltage nv/ nv//hz Hz The TLC226x, exhibiting high input impedance and low noise, are excellent for small-signal 2 3 conditioning for high-impedance sources, such as f Frequency Hz piezoelectric transducers. Because of the micropower dissipation levels, these devices work well Figure in hand-held monitoring and remote-sensing applications. In addition, the rail-to-rail output feature with single or split supplies makes this family a great choice when interfacing with analog-to-digital converters (ADCs). For precision applications, the TLC226xA family is available and has a maximum input offset voltage of 9 µv. This family is fully characterized at V and ± V. The TLC2262/ also makes great upgrades to the TLC27M2/L or TS27M2/L in standard designs. They offer increased output dynamic range, lower noise voltage and lower input offset voltage. This enhanced feature set allows them to be used in a wider range of applications. For applications that require higher output drive and wider input voltage range, see the TLV232 and TLV22. If your design requires single amplifiers, please see the TLV22/2/3 family. These devices are single rail-to-rail operational amplifiers in the SOT-23 package. Their small size and low power consumption, make them ideal for high density, battery-powered equipment. 6 3 2 EQUIVALENT INPUT NOISE VOLTAGE FREQUENCY VDD = V RS = 2 Ω Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Advanced LinCMOS is a trademark of Texas Instruments Incorporated. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 633 DALLAS, TEXAS 726 Copyright 999, Texas Instruments Incorporated On products compliant to MIL-PRF-383, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.

TA VIOmax AT SMALL OUTLINE (D) TLC2262 AVAILABLE OPTIONS CHIP CARRIER (FK) PACKAGED DEVICES CERAMIC DIP (JG) PLASTIC DIP (P) TSSOP (PW) CERAMIC FLATPACK (U) C to 7 C 2. mv TLC2262CD TLC2262CP TLC2262CPWLE C to C to C to 9 µv TLC2262AID TLC2262AIP TLC2262AIPWLE 2. mv TLC2262ID TLC2262IP 9 µv TLC2262AQD 2. mv TLC2262QD 9 µv 2. mv TLC2262AMFK TLC2262MFK TLC2262AMJG TLC2262MJG TLC2262AMU TLC2262MU The D packages are available taped and reeled. Add R suffix to device type (e.g., TLC2262CDR). The PW package is available only left-end taped and reeled. Chips are tested at. TA VIOmax AT SMALL OUTLINE (D) TLC226 AVAILABLE OPTIONS PACKAGED DEVICES CHIP CARRIER (FK) CERAMIC DIP (J) PLASTIC DIP (N) TSSOP (PW) CERAMIC FLATPACK (W) C to 7 C 2. mv TLC226CD TLC226CN TLC226CPWLE C to C to C to 9 µv TLC226AID TLC226AIN TLC226AIPWLE 2. mv TLC226ID TLC226IN 9 µv TLC226AQD 2. mv TLC226QD 9 µv 2. mv TLC226AMFK TLC226MFK TLC226AMJ TLC226MJ TLC226AMW TLC226MW The D packages are available taped and reeled. Add R suffix to device type (e.g., TLC226CDR). The PW package is available only left-end taped and reeled. Chips are tested at. 2 POST OFFICE BOX 633 DALLAS, TEXAS 726

OUT IN IN+ V DD /GND TLC2262C, TLC2262AC TLC2262I, TLC2262AI TLC2262Q, TLC2262AQ D, P, OR PW PACKAGE (TOP VIEW) 2 3 8 7 6 V DD + 2OUT 2IN 2IN+ TLC2262M, TLC2262AM... FK PACKAGE (TOP VIEW) NC IN NC IN+ NC NC NC /GND OUT NC NC 2IN+ V DD+ NC NC 3 2 2 9 8 6 7 7 6 8 9 2 3 NC 2OUT NC 2IN NC V DD TLC2262M, TLC2262AM... JG PACKAGE (TOP VIEW) TLC2262M, TLC2262AM...U PACKAGE (TOP VIEW) OUT IN IN+ V DD /GND 2 3 8 7 6 V DD + 2OUT 2IN 2IN+ NC OUT IN IN + V CC /GND 2 3 9 8 7 6 NC V CC + 2OUT 2IN 2IN + TLC226C, TLC226AC TLC226I, TLC226AI TLC226Q, TLC226AQ D, N, OR PW PACKAGE (TOP VIEW) TLC226M, TLC226AM...J OR W PACKAGE (TOP VIEW) TLC226M, TLC226AM... FK PACKAGE (TOP VIEW) IN OUT NC OUT IN OUT IN IN+ V DD + 2IN+ 2IN 2OUT 2 3 6 7 3 2 9 8 OUT IN IN+ V DD /GND 3IN+ 3IN 3OUT IN+ NC V CC + NC 2IN+ 3 2 2 9 8 6 7 7 6 8 9 2 3 IN+ NC V CC /GND NC 3IN+ 3OUT 3IN OUT IN IN+ V DD + 2IN+ 2IN 2OUT 2 3 6 7 3 2 9 8 OUT IN IN+ V DD /GND 3IN+ 3IN 3OUT 2IN 2OUT NC POST OFFICE BOX 633 DALLAS, TEXAS 726 3

Template Release Date: 7 9 TLC226x, TLC226xA equivalent schematic (each amplifier) VDD + OUT Q3 Q6 Q9 Q2 Q Q6 IN + C IN R Q Q Q3 Q Q7 D Q2 Q Q7 Q8 Q Q R3 R R R2 VDD /GND ACTUAL DEVICE COMPONENT COUNT COMPONENT TLC2262 TLC226 Transistors 38 76 Resistors 28 6 Diodes 9 8 Capacitors 3 6 Includes both amplifiers and all ESD, bias, and trim circuitry POST OFFICE BOX 633 DALLAS, TEXAS 726

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, V DD+ (see Note )............................................................ 8 V Supply voltage, V DD (see Note )........................................................... 8 V Differential input voltage, V ID (see Note 2)................................................... ±6 V Input voltage, V I (any input, see Note )...................................... V DD.3 V to V DD+ Input current, I I (each input)............................................................... ± ma Output current, I O....................................................................... ± ma Total current into V DD+.................................................................. ± ma Total current out of V DD................................................................ ± ma Duration of short-circuit current at (or below) (see Note 3).............................. unlimited Continuous total dissipation........................................... See Dissipation Rating Table Operating free-air temperature range, T A : C suffix...................................... C to 7 C I suffix.................................... C to Q suffix................................... C to M suffix.................................. C to Storage temperature range, T stg................................................... 6 C to C Lead temperature,6 mm (/6 inch) from case for seconds: D, N, P, and PW packages....... 26 C J, JG, U, and W packages....... 3 C Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES:. All voltage values, except differential voltages, are with respect to the midpoint between VDD+ and VDD. 2. Differential voltages are at IN+ with respect to IN. Excessive current flows if input is brought below VDD.3 V. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. PACKAGE DISSIPATION RATING TABLE TA DERATING FACTOR TA = 7 C TA = 8 C TA = POWER RATING ABOVE POWER RATING POWER RATING POWER RATING D 8 72 mw.8 mw/ C 6 mw 377 mw mw D 9 mw 7.6 mw/ C 68 mw 9 mw 9 mw FK 37 mw. mw/ C 88 mw 7 mw 27 mw J 37 mw. mw/ C 88 mw 7 mw 27 mw JG mw 8. mw/ C 672 mw 6 mw 2 mw N mw 9.2 mw/ C 736 mw 98 mw 23 mw P mw 8. mw/ C 6 mw 2 mw 2 mw PW 8 2 mw.2 mw/ C 336 mw 273 mw mw PW 7 mw.6 mw/ C 8 mw 36 mw mw U 7 mw. mw/ C 2 mw 37 mw mw W 7 mw. mw/ C 2 mw 37 mw mw recommended operating conditions C SUFFIX I SUFFIX Q SUFFIX M SUFFIX MIN MAX MIN MAX MIN MAX MIN MAX Supply voltage, VDD± ±2.2 ±8 ±2.2 ±8 ±2.2 ±8 ±2.2 ±8 V Input voltage range, VI VDD VDD +. VDD VDD +. VDD VDD +. VDD VDD +. V Common-mode input voltage, VIC VDD VDD +. VDD VDD +. VDD VDD +. VDD VDD +. V Operating free-air temperature, TA 7 2 2 2 C UNIT POST OFFICE BOX 633 DALLAS, TEXAS 726

