Transformer Testing & Maintenance Fundamentals. AVO Training Institute, Inc. 2018

Similar documents
7. INSPECTION AND TEST PROCEDURES

ELECTRICAL TESTING PLANS AND PROCEDURES FOR TRANSFORMERS-DRY TYPE, AIR-COOLED

Understanding the Value of Electrical Testing for Power Transformers. Charles Sweetser, OMICRON electronics Corp. USA

Understanding the Value of Electrical Testing for Power Transformers. Charles Sweetser - OMICRON

Substation Preventive Maintenance

O V E R V I E W O F T H E

Substation: From the Outside Looking In.

Hands-On Transformer Testing and Maintenance

FIELD ELECTRICAL TESTING SPX TRANSFORMER SOLUTIONS, INC.

Power Transformer Condition Assessment Based on Standard Diagnosis

Brown University Revised 2/1/2006 Facilities Design & Construction Requirements SECTION 16461C - DRY TYPE TRANSFORMERS

Training Fees 3,300$ per participant including Materials/Handouts, Tea/Coffee Refreshments & International Buffet Lunch.

TRANSFORMER OPERATIONAL PRINCIPLES, SELECTION & TROUBLESHOOTING

KNOW MORE ABOUT THE TRANSFORMERS. Glossary Transformers

Directional STANDARDS: Overcurrent Relaying

UNIVERSITY OF MISSOURI Liquid-Filled Utility Transformers 2016 Q1

TesTIng of Power. Transformers are the largest, most. feature. By brandon dupuis

CONSULTANT PROCEDURES & DESIGN GUIDELINES Liquid-Filled Utility Transformers UNIVERSITY OF MISSOURI

An Introduction to Power Quality

Understanding and Extracting Valuable Information from Basic and Advanced Power Transformer Testing Techniques

MGM Transformer. Vacuum Pressure Impregnated (VPI) Dry-Type Substation Transformer Specification Guide

S. C. Electric Cooperative s Specification for a Single-Phase, Single Bushing Overhead Distribution Transformer (Revised 10/2013)

Howard Smart Transformer Specification Guide

SECTION TRANSFORMERS

Back to the Basics Current Transformer (CT) Testing

Basic Principles and Operation of Transformer

Transformer Installation, Assembly & Testing

UBC Technical Guidelines Section Edition Medium-Voltage Transformers Page 1 of 5

RESIDUAL LIFE ASSESSMENT OF GENERATOR TRANSFORMERS IN OLD HYDRO POWER PLANTS

MV ELECTRICAL TRANSMISSION DESIGN AND CONSTRUCTION STANDARD. PART 1: GENERAL 1.01 Transformer

EA SA G U I D E EASA AR200 ELECTRICAL APPARATUS SERVICE ASSOCIATION, INC. FOR THE REPAIR OF POWER AND DISTRIBUTION TRANSFORMERS.

POWER TRANSFORMER SPECIFICATION, DESIGN, QUALITY CONTROL AND TESTING 18 MARCH 2009

DEFERRING REPLACEMENT OF A 600 MVA, 345GRD Y/138GRD Y/ 13.8 kv SHELL TYPE WESTINGHOUSE AUTOTRANSFORMER

EFFECETIVE TRANSFORMER CONDITION ASSESSMENT

EE188: Transformer Design, Construction, Testing & Maintenance

IMPORTANCE OF INSULATION RESISTANCE

WESTERN UNDERGROUND COMMITTEE GUIDE 2.6 (2.6/00/0868)

SINGLE PHASE BUCK & BOOST TRANSFORMERS INSTRUCTION MANUAL

EE059: Transformer Operation, Maintenance, Diagnosis & Testing

EPS AUSTRALIA SERVICES HV TESTING & COMMISSIONING CAPABILITY

Transformers: Basics, Maintenance, and Diagnostics

Power Measurements and Basic Electrical Diagnostic Tests

DP&L s Technical Requirements for Interconnection and Parallel Operation of Distributed Generation

SPECIFICATION FOR STEP UP TRANSFORMER 0.415/11Kv and (630KVA & 1000KVA)

NUMC Bid # MC Specification for Electrical Switchgear Services & Maintenance Program

UFGS (August 2008) UNIFIED FACILITIES GUIDE SPECIFICATIONS

Transformer Protection

Power Transformers Basics

NSP/ 007 / 006 Guidance on Substation Design: Transformer Transport, Delivery and Installation

TRANSFORMERS. Table of Contents

Specialists in HV and MV test and diagnostics. Testing in Substations

Reactor and inductor are names used interchangeably for this circuit device.

