Pupil Lumens and their impact on the choice of lighting

Similar documents
What is LED? What is LED? LED = Light emitting diode that will emit lights when it is given electricity

Visibility, Performance and Perception. Cooper Lighting

Retrofit Your City Street Lighting and Start Saving Thousands of Mega Watt s and CO2 Emissions

07-Lighting Concepts. EE570 Energy Utilization & Conservation Professor Henry Louie

Radiometry vs. Photometry. Radiometric and photometric units

Radiometry vs. Photometry. Radiometric and photometric units

CHAPTER VII ELECTRIC LIGHTING

Light-Emitting Diodes

Basic Lighting Terms Glossary (Terms included in the basic lighting course are italicized and underlined)

Work environment. Retina anatomy. A human eyeball is like a simple camera! The way of vision signal. Directional sensitivity. Lighting.

Basic Lighting Terminology

Basic lighting quantities

Vision Science I Exam 1 23 September ) The plot to the right shows the spectrum of a light source. Which of the following sources is this

LIGHT AND LIGHTING FUNDAMENTALS. Prepared by Engr. John Paul Timola

Lighting Systems Energy Efficiency based on Different Human Visual Conditions

Work environment. Vision. Human Millieu system. Retina anatomy. A human eyeball is like a simple camera! Lighting. Eye anatomy. Cones colours

20W TL 324 smd LED Warm White by Simplify-It

Radiometric and Photometric Measurements with TAOS PhotoSensors

Fundamentals of Radiometry & Photometry

How We See Color And Why CRI Matters

Digital Image Processing

Welcome, to Altech Academy!

LED T5 30cm Warm White by BS Ledlight

TECHNOLOGY INFORMATION SHEET

H22: Lamps and Colour

Vision and Color. Reading. Optics, cont d. Lenses. d d f. Brian Curless CSEP 557 Fall Good resources:

Vision and Color. Brian Curless CSEP 557 Fall 2016

Vision and Color. Reading. Optics, cont d. Lenses. d d f. Brian Curless CSE 557 Autumn Good resources:

Vision and Color. Brian Curless CSE 557 Autumn 2015

The human visual system

Photometry for Traffic Engineers...

Competitive Analysis, Color Rendering in White Light

5-Lighting. Background

Lighting: Basic Concepts

Photometry for Traffic Engineers...

Reading. Lenses, cont d. Lenses. Vision and color. d d f. Good resources: Glassner, Principles of Digital Image Synthesis, pp

Preventive Conservation and Energy conservation. Units of light, Perception of colour, Energy used by lighting.

Physics of Light. Light: electromagnetic radiation that can produce a visual sensation.

Here is a glossary of terms about Lighting that is great knowledge to understand when growing cannabis, whether indoors our outside in a greenhouse.

Lighting Terminologies Introduction

Vision and Color. Reading. The lensmaker s formula. Lenses. Brian Curless CSEP 557 Autumn Good resources:

Why is blue tinted backlight better?

OPTO 5320 VISION SCIENCE I

NFMS THEORY LIGHT AND COLOR MEASUREMENTS AND THE CCD-BASED GONIOPHOTOMETER. Presented by: January, 2015 S E E T H E D I F F E R E N C E

We have already discussed retinal structure and organization, as well as the photochemical and electrophysiological basis for vision.

Table 1. Typical Lumen Efficiencies for Selected Lighting Technologies Light Type Candle n/a 10 lumens 0.2 Kerosene Lamp (simple wick)

12/02/2017. From light to colour spaces. Electromagnetic spectrum. Colour. Correlated colour temperature. Black body radiation.

III: Vision. Objectives:

Basic Lighting Design Seminar

Vision. Biological vision and image processing

Maryland SHA LED Lighting. Brian Grandizio PE / Amol Ranade EIT

APPENDIX GLOSSARY OF TERMS

THE CANDELA - UNIT OF LUMINOUS INTENSITY

EC-433 Digital Image Processing

True energy-efficient lighting: the fundamentals of lighting, lamps and energy-efficient lighting

Future Electronics EZ-Color Seminar. Autumn Colour Technology

VISUAL PERFORMANCE UNDER CMH AND HPS LIGHTING SYSTEMS: NUMELITE PROJECT FINAL REPORT

Light, Color, Spectra 05/30/2006. Lecture 17 1

Light. Measurement. What is Photometrics? Presentation Outline. What is Photometrics? What will you get out of today s workshop?

The best retinal location"

It is important to use the right ballast to ensure the luminaire also ignites at low temperatures.

Visual Perception of Images

DIGITAL IMAGE PROCESSING LECTURE # 4 DIGITAL IMAGE FUNDAMENTALS-I

Reading. 1. Visual perception. Outline. Forming an image. Optional: Glassner, Principles of Digital Image Synthesis, sections

Color and perception Christian Miller CS Fall 2011

Traditional lighting technologies

Vision and Visibility. Human Eye. Eye Components. Cones and Rods. Typical Vision Impairments. CVEN 457 & 696 Lecture #3 Gene Hawkins

Photometry and Light Measurement

Illumination Guide. Choosing the right lighting to evaluate products

Why Lighting? Lecture 14. Why Lighting? Lighting Terminology Vision Visual Comfort Lighting Design. Why Lighting?