TLC2262C electrical characteristics at specified free-air temperature, V DD = V (unless otherwise noted) VIO αvio IIO IIB Input offset voltage TLC2262C PARAMETER TEST CONDITIONS TA MIN TYP MAX Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note ) Input offset current Input bias current VIC =, VO O =, VDD ± = ±2. V, RS S = Ω VICR Common-mode mode input voltage range RS =Ω Ω, VIO mv VOH VOL AVD High-level output voltage Low-level output voltage Large-signal differential voltage amplification 3 2 Full range 3 to 7 C UNIT µv 2 µv/ C.3 µv/mo. Full range Full range Full range to to 3..3 to.2 IOH = 2 µa.99 IOH = µa IOH = µa.8.9 pa pa Full range.82 V.7.8 Full range.6 VIC = 2. V, IOL = µa. VIC =2V 2. V, IOL = µa VIC = 2. V, VIC = 2. V, IOL = A IOL = A.9. Full range. V.2.3 V Full range.3.7 Full range.2 8 7 VIC = 2. V, RL = kω Full range V/mV VO =VtoV V RL = MΩ ri(d) Differential input resistance 2 Ω ri(c) Common-mode input resistance 2 Ω ci(c) Common-mode input capacitance f = khz, P package 8 pf zo Closed-loop output impedance f = khz, AV = 2 Ω mode VIC = to 2.7 V, VO = 2. V, 7 83 CMRR Common-mode rejection ratio RS = Ω Full range 7 VDD =. V to 6 V, 8 9 ksvr Supply-voltage rejection ratio ( VDD/ VIO) VIC = VDD /2, No load Full range 8 IDD Supply current VO =2V 2. V, No load Full range Full range is C to 7 C. Referenced to 2. V NOTE : Typical values are based on the input offset voltage shift observed through hours of operating life test at TA = C extrapolated to using the Arrhenius equation and assuming an activation energy of.96 ev. db db µa 6 POST OFFICE BOX 633 DALLAS, TEXAS 726

TLC2262C operating characteristics at specified free-air temperature, V DD = V TLC2262C PARAMETER TEST CONDITIONS TA MIN TYP MAX VO =. V to 3. V, RL = kω,.3. SR Slew rate at unity gain CL = pf Full range.3 f = Hz Vn Equivalent input noise voltage f = khz 2 Peak-to-peak equivalent input noise f =. Hz to Hz.7 VN(PP) voltage f =. Hz to Hz.3 UNIT V/µs nv/ Hz µv In Equivalent input noise current.6 fa Hz THD+N Total harmonic distortion plus noise VO =. V to 2. V, f = 2 khz, AV = RL = kω AV = BOM Gain-bandwidth product Maximum output-swing bandwidth f = khz, CL = pf VO(PP) = 2 V, RL = kω, RL = kω,.7%.3%.7 MHz AV =, CL = pf 8 khz ts φm Settling time Phase margin at unity gain Gain margin Full range is C to 7 C. Referenced to 2. V AV =, To.% 6 6. Step =. V to 2. V, µs RL L = kω, % CL = pf To.%. 6 RL =kω, CL = pf db POST OFFICE BOX 633 DALLAS, TEXAS 726 7

TLC2262C electrical characteristics at specified free-air temperature, V DD± = ± V (unless otherwise specified) VIO αvio IIO IIB Input offset voltage TLC2262C PARAMETER TEST CONDITIONS TA MIN TYP MAX Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note ) Input offset current Input bias current VIC =, RS =Ω Ω VO =, VICR Common-mode mode input voltage range VIO mv, RS = Ω VOM+ VOM Maximum positive peak output voltage Maximum negative peak output voltage 3 2 Full range 3 to 7 C UNIT µv 2 µv/ C.3 µv/mo. Full range Full range Full range.3 to to.2 to 3. IO = 2 µa.99 IO = µa IO = µa.8.9 pa pa Full range.82 V.7.8 Full range.6 VIC =, IO = µa.99.8.9 VIC =, IO = µa Full range.8 VIC =, VIC =, AVD Large-signal differential voltage amplification VO = ± V IO = A IO = A RL =kω V.7.8 V Full range.7.3 Full range 3.8 8 2 Full range V/mV RL = MΩ ri(d) Differential input resistance 2 Ω ri(c) Common-mode input resistance 2 Ω ci(c) Common-mode input capacitance f = khz, P package 8 pf zo Closed-loop output impedance f = khz, AV = 22 Ω mode VIC = V to 2.7 V, 7 88 CMRR Common-mode rejection ratio VO = V, RS = Ω Full range 7 VDD = 2.2 V to ±8 V, 8 9 ksvr Supply-voltage rejection ratio ( VDD ± / VIO) ± VIC =, No load Full range 8 IDD Supply current VO =V V, No load 2 Full range Full range is C to 7 C. NOTE : Typical values are based on the input offset voltage shift observed through hours of operating life test at TA = C extrapolated to using the Arrhenius equation and assuming an activation energy of.96 ev. db db µa 8 POST OFFICE BOX 633 DALLAS, TEXAS 726

TLC2262C operating characteristics at specified free-air temperature, V DD± = ± V SR Vn VN(PP) PARAMETER TEST CONDITIONS TA TLC2262C MIN TYP MAX Slew rate at unity gain.3. VO = ±.9 9V, RL =kω kω, pf Full CL = 3.3 range Equivalent input noise voltage f = Hz 3 f = khz 2 Peak-to-peak equivalent input noise f =. Hz to Hz.8 voltage f =. Hz to Hz.3 UNIT V/µs nv/ Hz µv In Equivalent input noise current.6 fa Hz VO = ±2.3 V, AV =.% THD+N Total harmonic distortion pulse duration f = 2 khz, RL = kω AV =.2% Gain-bandwidth product f = khz, RL = kω, CL = pf 73.73 MHz BOM Maximum output-swing bandwidth VO(PP) =.6 V, AV V =, RL = kω, CL = pf 8 khz ts Settling time φm Phase margin at unity gain Gain margin Full range is C to 7 C. AV =, To.% 7 7. Step = 2.3 V to 2.3 V, µs RL L = kω, % CL = pf To.% 6. 7 RL =kω kω, CL = pf db POST OFFICE BOX 633 DALLAS, TEXAS 726 9