Section L5: PRE-ENERGIZATION TEST PROCEDURES FOR LOAD-ONLY ENTITIES AND TRANSMISSION-ONLY ENTITIES

UNIFIED FACILITIES GUIDE SPECIFICATIONS

PRE COMMISSIONING TESTS ON EQUIPMENT AT 33/11 KV SUB STATIONS. IR Values are to be read on the megger by meggering the Power transformer

Power Processor - Series 700F 10KVA to 150KVA

Transformer Winding Design. The Design and Performance of Circular Disc, Helical and Layer Windings for Power Transformer Applications

TIGHTENING TORQUE ON WOODEN CORE CLAMP (Nm) (STEEL FASTENER) 1 M M M M M

Transformer Factory Testing

Transformers handling and transport

Title: Southern States Type SLS Smart Sectionalizer Solid Dielectric Three Phase Sectionalizer. Product Specification Guide TABLE OF CONTENTS

SERVICE OFFERINGS FOR POWER SYSTEM STUDY & CONDITION MONITORING FOR STATIC EQUIPMENT

TRANSFORMER OPERATIONAL. Principles, Selection & Troubleshooting

Case Studies of Electric Power Equipment Diagnostics Using Acoustic Emission

Transformer Protection

Unit 3 Magnetism...21 Introduction The Natural Magnet Magnetic Polarities Magnetic Compass...21

The Basics of Insulation Testing

Commissioning Manual Distribution Transformers - Three-phase Oil Filled

HOW TO SAFE GUARD THE TRANSFORMER..???

Preface...x Chapter 1 Electrical Fundamentals

Distribution Transformers

Industrial Electrician Level 3

Substation Design Volume IV

Low Voltage Power Factor Correction Equipment Specifications Automatic, Automatic Detuned, Automatic Tuned

1ZSC AAJ en, Rev. 1. Vacuum on-load tap-changers, type VUBB Technical guide

Diagnostic testing of cast resin transformers

R Distribution Transformers. Mineral Oil-Immersed, Self-Cooled, 60 Hertz Voltages and Connections. Reference Data

Monitoring Solutions For Power Transformers, Reactors, Bushings and Instrument Transformers

SECTION PANELBOARDS

POWER TRANSFORMER. Failure Analysis & Troubleshooting. H.H. Sheik Sultan Tower (0) Floor Corniche Street Abu Dhabi U.A.E

TABLE OF CONTENT

SAMPLE. Determining the health of your power transformer begins with Transformer Clinic s SAMPLE testing programs.

DATA SHEET FOR LIGHTING TRANSFORMER APPD. BY VDV PROJECT NO

ISSN: [IDSTM-18] Impact Factor: 5.164

Tesar s.r.l. Installation and maintenance manual. Installation, use and maintenance. Manual. Page :1\20

INTERNATIONAL STANDARD

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT CODE & NAME : EE 1402 HIGH VOLTAGE ENGINEERING UNIT I

and cured to reduce hot spots and seal out moisture. The assembly shall be installed on vibration-absorbing pads.

Chapter 7 Conclusion 7.1 General

SECTION 16322B SUBSTATION TRANSFORMERS DRY-TYPE

ELECTRICAL EQUIPMENT. Inspection. H.H. Sheik Sultan Tower (0) Floor Corniche Street Abu Dhabi U.A.E

Substation transformers

LOVAG GENERAL INSTRUCTION G2 MEASUREMENT UNCERTAINTY. This instruction of a general nature and does not relate to specific standards.

SINGLE-PHASE VSV SWITCH

Single-Phase Transformation Review

POWER/DISTRIBUTION TRANSFORMER PERFORMANCE EVALUATION.