Westinghouse. Lamps 101

Human Visual System. Prof. George Wolberg Dept. of Computer Science City College of New York

CCVIP Early Intervention Pearls

SIM University Color, Brightness, Contrast, Smear Reduction and Latency. Stuart Nicholson Program Architect, VE.

A piece of white paper can be 1,000,000,000 times brighter in outdoor sunlight than in a moonless night.

Properties of LED considering museum lighting

HSL HUMAN SUN LIGHTING

Giving Shape to Ideas

Optics Review (Chapters 11, 12, 13)

Multimedia Systems and Technologies

MUNICIPAL OUTDOOR LIGHTING STANDARDS FOR THE CONTROL OF LIGHT POLLUTION

Led Spot MR16 10W Cold White by CDE Technology BV

LUXEON CoB with CrispWhite Technology

L E D L i g h t i n g G u i d e

Energy Saving Gets the Green Light Part 1

Calculating luminous flux and lighting levels for domesticated mammals and birds

Spatial Vision: Primary Visual Cortex (Chapter 3, part 1)

Colorimetry and Color Modeling

Light and Colour. Light as part of the EM spectrum. Light as part of the EM spectrum

Visual Perception. Overview. The Eye. Information Processing by Human Observer

ABSTRACT INTRODUCTION METHOD

Colour, Vision & Perception

Light sources. Daylight Electric light. Daylight source direct sunlight or diffuse skylight) Indirect light reflected or modified from its primary

Methods for Comparing Visual Illumination Between HID and LED Luminaires to Optimize Visual Performance in Low Light Environments

Color. Bilkent University. CS554 Computer Vision Pinar Duygulu

Is the fovea vision only photopic?

Led Spot MR16 10W Neutral White with 700 ma constant current driver by CDE Technology BV

Test 1: Example #2. Paul Avery PHY 3400 Feb. 15, Note: * indicates the correct answer.

Lighting Terminology Wolf Lake Drive, suite 105, Bartlett, TN O F

Energy Efficiency in Homes

Transcription:

Pupil Lumens and their impact on the choice of lighting A warehouse facility recently upgraded its lighting. Before the lighting improvement project it was illuminated by low CRI HPS lamps which were replaced with higher CRI lights. The luminous intensity before the retrofit was 35 foot candles which fell to only 25 foot candles after the retrofit project! A reduction of 28% in light intensity. Yet most users of the facility rated the new lights as being significantly brighter than the older lamps. This defies common sense and begs that a few questions should be answered. Why is it called a lighting upgrade project when the light intensity is actually falling? Why would a company pay to reduce the light intensity in its facilities where security and safety are very important? How can a setting that has lower light intensity appear brighter? The answers stem from the term Pupil Lumens. Before delving further it will help to clarify a few concepts 1) Luminous flux / Light output it is the amount of light produced by a lamp. It does not take into consideration the direction in which the light is sent. Most lighting devices produce light in a 360 degree sphere. This light must then be redirected by a set of optics to the area where it is needed. Light output is measured in lumens. 2) Illuminance / Light level It is the amount of light incident on a surface. It is measured in foot candles (FC) or lumens / square foot. 3) Luminance / Brightness It is the amount of light reflected by a surface. It is measured in foot lamberts.

The diagram below is meant to demonstrate each one of these terms. The human eye sees Luminance. It is NOT concerned with Luminous flux or illuminance. Thus, a dark colored surface absorbs most of the light and has a low luminance while a lighter colored surface reflects more of the light rays incident on it and has better luminance. How can LED lights help improve luminance? All the light output of an LED light is directed downward resulting in better Luminous Flux. This is only half the story. Compared to High Pressure Sodium (HPS) and Low Pressure Sodium (LPS) LED lights have a far higher Color Rendering Index (CRI). A higher CRI is achieved because light produced by LED bulbs is not monochromatic but has a richer palette of wavelengths of light. The incandescent bulb has a CRI of 100. However CRI values between 75 100 are considered to be excellent for general purpose lighting, 65 75 is considered good while anything less than 55 is considered

to be poor. When illuminated by a high CRI source surface colors of an object appear brighter thus resulting in a perception of higher Luminance. From physics to biology understanding the eyes response to Light Cones and Photopic vision- The central part of the eye is the fovea that is rich in a type fo cells called cones. Cones are responsible for color vision and are involved in vision during bright light. This is called Photopic vision. Rods and Scotopic vision-rods are sensitive to dim light and are active during low light intensity conditions. Rods cannot perceive color. Vision due to rods is black and white. Light measuring instruments measure Light intensity in Lumens considering only the response of the cones. Thus, the Lumens measured by a light meter are also called Photopic Lumens. In conditions of low light intensity entire vision is due to rod cells (scotopic vision). In medium light intensity (conditions as are often found under street lights and in homes) vision is called Mesopic vision and is due to both rods and cones. Using Photopic Lumens to describe light intensity in such an area grossly underestimates the light intensity as it totally ignores the contribution of rod cells to vision. Scientists at the Lawrence Berkley Laboratory (LBL) developed the concept of scotopic lumens. They developed a factor called P/S ratio. This ratio helps convert traditional Lumens into actual lumens perceived by the eye under mesopic light conditions and gives a more accurate estimate of the amount of light.