TLC226C electrical characteristics at specified free-air temperature, V DD = V (unless otherwise noted) VIO αvio IIO IIB Input offset voltage TLC226C PARAMETER TEST CONDITIONS TA MIN TYP MAX Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note ) Input offset current Input bias current VIC =, VO =, VDD ± = ±2. V, RS =Ω Ω VICR Common-mode mode input voltage range RS =Ω Ω, VIO mv VOH VOL AVD High-level output voltage Low-level output voltage Large-signal differential voltage amplification 3 2 Full range 3 to 7 C UNIT µv 2 µv/ C.3 µv/mo. Full range Full range Full range to to 3..3 to.2 IOH = 2 µa.99 IOH = µa IOH = µa.8.9 pa pa Full range.82 V.7.8 Full range.6 VIC = 2. V, IOL = µa. VIC =2V 2. V, IOL = µa VIC = 2. V, VIC = 2. V, IOL = A IOL = A.9. Full range. V.2.3 V Full range.3.7 Full range.2 8 7 VIC = 2. V, RL = kω Full range V/mV VO =VtoV V RL = MΩ ri(d) Differential input resistance 2 Ω ri(c) Common-mode input resistance 2 Ω ci(c) Common-mode input capacitance f = khz, N package 8 pf zo Closed-loop output impedance f = khz, AV = 2 Ω mode VIC = to 2.7 V, VO = 2. V, 7 83 CMRR Common-mode rejection ratio RS = Ω Full range 7 ksvr Supply-voltage rejection ratio ( VDD / VIO) IDD Supply current (four amplifiers) VO =2V 2. V, No load VDD =. V to 6 V, 8 9 VIC = VDD /2, No load Full range 8.8 Full range Full range is C to 7 C. Referenced to 2. V NOTE. Typical values are based on the input offset voltage shift observed through hours of operating life test at TA = C extrapolated to using the Arrhenius equation and assuming an activation energy of.96 ev. db db ma POST OFFICE BOX 633 DALLAS, TEXAS 726

TLC226C operating characteristics at specified free-air temperature, V DD = V SR Vn VN(PP) TLC226C PARAMETER TEST CONDITIONS TA MIN TYP MAX.3. =Vto26V =kω Slew rate at unity gain VO. 2.6 V, RL kω, pf Full CL = 3.3 range f = Hz Equivalent input noise voltage f = khz 2 Peak-to-peak equivalent input noise f =. Hz to Hz.7 voltage f =. Hz to Hz.3 UNIT V/µs nv/ Hz µv In Equivalent input noise current.6 fa / Hz THD+N Total harmonic distortion plus noise VO =. V to 2. V, f = 2 khz, AV = RL = kω AV = BOM Gain-bandwidth product Maximum output-swing bandwidth f = khz, CL = pf VO(PP) = 2 V, RL = kω, RL = kω,.7%.3%.7 MHz AV =, CL = pf 8 khz ts φm Settling time Phase margin at unity gain Gain margin Full range is C to 7 C. Referenced to 2. V AV =, To.% 6 6. Step =. V to 2. V, µs RL L = kω, % CL = pf To.%. 6 RL =kω kω, CL = pf db POST OFFICE BOX 633 DALLAS, TEXAS 726

TLC226C electrical characteristics at specified free-air temperature, V DD± = ± V (unless otherwise specified) VIO αvio IIO IIB Input offset voltage TLC226C PARAMETER TEST CONDITIONS TA MIN TYP MAX Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note ) Input offset current Input bias current VIC =, RS =Ω Ω VO =, VICR Common-mode mode input voltage range VIO mv, RS =Ω Ω VOM+ VOM Maximum positive peak output voltage Maximum negative peak output voltage 3 2 Full range 3 to 7 C UNIT µv 2 µv/ C.3 µv/mo. Full range Full range Full range.3 to to.2 to 3. IO = 2 µa.99 IO = µa IO = µa.8.9 pa pa Full range.82 V.7.8 Full range.6 VIC =, IO = µa.99 VIC =, IO = µa VIC =, VIC =, AVD Large-signal differential voltage amplification VO = ± V IO =A IO =A RL =kω.8.9 Full range.8 V.7.8 V Full range.7.3 Full range 3.8 8 2 Full range V/mV RL = MΩ ri(d) Differential input resistance 2 Ω ri(c) Common-mode input resistance 2 Ω ci(c) Common-mode input capacitance f = khz, N package 8 pf zo Closed-loop output impedance f = khz, AV = 22 Ω CMRR ksvr Common-mode mode rejection ratio Supply-voltage rejection ratio ( VDD ± / VIO) VIC = V to 2.7 V, 7 88 VO =, RS = Ω Full range 7 VDD ± = ±2.2 V to ±8 V, 8 9 VIC =, No load Full range 8 IDD Supply current (four amplifiers) VO =, No load.8 Full range Full range is C to 7 C. NOTE : Typical values are based on the input offset voltage shift observed through hours of operating life test at TA = C extrapolated to using the Arrhenius equation and assuming an activation energy of.96 ev. db db ma 2 POST OFFICE BOX 633 DALLAS, TEXAS 726

TLC226C operating characteristics at specified free-air temperature, V DD± = ± V SR Vn VN(PP) PARAMETER TEST CONDITIONS TA TLC226C MIN TYP MAX Slew rate at unity gain.3. VO = ±.9 9V, RL =kω kω, pf Full CL = 3.3 range Equivalent input noise voltage f = Hz 3 f = khz 2 Peak-to-peak equivalent input noise f =. Hz to Hz.8 voltage f =. Hz to Hz.3 UNIT V/µs nv/ Hz µv In Equivalent input noise current.6 fa / Hz VO = ± 2.3 V, AV =.% THD+N Total harmonic distortion plus noise f = 2 khz, RL = kω AV =.2% f = khz, RL = kω, Gain-bandwidth product 73.73 MHz CL = pf VO(PP) =.6 V, AV =, BOM Maximum output-swing bandwidth 7 khz RL = kω, CL = pf ts Settling time φm Phase margin at unity gain Gain margin Full range is C to 7 C. AV =, To.% 7 7. Step = 2.3 V to 2.3 V, µs RL L = kω, % CL = pf To.% 6. 7 RL =kω kω, CL = pf db POST OFFICE BOX 633 DALLAS, TEXAS 726 3

TLC2262I electrical characteristics at specified free-air temperature, V DD = V (unless otherwise noted) VIO TLC2262I TLC2262AI PARAMETER TEST CONDITIONS TA MIN TYP MAX MIN TYP MAX Input offset voltage Temperature coefficient αvio of input offset voltage to 8 C IIO IIB VICR VOH VOL Input offset voltage long-term drift (see Note ) Input offset current Input bias current Common-mode input voltage range High-level output voltage Low-level output voltage VDD ± = ±2. V, VO =, RS =Ω Ω, VIC =, RS = Ω VIO mv 3 2 3 9 Full range 3 UNIT µv 2 2 µv/ C.3.3 µv/mo.. Full range Full range.3.3 to to to to.2.2 Full range to to 3. 3. IOH = 2 µa.99.99 IOH = µa IOH = µa.8.9.8.9 Full range.82.82 V.7.8.7.8 Full range.. VIC = 2. V, IOL = µa...9..9. VIC =2V 2. V, IOL = µa Full range.. V VIC = 2. V, IOL = A.8.7 Full range.2.2 8 8 7 Large-signal differential VIC = 2. V, RL = kω AVD Full range V/mV voltage amplification VO =VtoV V RL = MΩ ri(d) ri(c) ci(c) zo Differential input resistance Common-mode input resistance Common-mode input capacitance Closed-loop output impedance 2 2 Ω 2 2 Ω f = khz, P package 8 8 pf f = khz, AV = 2 2 Ω Common-mode rejection V = to 2.7 V, VO = 2. V, 7 83 7 83 CMRR IC O ratio RS = Ω Full range 7 7 Supply-voltage rejection V DD =. V to 6 V, 8 9 8 9 ksvr ratio ( V DD / VIO) VIC = VDD /2, No load Full range 8 8 IDD Supply current VO =2V 2. V, No load Full range Full range is C to. Referenced to 2. V NOTE : Typical values are based on the input offset voltage shift observed through hours of operating life test at TA = C extrapolated to using the Arrhenius equation and assuming an activation energy of.96 ev. pa pa V db db µa POST OFFICE BOX 633 DALLAS, TEXAS 726