IN ELECTRICAL ENGINEERING - I C M E T CRAIOVA

Single-Phase Mini Pad-Mounted Transformer Specification: Energy+ MPDL

MODERN POWER TRANSFORMER PRACTICE BIBLIOGRAPHY

Transcription:

Transformer Testing & Maintenance Fundamentals 1 AVO Training Institute, Inc. 2018

Moderator n Ron Spataro AVO Training Institute Marketing Manager 2

Q&A n Send us your questions and comments during the presentation 3

Today s Presenter Mike Carter AVO Training Institute, Senior Instructor and Curriculum Advisor 4

Definition of a Transformers The transformer is a static electric device consisting essentially of two or more windings wound on the same core Electromagnetic induction transforms electric energy from one circuit to another circuit such that the frequency of the energy remains unchanged while the voltage and current usually change 5

Transformer Testing and Maintenance Standards Manufacturer s Instruction Manuals: It is important to follow the recommendations contained in the manufacturer s published data. Many of the details of a complete and effective testing procedure can be obtained from this source. 6

Transformer Testing and Maintenance Standards 7 NETA: The InterNational Electrical Testing Association (NETA) is an accredited standards developer for the American National Standards Institute (ANSI). NETA defines the standards by which electrical equipment is deemed safe and reliable. NETA is the leading source of specifications, procedures, testing, and requirements. NETA is not only for commissioning new equipment but for testing the reliability and performance of existing equipment.

Transformer Testing and Maintenance Standards Specifications and publications: ANSI/NETA MTS: The standard for maintenance testing specifications for electrical power equipment and systems. ANSI/NETA ATS: The standard for the acceptance testing specifications for electrical power equipment systems. 8

Transformers, Dry Type, Air-Cooled, Large n Dry Type, Air Cooled, Large Transformer 9

Transformers, Dry Type, Air-Cooled, Large n Transformers, Dry Type, Air-Cooled, Large n This category consists of power transformers with windings rated higher than 600 volts and low-voltage transformers larger than 167 kva single-phase or 500 kva three-phase. n Visual and Mechanical Inspection n 1. Inspect physical and mechanical condition including evidence of moisture and corona. n 2. Inspect anchorage, alignment, and grounding. 10

Transformers, Dry Type, Air-Cooled, Large n Visual and Mechanical Inspection n 3. Prior to cleaning the unit, perform as-found tests, if required. n 4. Clean the unit. n 5. (Optional) Verify that control and alarm settings on temperature indicators are as specified. n 6. Verify that cooling fans operate correctly. 11

Transformers, Dry Type, Air-Cooled, Large n Visual and Mechanical Inspection n 7. Inspect bolted electrical connections for high resistance using one or more of the following methods: n n n 1. Use of a low-resistance ohmmeter. 2. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer s published data or NETA Table 100.12. 3. Perform a thermographic survey. 12

Transformers, Dry Type, Air-Cooled, Large n Visual and Mechanical Inspection n 8. Perform specific inspections and mechanical tests as recommended by the manufacturer. n 9. Perform as-left tests. n 10. Verify that as-left tap connections are as specified. n 11. Verify the presence of surge arresters. n Electrical Tests n 1. Perform resistance measurements through bolted connections with a low-resistance ohmmeter. 13

n Electrical Tests n 2. Perform insulation-resistance tests winding-to-winding and each winding-to-ground. Apply voltage in accordance with manufacturer s published data. In the absence of manufacturer s published data, use NETA Table 100.5. Calculate polarization index. n 3. Perform insulation power-factor or dissipation-factor tests on all windings in accordance with the test equipment manufacturer s published data. n 4. (Optional) Perform a power-factor or dissipation-factor tip-up test on windings rated greater than 2.5 kv. 14 Transformers, Dry Type, Air-Cooled, Large