Pupil Lumens = Photopic Lumens * [S/P] 0.78 Here are some types of lights with their traditional and pupil lumens Watt Lumens Lumens/Watt (Photopic Lumens) S/P Ratio (correction factor) Pupil Lumens Pupil Lumens/Watt Source of Light Low Pressure 250 32500 130 0.2 9250 37 Sodium High Pressure 365 37000 101 0.62 25530 70 Sodium Metal Halide 455 36000 79 1.49 48960 108 T8 Fluorescent 36 2800 78 1.13 3080 85 (3000 K) LED Light 15 1500 100 1.9 2475 165 Factoring in the S/P ratios reveals why Low Pressure Sodium lamps that are apparently the most efficient with a photopic lumen output of 130 Lumens/ Watt appear so dull. They just don t have the spectrum of light needed to illuminate objects properly and elicit the optimum response from the human retina in mesopic lighting conditions.

This improvement in lumen perception is the reason why people and cities are opting for full spectrum lights. The current codes do not reflect scotopic lumens. Therefore, if you are planning to opt for LED lights as replacements for existing lights of a generation earlier it is prudent to avoid going by the published lumen output alone. The photopic lumen output of a light may only partially reflect the reality of the situation. Comparing absolute Photopic Lumens was alright as long as the same type of bulb was being compared. With differences in lighting technology there is a marked shift in wavelength composition and CRI. It is always better to try out energy efficient LED lights and experience their light quality first hand. There is another factor underlying the improved perception of light from high CRI LED lamps. Below is a diagram showing the relative luminous efficiency of different wavelengths of light. Thus, cones have maximum efficiency at about 550 nm (green light)while the efficiency of rods is at its peak at around 510 nm (blue-green light). HPS and LPS lamps that are poor in the green yellow and blue yellow wavelengths naturally have a lower impact on the eye s photoreceptors. While the current method of measuring Lumens care of the 550 nm peak it does little to tackle issues with the lower band of 510nm.

The Scotopic response is dependent on the blue light content of a light. Thus 6500 K fluorescent lights have better S/ P ratios than 3500 K tube lights. A look at the spectrum of light from different light sources can help clarify a lot of things. For this part of the analysis we decided to use cloud sourcing to improve the quality and reliability of the data. The images used to explain the information are not ours. All images are from open source resources (shared under the creative commons/ GNU free documentation license) available at www.flicker.com and www.commons.wikimedia.org. You always suspected that light from the HPS lamp was dull you were right. While the absolute lumens/watt produced by an HPS lamp is high it is the wavelength of the light that it produces that makes it appear dull. Here is the spectrum of the HPS lamp. (Photo credit testone22 http://www.flickr.com/photos/79262083@n00/342148466/sizes/l/in/photostream/)

We have already seen that the eye is most sensitive to wavelengths of 510 nm and 550 nm. These very wavelengths are scarce in the spectrum of an HPS lamp. The most prominent wavelengths in the spectrum of an HPS lamp are between 575 and 650 nm. The sensitivity of the eye to these wavelengths is 20 80% of the peak response. This is the reason why HPS lamps do not elicit the optimum response from the human eye and far fewer lumens from a good LED source can provide the same perception of brightness. Another way of understanding the limitations of the HPS lamp is to look at its light color spectrum. Here is a visual representation of the wavelengths of an HPS lamp. This spectrum was obtained by using a home made spectroscope. (Photo credit - Chris Heilman http://commons.wikimedia.org/wiki/file:spectrum-hp-sodium.jpg) The large gaps in the spectrum are obvious. The heaviest density is in the red yellow region that is not every effective in stimulating the eyes. Moreover, because the spectrum is patchy HPS lamps are not good at color rendering.

Here is the spectrum of an LED bulb. (Photo credit - Jason Morrison http://www.flickr.com/photos/jasonmorrison/3471835685/sizes/o/in/photostream/) This image was also obtained by using a spectroscope. The spectroscope had a design different from the one used to obtain the spectrum of the HPS lamp yet the results are unambiguous. The spectrum is complete with no gaps. The wavelengths of 510 and 550 nm that are the most effective in stimulating the eyes are well represented in the spectrum. The result is better color rendering and more effective stimulation of the eye. More research is continuing in this direction and it is hoped that future lighting standards will reflect the biological response to light in a more meaningful manner than they currently do.

To summarize When it comes to vision, it is Luminance (the amount of light reflected by a surface) that matters. Lumens is a unit of Illuminance that is used as a proxy for Luminance as usually the two are directly correlated. The incorporation of S/P ratios in Lumen/watt calculations completely changes the efficiency rating of lamps. LEDs that already have a high Lumen/ watt ratio fare even better when S/P ratios are taken into consideration while LPS and HPS lamps that are generally believed to have high Lumen/watt output fare poorly. Warehouses, retail stores, street lights, and commercial spaces can easily benefit from the higher S/P ratio of LED bulbs.