TLC2262I operating characteristics at specified free-air temperature, V DD = V SR Vn PARAMETER TEST CONDITIONS TA TLC2262I TLC2262AI MIN TYP MAX MIN TYP MAX.3..3. Slew rate at unity VO =Vto3V. 3. V, RL = kω, gain pf Full CL = 2.2 2.2 range Equivalent input f = Hz noise voltage f = khz 2 2 UNIT V/µs nv/ Hz VN(PP) In THD+N BOM Peak-to-peak f =. Hz to Hz.7.7 equivalent input noise voltage f =. Hz to Hz.3.3 Equivalent input noise current Total harmonic distortion plus noise VO =. V to 2. V, f = 2 khz, AV = RL = kω AV = Gain-bandwidth f = khz, RL = kω, product CL = pf µv.6.6 fa Hz.7%.7%.3%.3% 82.82 82.82 MHz Maximum output- VO(PP) = 2 V, AV =, 8 8 khz swing bandwidth RL = kω, CL = pf ts φm Settling time AV =, To.% 6 6. 6 6. Step =. V to 2. V, RL L = kω, % CL = pf To.%.. Phase margin at unity gain RL L = kω, CL = pf Gain margin Full range is C to. Referenced to 2. V 6 6 µs db POST OFFICE BOX 633 DALLAS, TEXAS 726

TLC2262I electrical characteristics at specified free-air temperature, V DD± = ± V (unless otherwise noted) VIO TLC2262I TLC2262AI PARAMETER TEST CONDITIONS TA MIN TYP MAX MIN TYP MAX Input offset voltage Temperature coefficient of αvio input offset voltage to 8 C IIO IIB VICR VOM+ VOM AVD ri(d) ri(c) ci(c) zo Input offset voltage long-term drift (see Note ) Input offset current Input bias current Common-mode input voltage range VIC =, RS = Ω RS =Ω Ω, Maximum positive peak IO = µa output voltage VO =, VIO mv 3 2 3 9 Full range 3 UNIT µv 2 2 µv/ C.3.3 µv/mo.. Full range Full range Full range.3.3 to to.2 to to.2 to 3. to 3. IO = 2 µa.99.99 IO = µa Maximum negative peak VIC =, IO = µa output voltage.8.9.8.9 Full range.82.82 V.7.8.7.8 Full range.. VIC =, IO = µa.99.99 VIC =, IO = A.8.9.8.9 Full range.8.8 V.3.3 Full range 3.8 3.8 8 2 8 2 Large-signal differential RL =kω amplification VO = ± V Full range V/mV voltage RL = MΩ Differential input resistance Common-mode input resistance Common-mode input capacitance Closed-loop output impedance 2 2 Ω 2 2 Ω f = khz, P package 8 8 pf f = khz, AV = 22 22 Ω Common-mode V = V to 2.7 V, 7 88 7 88 CMRR IC rejection ratio VO =, RS = Ω Full range 7 7 Supply-voltage rejection V DD =. V to 6 V, 8 9 8 9 ksvr ratio ( VDD± / VIO) VIC = VDD /2, No load Full range 8 8 IDD Supply current VO =2V 2. V, No load 2 2 Full range Full range is C to. NOTE : Typical values are based on the input offset voltage shift observed through hours of operating life test at TA = C extrapolated to using the Arrhenius equation and assuming an activation energy of.96 ev. pa pa V db db µa 6 POST OFFICE BOX 633 DALLAS, TEXAS 726

TLC2262I operating characteristics at specified free-air temperature, V DD± = ± V SR Vn PARAMETER TEST CONDITIONS TA TLC2262I TLC2262AI MIN TYP MAX MIN TYP MAX.3..3. Slew rate at unity VO = ±.9 9V, RL =kω kω, gain pf Full CL = 2.2 2.2 range Equivalent input f = Hz 3 3 noise voltage f = khz 2 2 UNIT V/µs nv/ Hz VN(PP) In THD+N BOM ts φm Peak-to-peak f =. Hz to Hz.8.8 equivalent input noise voltage f =. Hz to Hz.3.3 Equivalent input noise current Total harmonic distortion plus noise VO = ±2.3 V, AV = RL = kω, f = 2 khz AV = Gain-bandwidth f = khz, RL = kω, product CL = pf Maximum output-swing bandwidth Settling time VO(PP) =.6 V, AV =, RL = kω, CL = pf µv.6.6 fa Hz.%.%.2%.2% 73.73 73.73 MHz 8 8 khz AV =, To.% 7 7. 7 7. Step = 2.3 V to 2.3 V, RL L = kω, % CL = pf To.% 6. 6. Phase margin at unity gain RL L = kω, CL = pf Gain margin Full range is C to. 7 7 µs db POST OFFICE BOX 633 DALLAS, TEXAS 726 7

TLC226I electrical characteristics at specified free-air temperature, V DD = V (unless otherwise noted) VIO αvio IIO IIB VICR VOH VOL TLC226I TLC226AI PARAMETER TEST CONDITIONS TA MIN TYP MAX MIN TYP MAX UNIT Input offset voltage Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note ) Input offset current Input bias current Common-mode input voltage range VDD ± =±2. V, VO =, RS =Ω Ω, High-level output IOH = µa voltage VIC =, RS = Ω VIO mv 3 2 3 9 µv Full range 3 2 2 µv/ C to.3.3 µv/mo.. Full range Full range Full range to to 3..3 to.2 to to 3..3 to.2 IOH = 2 µa.99.99 IOH = µa.8.9.8.9 Full range.82.82 V.7.8.7.8 Full range.. VIC = 2. V, IOL = µa...9..9. Low-level output VIC = 2. V, IOL = µa Full range.. V voltage.8.7 VIC = 2. V, IOL = A Full range.2.2 8 8 7 Large-signal differential VIC = 2. V, RL = kω AVD Full range V/mV voltage amplification VO =VtoV V RL = MΩ ri(d) ri(c) ci(c) zo Differential input resistance Common-mode input resistance Common-mode input capacitance Closed-loop output impedance 2 2 Ω 2 2 Ω f = khz, N package 8 8 pf f = khz, AV = 2 2 Ω Common-mode V = to 2.7 V, VO = 2. V, 7 83 7 83 CMRR IC O rejection ratio RS = Ω Full range 7 7 ksvr IDD Supply-voltage VDD =. V to 6 V, 8 9 8 9 rejection ratio ( VDD / VIO) VIC = VDD /2, No load Full range 8 8 Supply current (four amplifiers) VO =2V 2. V, No load.8.8 Full range Full range is C to. Referenced to 2. V NOTE : Typical values are based on the input offset voltage shift observed through hours of operating life test at TA = C extrapolated to using the Arrhenius equation and assuming an activation energy of.96 ev. pa pa V db db ma 8 POST OFFICE BOX 633 DALLAS, TEXAS 726