Transformers, Dry Type, Air-Cooled, Low-Voltage, Large ANSI/NETA MTS 2015 Table 100.5 Transformer Insulation Resistance 15

n Electrical Tests Transformers, Dry Type, Air-Cooled, Large n 5. Perform turns-ratio tests at the designated tap position. n 6. Perform an excitation-current test on each phase. n 7. (Optional) Measure the resistance of each winding at the designated tap position. n 8. Measure core insulation resistance at 500 volts dc if the core is insulated and if the core ground strap is removable. 16

Transformers, Dry Type, Air-Cooled, Low-Voltage, Large n Test Values Electrical Typical TTR Test 17

n Electrical Tests Transformers, Dry Type, Air-Cooled, Large n 9. (Optional) Perform an applied voltage test on all highand low-voltage windings-to-ground. See ANSI/IEEE C57.12.91, Sections 10.2 and 10.9. n 10. Verify correct secondary voltage phase-to-phase and phase-to-neutral after energization and prior to loading. n 11. Test surge arresters. (Two of the most common tests to perform in the field on surge arresters are the power factor test and infrared analysis.) 18

Transformers, Dry Type, Air-Cooled, Large n Test Values Visual and Mechanical n 1. Alarm, control, and trip circuits from temperature and level indicators as well as pressure relief device and fault pressure relay should operate within manufacturer s recommendations for their specified settings. n 2. Cooling fans and/or pumps should operate. 19

Transformers, Dry Type, Air-Cooled, Large n Test Values Visual and Mechanical n 3. Compare bolted connection resistance values to values of similar connections. Investigate values which deviate from those of similar bolted connections by more than 50 percent of the lowest value. n 4. Bolt-torque levels should be in accordance with manufacturer s published data. 20

Transformers, Dry Type, Air-Cooled, Large n Test Values Visual and Mechanical n 5. Results of the thermographic survey shall be in accordance with Section 9. n 6. Tap connections shall be left as found unless otherwise specified. n Test Values Electrical n 1. Compare bolted connection resistance values to values of similar connections. Investigate values which deviate from those of similar bolted connections by more than 50 percent of the lowest value. 21

Transformers, Dry Type, Air-Cooled, Large n Test Values Electrical n 2. Minimum insulation-resistance values of transformer insulation should be in accordance with manufacturer s published data. In the absence of manufacturer s published data, use Table 100.5. Values of insulation resistance less than this table or manufacturer s recommendations should be investigated. The polarization index shall be compared to previously obtained results and should not be less than 1.0. 22

Transformers, Dry Type, Air-Cooled, Large n Test Values Electrical n 3. CH and CL power-factor or dissipation-factor values will vary due to support insulators and bus work utilized on dry transformers. The following should be expected on CHL power factors: Power transformers: 2.0 percent or less, Distribution transformers: 5.0 percent or less. Consult transformer manufacturer s or test equipment manufacturer s data for additional information. 23

Transformers, Dry Type, Air-Cooled, Large n Test Values Electrical n 4. Power-factor or dissipation-factor tip-up exceeding 1.0 percent should be investigated. n 5. Turns-ratio test results should not deviate more than one-half percent from either the adjacent coils or the calculated ratio. n 6. The typical excitation current test data pattern for a three-legged core transformer is two similar current readings and one lower current reading. 24

Transformers, Dry Type, Air-Cooled, Large n Test Values Electrical n 7. Temperature-corrected winding-resistance values should compare within one percent of previously-obtained results. n 8. Core insulation-resistance values should be comparable to previously-obtained results but not less than one megohm at 500 volts dc. 25

Transformers, Dry Type, Air-Cooled, Large n Test Values Electrical n 9. AC dielectric withstand test voltage shall not exceed 65 percent of factory test voltage for one-minute duration. DC dielectric withstand test voltage shall not exceed 100 percent of the ac rms test voltage specified in ANSI C57.12.91, Section 10.2 for one-minute duration. If no evidence of distress or insulation failure is observed by the end of the total time of voltage application during the dielectric withstand voltage test, the test specimen is considered to have passed the test. 26