TLC226I operating characteristics at specified free-air temperature, V DD = V SR Vn PARAMETER TEST CONDITIONS TA TLC226I TLC226AI MIN TYP MAX MIN TYP MAX.3..3. Slew rate at unity VO =. V to 2.6 V, RL = kω, gain pf Full CL = 2.2 2.2 range Equivalent input f = Hz noise voltage f = khz 2 2 UNIT V/µs nv/ Hz VN(PP) In THD+N BOM Peak-to-peak f =. Hz to Hz.7.7 equivalent input noise voltage f =. Hz to Hz.3.3 Equivalent input noise current Total harmonic distortion plus noise VO =. V to 2. V, f = 2 khz, AV = RL = kω AV = Gain-bandwidth f = khz, RL = kω, product CL = pf µv.6.6 fa / Hz.7%.7%.3%.3% 7.7 7.7 MHz Maximum output- VO(PP) = 2 V, AV =, 8 8 khz swing bandwidth RL = kω, CL = pf ts φm Settling time AV =, To.% 6 6. 6 6. Step =. V to 2. V, RL = kω, % CL = pf To.%.. Phase margin at unity gain RL = kω, CL L = pf Gain margin Full range is C to. Referenced to 2. V 6 6 db µs POST OFFICE BOX 633 DALLAS, TEXAS 726 9

TLC226I electrical characteristics at specified free-air temperature, V DD± = ± V (unless otherwise noted) VIO TLC226I TLC226AI PARAMETER TEST CONDITIONS TA MIN TYP MAX MIN TYP MAX Input offset voltage Temperature coefficient of αvio input offset voltage to IIO IIB VICR VOM+ VOM AVD ri(d) ri(c) ci(c) zo Input offset voltage long-term drift (see Note ) Input offset current Input bias current Common-mode input voltage range VIC =, RS = Ω RS =Ω Ω, Maximum positive peak IO = µa output voltage VO =, VIO mv 3 2 3 9 Full range 3 UNIT µv 2 2 µv/ C.3.3 µv/mo.. Full range Full range.3.3 to to to to.2.2 Full range to to 3. 3. IO = 2 µa.99.99 IO = µa Maximum negative peak VIC =, IO = µa output voltage Large-signal differential voltage amplification Differential input resistance Common-mode input resistance Common-mode input capacitance Closed-loop output impedance.8.9.8.9 Full range.82.82 V.7.8.7.8 Full range.. VIC =, IO = µa.99.99 VIC =, VO = ± V IO =A RL = kω.8.9.8.9 Full range.8.8 V.3.3 Full range 3.8 3.8 8 2 8 2 pa pa Full range V/mV RL = MΩ 2 2 Ω 2 2 Ω f = khz, N package 8 8 pf f = khz, AV = 22 22 Ω Common-mode V IC = V to 2.7 V, 7 88 7 88 CMRR rejection ratio VO =, RS = Ω Full range 7 7 V db Supply-voltage rejection V DD± = ±2.2 V to ±8 V, 8 9 8 9 ksvr ratio ( V DD ±/ VIO) VIC = VDD /2, No load Full range 8 8 db IDD Supply current (four amplifiers) VO =, No load.8.8 Full range Full range is C to. NOTE : Typical values are based on the input offset voltage shift observed through hours of operating life test at TA = C extrapolated to using the Arrhenius equation and assuming an activation energy of.96 ev. ma 2 POST OFFICE BOX 633 DALLAS, TEXAS 726

TLC226I operating characteristics at specified free-air temperature, V DD± = ± V SR Vn PARAMETER TEST CONDITIONS TA TLC226I TLC226AI MIN TYP MAX MIN TYP MAX.3..3. Slew rate at unity VO = ±.9 9V, RL =kω kω, gain pf Full CL = 2.2 2.2 range Equivalent input f = Hz 3 3 noise voltage f = khz 2 2 UNIT V/µs nv/ Hz VN(PP) In THD+N BOM Peak-to-peak f =. Hz to Hz.8.8 equivalent input noise voltage f =. Hz to Hz.3.3 Equivalent input noise current Total harmonic distortion plus noise VO = ±2.3 V, AV = RL = kω, f = 2 khz AV = Gain-bandwidth f = khz, RL = kω, product CL = pf Maximum output- VO(PP) =.6 V, AV =, swing bandwidth RL = kω, CL = pf µv.6.6 fa / Hz.%.%.2%.2% 73.73 73.73 MHz 7 7 khz ts Settling time AV =, To.% 7 7. 7 7. Step = 2.3 V to 2.3 V, RL = kω, % CL = pf To.% 6. 6. µs φm Phase margin at unity gain RL = kω, CL L = pf 7 7 Gain margin db Full range is C to. POST OFFICE BOX 633 DALLAS, TEXAS 726 2

TLC2262Q/M electrical characteristics at specified free-air temperature, V DD = V (unless otherwise noted) VIO αvio IIO IIB VICR VOH VOL PARAMETER TEST CONDITIONS TA TLC2262M TLC2262AM TLC2262Q, TLC2262AQ, MIN TYP MAX MIN TYP MAX Input offset voltage 3 2 3 9 Full range 3 Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note ) Input offset current Input bias current Common-mode input voltage range VDD ± = ±2. V, VO =, RS =Ω Ω, High-level output IOH = µa voltage VIC =, RS = Ω VIO mv UNIT µv Full range µv/ C.3.3 µv/mo...3.3 to to to to.2.2 Full range to to 3. 3. IOH = 2 µa.99.99 IOH = µa.8.9.8.9 Full range.82.82 V.7.8.7.8 Full range.. VIC = 2. V, IOL = µa...9..9. Low-level output VIC = 2. V, IOL = µa Full range.. V voltage.8.7 VIC = 2. V, IOL = A Full range.2.2 8 8 7 Large-signal differential VIC = 2. V, RL = kω AVD Full range V/mV voltage amplification VO =VtoV V RL = MΩ ri(d) ri(c) ci(c) zo Differential input resistance Common-mode input resistance Common-mode input capacitance Closed-loop output impedance 2 2 Ω 2 2 Ω f = khz, P package 8 8 pf f = khz, AV = 2 2 Ω Common-mode V = to 2.7 V, VO = 2. V, 7 83 7 83 CMRR IC O rejection ratio RS = Ω Full range 7 7 Supply-voltage rejection V DD =. V to 6 V, 8 9 8 9 ksvr ratio ( VDD / VIO) VIC = VDD /2, No load Full range 8 8 Full range is C to for Q suffix, C to for M suffix. Referenced to 2. V NOTE : Typical values are based on the input offset voltage shift observed through hours of operating life test at TA = C extrapolated to using the Arrhenius equation and assuming an activation energy of.96 ev. pa pa V db db 22 POST OFFICE BOX 633 DALLAS, TEXAS 726

TLC2262Q/M electrical characteristics at specified free-air temperature, V DD = V (unless otherwise noted) (continued) PARAMETER TEST CONDITIONS TA TLC2262M TLC2262AM TLC2262Q, TLC2262AQ, MIN TYP MAX MIN TYP MAX IDD Supply current VO =2V 2. V, No load Full range Full range is C to for Q suffix, C to for M suffix. TLC2262Q/M operating characteristics at specified free-air temperature, V DD = V UNIT µa SR Vn PARAMETER TEST CONDITIONS TA TLC2262M TLC2262AM TLC2262Q, TLC2262AQ, MIN TYP MAX MIN TYP MAX Slew rate at unity VO =Vto3V. 3. V, RL = kω, gain CL = pf.3..3. Full range 2.2 2.2 Equivalent input f = Hz noise voltage f = khz 2 2 UNIT V/µs nv/ Hz VN(PP) In THD+N BOM Peak-to-peak f =. Hz to Hz.7.7 equivalent input noise voltage f =. Hz to Hz.3.3 Equivalent input noise current Total harmonic distortion plus noise VO =. V to 2. V, f = 2 khz, AV = RL = kω AV = Gain-bandwidth f = khz, RL = kω, product CL = pf µv.6.6 fa Hz.7%.7%.3%.3% 82.82 82.82 MHz Maximum output- VO(PP) = 2 V, AV V =, 8 8 khz swing bandwidth RL = kω, CL = pf ts φm Settling time AV =, To.% 6 6. 6 6. Step =. V to 2. V, RL L = kω, % CL = pf To.%.. Phase margin at unity gain RL L = kω, CL = pf Gain margin Full range is C to for Q suffix, C to for M suffix. Referenced to 2. V 6 6 µs db POST OFFICE BOX 633 DALLAS, TEXAS 726 23

TLC2262Q/M electrical characteristics at specified free-air temperature, V DD± = ± V (unless otherwise noted) VIO αvio IIO IIB VICR VOM+ VOM AVD ri(d) ri(c) ci(c) zo PARAMETER TEST CONDITIONS TA TLC2262M TLC2262AM TLC2262Q, TLC2262AQ, MIN TYP MAX MIN TYP MAX Input offset voltage 3 2 3 9 Full range 3 Temperature coefficient of input offset voltage Input offset voltage longterm drift (see Note ) Input offset current Input bias current Common-mode input voltage range VIC =, RS S = Ω RS =Ω Ω, Maximum positive peak IO = µa output voltage VO =, VIO mv UNIT µv Full range µv/ C.3.3 µv/mo.. Full range to to 3..3 to.2 to to 3..3 to.2 IO = 2 µa.99.99 IO = µa Maximum negative peak VIC =, IO = µa output voltage.8.9.8.9 Full range.82.82 V.7.8.7.8 Full range.. VIC =, IO = µa.99.99 VIC =, IO = A.8.9.8.9 Full range.8.8 V.3.3 Full range 3.8 3.8 8 2 8 2 Large-signal differential RL =kω amplification VO = ± V Full range V/mV voltage RL = MΩ Differential input resistance Common-mode input resistance Common-mode input capacitance Closed-loop output impedance 2 2 Ω 2 2 Ω f = khz, P package 8 8 pf f = khz, AV = 22 22 Ω Common-mode V = V to 2.7 V, 7 88 7 88 CMRR IC rejection ratio VO =, RS = Ω Full range 7 7 Supply-voltage rejection V DD =. V to 6 V, 8 9 8 9 ksvr ratio ( VDD± / VIO) VIC = VDD /2, No load Full range 8 8 Full range is C to for Q suffix, C to for M suffix. NOTE : Typical values are based on the input offset voltage shift observed through hours of operating life test at TA = C extrapolated to using the Arrhenius equation and assuming an activation energy of.96 ev. pa pa V db db 2 POST OFFICE BOX 633 DALLAS, TEXAS 726

TLC2262Q/M electrical characteristics at specified free-air temperature, V DD± = ± V (unless otherwise noted) (continued) PARAMETER TEST CONDITIONS TA TLC2262M TLC2262AM TLC2262Q, TLC2262AQ, MIN TYP MAX MIN TYP MAX IDD Supply current VO =, No load 2 2 Full range Full range is C to for Q suffix, C to for M suffix. TLC2262Q/M operating characteristics at specified free-air temperature, V DD± = ± V UNIT µa SR Vn PARAMETER TEST CONDITIONS TA TLC2262M TLC2262AM TLC2262Q, TLC2262AQ, MIN TYP MAX MIN TYP MAX.3..3. Slew rate at unity VO = ±2 V, RL =kω kω, gain pf Full CL = 2.2 2.2 range Equivalent input f = Hz 3 3 noise voltage f = khz 2 2 UNIT V/µs nv/ Hz VN(PP) In THD+N BOM Peak-to-peak f =. Hz to Hz.8.8 equivalent input noise voltage f =. Hz to Hz.3.3 Equivalent input noise current Total harmonic distortion plus noise VO = ±2.3 V, AV = RL = kω, f = 2 khz AV = Gain-bandwidth f = khz, RL = kω, product CL = pf Maximum output- VO(PP) =.6 V, AV V =, swing bandwidth RL = kω, CL = pf µv.6.6 fa Hz.%.%.2%.2% 73.73 73.73 MHz 8 8 khz ts Settling time AV =, To.% 7 7. 7 7. Step = 2.3 V to 2.3 V, RL L = kω, % CL = pf To.% 6. 6. µs φm Phase margin at unity gain RL L = kω, CL = pf 7 7 Gain margin db Full range is C to for Q suffix, C to for M suffix. POST OFFICE BOX 633 DALLAS, TEXAS 726 2

TLC226Q/M electrical characteristics at specified free-air temperature, V DD = V (unless otherwise noted) VIO αvio IIO IIB VICR VOH VOL PARAMETER TEST CONDITIONS TA TLC226M TLC226AM TLC226Q, TLC226AQ, MIN TYP MAX MIN TYP MAX Input offset voltage 3 2 3 9 Full range 3 Temperature coefficient of input offset voltage Input offset voltage longterm drift (see Note ) Input offset current Input bias current Common-mode input voltage range VDD ± = ±2. V, VO =, RS =Ω Ω, High-level output IOH = µa voltage VIC =, RS = Ω VIO mv UNIT µv Full range 2 2 µv/ C.3.3 µv/mo.. Full range to to 3..3 to.2 to to 3..3 to.2 IOH = 2 µa.99.99 IOH = µa.8.9.8.9 Full range.82.82 V.7.8.7.8 Full range.. VIC = 2. V, IOL = µa...9..9. Low-level output VIC = 2. V, IOL = µa Full range.. V voltage.8.7 VIC = 2. V, IOL = A Full range.2.2 8 8 7 Large-signal differential VIC = 2. V, RL = kω AVD Full range V/mV voltage amplification VO =VtoV V RL = MΩ ri(d) ri(c) ci(c) zo Differential input resistance Common-mode input resistance Common-mode input capacitance Closed-loop output impedance 2 2 Ω 2 2 Ω f = khz, N package 8 8 pf f = khz, AV = 2 2 Ω Common-mode V = to 2.7 V, VO = 2. V, 7 83 7 83 CMRR IC O rejection ratio RS = Ω Full range 7 7 Supply-voltage VDD =. V to 6 V, 8 9 8 9 ksvr rejection ratio ( VDD / VIO) VIC = VDD /2, No load Full range 8 8 Full range is C to for Q suffix, C to for M suffix. Referenced to 2. V NOTE : Typical values are based on the input offset voltage shift observed through hours of operating life test at TA = C extrapolated to using the Arrhenius equation and assuming an activation energy of.96 ev. pa pa V db db 26 POST OFFICE BOX 633 DALLAS, TEXAS 726

TLC226Q/M electrical characteristics at specified free-air temperature, V DD = V (unless otherwise noted) (continued) PARAMETER TEST CONDITIONS TA TLC226M TLC226AM TLC226Q, TLC226AQ, MIN TYP MAX MIN TYP MAX IDD Supply current.8.8 =2V (four amplifiers) VO 2. V, No load Full range Full range is C to for Q suffix, C to for M suffix. TLC226Q/M operating characteristics at specified free-air temperature, V DD = V UNIT ma SR Vn PARAMETER TEST CONDITIONS TA TLC226M TLC226AM TLC226Q, TLC226AQ, MIN TYP MAX MIN TYP MAX.3..3. Slew rate at unity VO =Vto3V. 3. V, RL = kω, gain pf Full CL = 2.2 2.2 range Equivalent input f = Hz noise voltage f = khz 2 2 UNIT V/µs nv/ Hz VN(PP) In THD+N BOM Peak-to-peak f =. Hz to Hz.7.7 equivalent input noise voltage f =. Hz to Hz.3.3 Equivalent input noise current Total harmonic distortion plus noise VO =. V to 2. V, f = 2 khz, AV = RL = kω AV = Gain-bandwidth f = khz, RL = kω, product CL = pf µv.6.6 fa / Hz.7%.7%.3%.3% 7.7 7.7 MHz Maximum output- VO(PP) = 2 V, AV =, 8 8 khz swing bandwidth RL = kω, CL = pf ts φm Settling time AV =, To.% 6 6. 6 6. Step =. V to 2. V, RL L = kω, % CL = pf To.%.. Phase margin at unity gain RL L = kω, CL L = pf Gain margin Full range is C to for Q suffix, C to for M suffix. Referenced to 2. V 6 6 db µs POST OFFICE BOX 633 DALLAS, TEXAS 726 27