Transformers, Dry Type, Air-Cooled, Large n Test Values Electrical n 10. Phase-to-phase and phase-to-neutral secondary voltages should be in agreement with nameplate data. n 11. Test results for surge arresters shall be in accordance with Section 7.19. 27

n Liquid Filled Transformer Transformers, Liquid-Filled 28

n Visual and Mechanical Inspection Transformers, Liquid-Filled n 1. Inspect physical and mechanical condition. n 2. Inspect anchorage, alignment, and grounding. n 3. Verify the presence of PCB labeling. n 4. Prior to cleaning the unit, perform as-found tests, if required. n 5. Clean bushings and control cabinets. 29

n Visual and Mechanical Inspection Transformers, Liquid-Filled n 6. (Optional) Verify operation of alarm, control, and trip circuits from temperature and level indicators, pressure relief device, and fault pressure relay n 7. Verify that cooling fans and/or pumps operate correctly. 30

n Visual and Mechanical Inspection Transformers, Liquid-Filled n 8. Inspect bolted electrical connections for high resistance using one or more of the following methods: n n n 1. Use of a low-resistance ohmmeter. 2. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method. 3. Perform a thermographic survey. 31

n Visual and Mechanical Inspection Transformers, Liquid-Filled n 9. Verify correct liquid level in tanks and bushings. n 10. Verify that positive pressure is maintained on gasblanketed transformers. n 11. Perform inspections and mechanical tests as recommended by the manufacturer. n 12. Test load tap-changer. 32

n Visual and Mechanical Inspection Transformers, Liquid-Filled n 13. Verify the presence of transformer surge arresters. n 14. Perform as-left tests. n 15. Verify de-energized tap-changer position is left as specified. 33

Transformers, Liquid-Filled n Electrical Tests n 1. Perform resistance measurements through bolted connections with a low-resistance ohmmeter. n 2. Perform insulation-resistance tests, winding-to-winding and each winding-to-ground. Apply voltage in accordance with manufacturer s published data. In the absence of manufacturer s published data, use Table 100.5. Calculate polarization index. 34

Transformers, Liquid-Filled n Electrical Tests n 3. Perform turns-ratio tests at the designated tap position. n 4. Perform insulation power-factor or dissipation-factor tests on all windings in accordance with test equipment manufacturer s published data. n 5. Perform power-factor or dissipation-factor tests on each bushing equipped with a power-factor/capacitance tap. n In the absence of a power-factor/capacitance tap, perform hot-collar tests. These tests shall be in accordance with the test equipment manufacturer s published data. 35

Transformers, Liquid-Filled n Electrical Tests n 6. Perform excitation-current tests in accordance with the test equipment manufacturer s published data. n 7. Measure the resistance of each winding at the designated tap position. n 8. (Optional) If the core ground strap is accessible, remove and measure the core insulation resistance at 500 volts dc. n 9. (Optional) Measure the percentage of oxygen in the gas blanket. 36

Transformers, Liquid-Filled n Electrical Tests n 10. Remove a sample of insulating liquid in accordance with ASTM D 923. The sample shall be tested for the following. n 37 1. Dielectric breakdown voltage: ASTM D 877 and/or ASTM D 1816 n 2. Acid neutralization number: ANSI/ASTM D 974 n 3. (Optional) Specific gravity: ANSI/ASTM D 1298 n 4. Interfacial tension: ANSI/ASTM D 971 or ANSI/ASTM D 2285

Transformers, Liquid-Filled n Electrical Tests n 5. Color: ANSI/ASTM D 1500 n 6. Visual Condition: ASTM D 1524 n 7. (Optional) Water in insulating liquids: ASTM D 1533. (Required on 25 kv or higher voltages and on all siliconefilled units.) n 8. (Optional) Measure power factor or dissipation factor in accordance with ASTM D 924. 38

Transformers, Liquid-Filled n Electrical Tests n 11. Remove a sample of insulating liquid in accordance with ASTM D 3613 and perform dissolved-gas analysis (DGA) in accordance with ANSI/IEEE C57.104 or ASTM D3612. n 12. Test the instrument transformers. n 13. Test the surge arresters. n 14. Test the transformer neutral grounding impedance devices. 39

Transformers, Liquid-Filled n Test Values Visual and Mechanical n 1. Alarm, control, and trip circuits from temperature and level indicators as well as pressure relief device and fault pressure relay should operate within manufacturer s recommendations for their specified settings. n 2. Cooling fans and/or pumps should operate. n 3. Compare bolted connection resistance values to values of similar connections. Investigate values which deviate from those of similar bolted connections by more than 50 percent of the lowest value. 40

Transformers, Liquid-Filled n Test Values Visual and Mechanical n 4. Bolt-torque levels should be in accordance with manufacturer s published data. n 5. Results of the thermographic survey. n 6. Liquid levels in the transformer tanks and bushings should be within indicated tolerances. n 7. Positive pressure should be indicated on pressure gauge for gas-blanketed transformers. 41

n Test Values Electrical Transformers, Liquid-Filled n 1. Compare bolted connection resistance values to values of similar connections. Investigate values which deviate from those of similar bolted connections by more than 50 percent of the lowest value. 42

n Test Values Electrical Transformers, Liquid-Filled n 2. Minimum insulation-resistance values of transformer insulation should be in accordance with manufacturer s published data. In the absence of manufacturer s published data, use Table 100.5. Values of insulation resistance less than this table or manufacturer s recommendations should be investigated. The polarization index shall be compared to previously obtained results and should not be less than 1.0. 43

n Test Values Electrical Transformers, Liquid-Filled n 3. Turns-ratio test results should not deviate by more than one-half percent from either the adjacent coils or the calculated ratio. n 4. Maximum power-factor/dissipation-factor values of liquid-filled transformers corrected to 20 C should be in accordance with the transformer manufacturer s published data. 44

n Test Values Electrical Transformers, Liquid-Filled n 5. Investigate bushing power-factor and capacitance values that vary from nameplate values by more than ten percent. Hot-collar tests are evaluated on a milliampere/ milliwatt loss basis, and the results should be compared to values of similar bushings. n 6. Typical excitation-current test data pattern for a threelegged core transformer is two similar current readings and one lower current reading. 45

n Test Values Electrical Transformers, Liquid-Filled n 7. Temperature corrected winding-resistance values should compare within one percent of previously obtained results. n 8. Core insulation values should be comparable to previously obtained results but not less than one megohm at 500 volts dc. n 9. Investigate the presence of oxygen in the nitrogen gas blanket 46

n Test Values Electrical Transformers, Liquid-Filled n 10. Insulating liquid values should be in accordance with NETA Table 100.4. n 11. Evaluate results of dissolved-gas analysis in accordance with ANSI/IEEE Standard C57.104. n 12. Results of electrical tests on instrument transformers shall be in accordance with NETA Section 7.10. 47

n Test Values Electrical Transformers, Liquid-Filled n 13. Results of surge arrester tests shall be in accordance with NETA Section 7.19. n 14. Compare grounding impedance device values to previously obtained results. In the absence of previously obtained values, compare obtained values to manufacturer s published data. 48

Summary n All transformers regardless of design, voltage class and capacity need to be maintained. n Maintenance should be as per the manufacturer s requirements and/or recognized standards such as ANSI/ NETA MTS. n Using repeatable maintenance standards will allow dependable trending which will aid in the prediction of the remaining life of valuable equipment. 49

Transformer Courses Transformer Maintenance & Testing 4.5 Days 3.6 CEUs Advanced Transformer Maintenance & Testing 4.5 Days 3.6 CEUs www.avotraining.com Click for Course Catalog Download Power Quality & Harmonics 4 Days 3.2 CEUs 50

Save the Date for Our Next Webinar Tuesday June 26, 2018 at 1pm 2pm CDT Title: "A field technician basics of transformer fundamentals " Presented by: Mike Carter AVO Training Institute, AVO Training Specialist 51

Questions? After more than 50 years, AVO Training remains a global leader in safety and maintenance training for the electrical industry. We deliver an engaging, hands-on experience for our clients in a professional, real-world environment. We strive to provide industry relevant courses in a practical and flexible learning environment through an ongoing commitment to quality service, integrity, instruction, and client satisfaction. Our goal is to convey practical job skills and career development for our clients and students by saving lives through a world-class learning experience. 52 AVO Training Institute, Inc. 2018