TLC226Q/M electrical characteristics at specified free-air temperature, V DD± = ± V (unless otherwise noted) VIO αvio IIO IIB VICR VOM+ VOM AVD PARAMETER TEST CONDITIONS TA TLC226M TLC226AM TLC226Q, TLC226AQ, MIN TYP MAX MIN TYP MAX Input offset voltage 3 2 3 9 Full range 3 Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note ) Input offset current Input bias current VIC =, RS = Ω VO =, UNIT µv Full range 2 2 µv/ C.3.3 µv/mo...3.3 to to to to Common-mode input RS S = Ω,.2.2 voltage range VIO mv Full range to to 3. 3. Maximum positive peak IO = µa output voltage IO = 2 µa.99.99 IO = µa.8.9.8.9 Full range.82.82 V.7.8.7.8 Full range.. VIC =, IO = µa.99.99.8.9.8.9 Maximum negative peak VIC =, IO = µa Full range.8.8 V output voltage.3.3 VIC =, IO =A Full range 3.8 3.8 8 2 8 2 Large-signal differential RL =kω amplification VO = ± V Full range V/mV voltage RL = MΩ ri(d) Differential input resistance 2 2 Ω ri(c) ci(c) zo Common-mode input resistance Common-mode input capacitance Closed-loop output impedance 2 2 Ω f = khz, N package 8 8 pf f = khz, AV = 22 22 Ω Common-mode VIC = V to 2.7 V, 7 88 7 88 CMRR rejection ratio VO =, RS = Ω Full range 7 7 Supply-voltage rejection VDD± = ±2.2 V to ±8 V, 8 9 8 9 ksvr ratio ( VDD ±/ VIO) VIC = VDD /2, No load Full range 8 8 Full range is C to for Q suffix, C to for M suffix. NOTE : Typical values are based on the input offset voltage shift observed through hours of operating life test at TA = C extrapolated to using the Arrhenius equation and assuming an activation energy of.96 ev. pa pa V db db 28 POST OFFICE BOX 633 DALLAS, TEXAS 726

TLC226Q/M electrical characteristics at specified free-air temperature, V DD± = ± V (unless otherwise noted) (continued) IDD PARAMETER TEST CONDITIONS TA TLC226M TLC226AM TLC226Q, TLC226AQ, MIN TYP MAX MIN TYP MAX Supply current.8.8 = (four amplifiers) VO, No load Full range Full range is C to for Q suffix, C to for M suffix. TLC226Q/M operating characteristics at specified free-air temperature, V DD± = ± V UNIT ma SR Vn PARAMETER TEST CONDITIONS TA TLC226M TLC226AM TLC226Q, TLC226AQ, MIN TYP MAX MIN TYP MAX.3..3. Slew rate at unity VO = ±2 V, RL =kω kω, gain pf Full CL = 2.2 2.2 range Equivalent input f = Hz 3 3 noise voltage f = khz 2 2 UNIT V/µs nv/ Hz VN(PP) In THD+N BOM Peak-to-peak f =. Hz to Hz.8.8 equivalent input noise voltage f =. Hz to Hz.3.3 Equivalent input noise current Total harmonic distortion plus noise VO = ±2.3 V, AV = RL = kω, f = 2 khz AV = Gain-bandwidth f = khz, RL = kω, product CL = pf Maximum output- VO(PP) =.6 V, AV V =, swing bandwidth RL = kω, CL = pf µv.6.6 fa / Hz.%.%.2%.2% 73.73 73.73 MHz 7 7 khz ts Settling time AV =, To.% 7 7. 7 7. Step = 2.3 V to 2.3 V, RL = kω, % CL = pf To.% 6. 6. µs φm Phase margin at unity gain RL = kω, CL L = pf 7 7 Gain margin db Full range is C to for Q suffix, C to for M suffix. POST OFFICE BOX 633 DALLAS, TEXAS 726 29

TYPICAL CHARACTERISTICS Table of Graphs FIGURE VIO Input offset voltage Distribution 2 Common-mode input voltage 6, 7 αvio Input offset voltage temperature coefficient Distribution 8 IIB/IIO Input bias and input offset currents Free-air temperature 2 VI Input voltage range Supply voltage Free-air temperature VOH High-level output voltage High-level output current VOL Low-level output voltage Low-level output current 6, 7 VOM+ Maximum positive peak output voltage Output current 8 VOM Maximum negative peak output voltage Output current 9 VO(PP) Maximum peak-to-peak output voltage Frequency 2 IOS Short-circuit output current Supply voltage Free-air temperature VO Output voltage Differential input voltage 23, 2 AVD Differential gain Load resistance 2 Large-signal differential voltage amplification Frequency Free-air temperature 3 2 22 26, 27 28, 29 zo Output impedance Frequency 3, 3 CMRR ksvr IDD SR Common-mode rejection ratio Supply-voltage rejection ratio Supply current Slew rate Frequency Free-air temperature Frequency Free-air temperature Supply voltage Free-air temperature Load capacitance Free-air temperature 32 33 3, 3 36 37, 38 39, 2 Inverting large-signal pulse response 3, VO Voltage-follower large-signal pulse response, 6 Inverting small-signal pulse response 7, 8 Voltage-follower small-signal pulse response 9, Vn Equivalent input noise voltage Frequency, 2 Noise voltage (referred to input) Over a -second period 3 Integrated noise voltage Frequency THD + N Total harmonic distortion plus noise Frequency φm Gain-bandwidth product Phase margin Supply voltage Free-air temperature Frequency Load capacitance 6 7 26, 27 8 Gain margin Load capacitance 9 B Unity-gain bandwidth Load capacitance 6 Overestimation of phase margin Load capacitance 6 3 POST OFFICE BOX 633 DALLAS, TEXAS 726

TYPICAL CHARACTERISTICS TLC226x, TLC226xA DISTRIBUTION OF TLC2262 INPUT OFFSET VOLTAGE DISTRIBUTION OF TLC2262 INPUT OFFSET VOLTAGE Precentage of Amplifiers % 2 2 27 Amplifiers From 2 Wafer Lots VDD± = ± 2. V Percentage of Amplifiers % 2 2 27 Amplifiers From 2 Wafer Lots VDD± = ± V.6.8.8.6 VIO Input Offset Voltage mv Figure 2.6.8.8.6 VIO Input Offset Voltage mv Figure 3 Percentage of Amplifiers % 2 6 2 8 DISTRIBUTION OF TLC226 INPUT OFFSET VOLTAGE 2272 Amplifiers From 2 Wafer Lots VDD ± = ±2. V Percentage of Amplifiers % 2 6 2 8 DISTRIBUTION OF TLC226 INPUT OFFSET VOLTAGE 2272 Amplifiers From 2 Wafer Lots VDD ± = ± V.6.8.8.6 VIO Input Offset Voltage mv Figure.6.8.8.6 VIO Input Offset Voltage mv Figure POST OFFICE BOX 633 DALLAS, TEXAS 726 3

TYPICAL CHARACTERISTICS V VIO IO Input Offset Voltage mv.. INPUT OFFSET VOLTAGE COMMON-MODE INPUT VOLTAGE VDD = V RS = Ω V VIO Input Offset Voltage mv.. INPUT OFFSET VOLTAGE COMMON-MODE INPUT VOLTAGE VDD± = ± V RS = Ω 2 3 VIC Common-Mode Input Voltage V For curves where VDD = V, all loads are referenced to 2. V. Figure 6 6 3 2 2 3 VIC Common-Mode Input Voltage V Figure 7 DISTRIBUTION OF TLC2262 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT DISTRIBUTION OF TLC2262 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT Percentage of Amplifiers % 3 2 2 28 Amplifiers From 2 Wafer Lots VDD± = ± 2. V P Package to Percentage of Amplifiers % 3 2 2 28 Amplifiers From 2 Wafer Lots VDD± = ± V P Package to 3 2 2 3 α VIO Temperature Coefficient µv/ C Figure 8 3 2 2 3 α VIO Temperature Coefficient µv/ C Figure 9 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 32 POST OFFICE BOX 633 DALLAS, TEXAS 726

TYPICAL CHARACTERISTICS TLC226x, TLC226xA Percentage of Amplifiers % 3 3 2 2 DISTRIBUTION OF TLC226 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT 28 Amplifiers From 2 Wafer Lots VDD ± = ± 2. V N Package to Percentage of Amplifiers % 3 3 2 2 DISTRIBUTION OF TLC226 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT 28 Amplifiers From 2 Wafer Lots VDD ± = ± V N Package to 3 2 2 3 αvio Temperature Coefficient of Input Offset Voltage µv/ C Figure 3 2 2 3 αvio Temperature Coefficient of Input Offset Voltage µv/ C Figure IIB and IIO I IO Input Bias and Input Offset Currents pa INPUT BIAS AND INPUT OFFSET CURRENTS FREE-AIR TEMPERATURE 3 VDD± = ±2. V 3 VIC = V VO = RS = Ω 2 2 2 6 8 2 TA Free-Air Temperature C Figure 2 IIB IIO VI Input Voltage Range V 8 6 2 2 6 8 RS = Ω INPUT VOLTAGE RANGE SUPPLY VOLTAGE 2 3 6 7 8 VDD ± Supply Voltage V Figure 3 VIO mv Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 633 DALLAS, TEXAS 726 33

TYPICAL CHARACTERISTICS VDD = V INPUT VOLTAGE RANGE FREE-AIR TEMPERATURE 6 HIGH-LEVEL OUTPUT VOLTAGE HIGH-LEVEL OUTPUT CURRENT VDD = V V VI I Input Voltage Range V 3 2 VIO mv V VOH High-Level Output Voltage V 3 2 TA = TA = C TA = C 7 3 2 6 8 2 TA Free-Air Temperature C Figure 2 2 3 3 IOH High-Level Output Current µa Figure VOL V OL Low-Level Output Voltage V.2.8.6..2 LOW-LEVEL OUTPUT VOLTAGE LOW-LEVEL OUTPUT CURRENT VDD = V VIC = VIC =.2 V VIC = 2. V V VOL Low-Level Output Voltage V..2.8.6..2 LOW-LEVEL OUTPUT VOLTAGE LOW-LEVEL OUTPUT CURRENT VDD = V VIC = 2. V TA = C TA = TA = C 2 3 IOL Low-Level Output Current ma Figure 6 2 3 6 IOL Low-Level Output Current ma Figure 7 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. For curves where VDD = V, all loads are referenced to 2. V. 3 POST OFFICE BOX 633 DALLAS, TEXAS 726

TYPICAL CHARACTERISTICS TLC226x, TLC226xA V VOM + + Maximum Positive Output Voltage V 6 3 2 MAXIMUM POSITIVE OUTPUT VOLTAGE OUTPUT CURRENT VDD± = ± V TA = 2 2 3 3 IO Output Current µa Figure 8 TA = C TA = C VOM V Maximum Negative Output Voltage V 3.8.2..6.8 MAXIMUM NEGATIVE OUTPUT VOLTAGE OUTPUT CURRENT VDD ± = ± V VIC = TA = C 2 Figure 9 TA = TA = C 3 6 IO Output Current ma VO(PP) V Maximum Peak-to-Peak Output Voltage V O(PP) 9 8 7 6 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE FREQUENCY 3 2 VDD± = ± V VDD = V 3 6 f Frequency Hz RL = kω For curves where VDD = V, all loads are referenced to 2. V. Figure 2 Figure 2 IOS I Short-Circuit Output Current ma 2 8 6 2 2 SHORT-CIRCUIT OUTPUT CURRENT SUPPLY VOLTAGE VO = VID = mv VID = mv 2 3 6 7 8 VDD ± Supply Voltage V Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 633 DALLAS, TEXAS 726 3

TYPICAL CHARACTERISTICS I IOS Short-Circuit Output Current ma 3 2 9 8 7 2 3 SHORT-CIRCUIT OUTPUT CURRENT FREE-AIR TEMPERATURE VID = mv VID = mv VO = VDD± = ± V V O Output Voltage V 3 2 OUTPUT VOLTAGE DIFFERENTIAL INPUT VOLTAGE VDD = V RL = kω VIC = 2. V 7 2 2 7 2 TA Free-Air Temperature C Figure 22 7 2 2 7 VID Differential Input Voltage µv Figure 23 V O Output Voltage V 3 OUTPUT VOLTAGE DIFFERENTIAL INPUT VOLTAGE VDD± = ± V VIC = V RL = kω Differential Gain V/ mv 3 2 VO(PP) = 2 V DIFFERENTIAL GAIN LOAD RESISTANCE VDD± = ± V VDD = V 3 7 2 2 7 VID Differential Input Voltage µv Figure 2 3 6 RL Load Resistance kω Figure 2 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. For curves where VDD = V, all loads are referenced to 2. V. 36 POST OFFICE BOX 633 DALLAS, TEXAS 726

TYPICAL CHARACTERISTICS TLC226x, TLC226xA AVD A VD Large-Signal Differential Voltage Amplification db 8 6 2 2 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN FREQUENCY VDD = V CL= pf Gain Phase Margin 8 3 9 φ om m Phase Margin 9 3 6 7 f Frequency Hz For curves where VDD = V, all loads are referenced to 2. V. Figure 26 AVD A VD Large-Signal Differential Voltage Amplification db 8 6 2 2 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN FREQUENCY VDD± = ± V CL = pf Gain Phase Margin 8 3 9 φ om m Phase Margin 9 3 6 7 f Frequency Hz Figure 27 POST OFFICE BOX 633 DALLAS, TEXAS 726 37

TYPICAL CHARACTERISTICS AVD Large-Signal Differential AVD Voltage Amplification V/mV 3 2 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION FREE-AIR TEMPERATURE VDD = V VIC = 2. V VO = V to V RL = kω RL = MΩ RL = kω AVD A VD Large-Signal Differential Voltage Amplification V/mV 3 2 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION FREE-AIR TEMPERATURE RL = MΩ RL = kω RL = kω VDD± = ± V VIC = V VO = ± V 7 2 2 7 2 TA Free-Air Temperature C 7 2 2 7 2 TA Free-Air Temperature C Figure 28 Figure 29 VDD = V OUTPUT IMPEDANCE FREQUENCY VDD± = ± V OUTPUT IMPEDANCE FREQUENCY zo z o Output Impedance Ω AV = AV = AV = zo z o Output Impedance Ω AV = AV = AV =. 2 3 6 f Frequency Hz Figure 3. 2 3 6 f Frequency Hz Figure 3 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. For curves where VDD = V, all loads are referenced to 2. V. 38 POST OFFICE BOX 633 DALLAS, TEXAS 726