DC PV Arc fault detection Unit

Similar documents
1. Executive Summary. 2. Introduction. Selection of a DC Solar PV Arc Fault Detector

Taking the Nuisance Tripping out of AFCI - Useful Changes to Testing of PV Inverters

CP /240-MC4 User Manual

AU INSTALLATION INSTRUCTIONS. Revision B1 Rapid City, SD, USA, 02/2010 II_201A-AU_B1

Guidelines to Using a Three Phase Voltage Monitor

Installation/User Manual

CAMTO. Arc detecting relay. system. January Revised August D D1200

APQline Active Harmonic Filters. N52 W13670 NORTHPARK DR. MENOMONEE FALLS, WI P. (262) F. (262)

Tel: Fax:

Photovoltaic DC Arc Fault Detector Testing at Sandia National Laboratories

BEA s digital inductive single loop solution

USERS GUIDE MATRIX P/N SINGLE DIGITAL INDUCTIVE LOOP SENSOR

TOSHIBA International Corp

USERS GUIDE MATRIX2 DIGITAL INDUCTIVE LOOP SENSORS

Installation requirements

Operation Manual. Congratulations on purchasing your high quality AIMS Power pure sine inverter!

2. Determine the number of Modules/Microinverters required. (1134 modules is 2 less than 250 KW but works well with max comm.

1 SAFETY INSTALLATION OPERATION COMPONENTS FAULT DIAGNOSTICS FUNCTIONS TECHNICAL SPECIFICATIONS...

CM-IWM.11 Insulation monitoring relay

Electronic Circuit Breaker with reset input ESS20-1..

APS M1P Single-phase Micro-inverter Installation and User Manual

Short form User Manual

AC/DC. Monitoring Technique. VARIMETER IMD Insulation monitor RN 5897/300

Sine Wave Power Inverter GD150/GD300 Series User s Manual

Owner s Manual S10 SERIES ELECTRONIC STEP CONTROLLER WITH VERNIER CONTROL

Traditional PWM vs Morningstar s TrakStar MPPT Technology

MODEL 421 Over/Under Motor Load Monitor

LAN/Length Cable Tester TCT-2690 Pro

INSTALLATION AND MAINTENANCE MANUAL FOR GROUND MONITOR GM-250 COPYRIGHT 1983 AMERICAN MINE RESEARCH, INC.

OPERATOR S INSTRUCTION MANUAL M-2625 AUTO RANGING DIGITAL MULTIMETER

TS-700/1000 INVERTER Instruction Manual

Sunways Solar Inverters NT 2500, NT 3000, NT 3700, NT 4200 and NT 5000 AC output: 2.5 to 5.0 kw

SECTION 16483D ADJUSTABLE FREQUENCY DRIVE - MICRODRIVE (MVX <10-HP)

GROUNDED ELECTRICAL POWER DISTRIBUTION. Excerpt from Inverter Charger Series Manual BY: VIJAY SHARMA ENGINEER

HAWK5000 Operators Manual

Owner s Manual S5 SERIES ELECTRONIC STEP CONTROLLER WITH VERNIER CONTROL

MS2109A AC/DC Clamp Meter. User Manual. Contents

APPENDIX V PRODUCT SHEETS

SPECIFICATION EP 1000/1500/2000 Series

Calculating AC Line Voltage Rise for IQ-Series Micros with Q Cable

TEST REPORT DIN V VDE V :2006 Automatic disconnecting device

Traditional PWM vs. Morningstar s TrakStar MPPT Technology

Application Note # 5438

APS M1P Single-phase Micro-inverter Installation and User Manual

Earth Fault Indicator EFI-BLZ-50 User Manual

SET Installation and Operating Instructions. Level switch for two sensors

CD-Pxx-00-0 Series Duct Mount CO 2 Transmitter

Multilin DGT. Distributed Generation Trip Control Fast & Wireless Trip of Distributed Generators. Control. Advanced Communications

DP&L s Technical Requirements for Interconnection and Parallel Operation of Distributed Generation

A53106 SERIES DC-TO-DC CONVERTER

Agenda. 1. Inverter technology. 2. Monitor system. 3. System application. 4. Error Codes and trouble-shooting

Calculating AC Line Voltage Drop for S230 Microinverters with Engage Cables

GFL-1000 User Manual Ground Fault Locator

Electronic Circuit Breaker ESS1 for System SVS1

MS8250A/B OPERATION MANUAL MS8250A. Hz% FUNC REL RANGE REL HOLD OFF 10A. Hz% A NCV. Hz% COM. A ma 10A FUSED 600V CAT IV.

Electronic Circuit Breaker ESS20-0..

SureTest Model ST-1THD & ST-1THDC Instructions

SPECIFICATION, CONTROLS AND ACCESSORIES

IMPORTANT: THIS DEVICE MUST BE PROFESSIONALLY INSTALLED READ AND UNDERSTAND ALL INSTRUCTIONS BEFORE BEGINNING INSTALLATION

IMPORTANT! Please take the time to read through the manual before you start to install/program your equipment.

AMERITRON SDC-102 Screwdriver Antenna Controller

TC 34 MICROPROCESSOR-BASED DIGITAL ELECTRONIC PULSE COUNTER. OPERATING INSTRUCTIONS Vr. 02 (ENG) - cod.: ISTR-MTC34ENG02

Distribution/Substation Transformer

RISH EM 3490 SS Kilowatt Hour Energy Meter With Rs485 RISH EM 3490 SS. Application : Product Features: Indication: Pulse Indication:

SRA 2250/6 RESISTOR ARS-01 RESISTOR AUTOMATICS

Installation Manual DOC R1 Date: 05/27/99. Plug-in Meter Installation Manual

I n s ta l l at i o n M a n u a l f o r T E D P r o H o m e T E D P r o L i t e A B C Rev 4.0

REK 510 Current injection device for earth-fault protection of a synchronous machine rotor. User s Manual

SECTION LOW VOLTAGE ACTIVE HARMONIC FILTER SYSTEM NEMA 1 ENCLOSED

INSTALATION, OPERATION & MAINTENANCE MANUAL. PA-1001A Series SIGNAL CONDITIONER & CONVERTORS

Low Pass Harmonic Filters

OPERATING INSTRUCTIONS FOR SYMCOM S INFORMER DIAGNOSTIC TOOL

Important Safety Instructions

TECHNICAL PRODUCT DATASHEET

High Frequency SineWave Guardian TM Filter

MFJ ENTERPRISES, INC.

Thermistor motor protection relays

CS-200. PORTABLE TRAFFIC LIGHT CONTROLLER (Software 1.05) OPERATION AND SERVICE MANUAL

DEIF A/S. Insulation monitor. Type SIM-Q

Application Note: String sizing Conext CL Series

1 INTRODUCTION ORDER CODE / INFORMATION

DUAL OUTPUT AC CURRENT/VOLTAGE TRANSDUCER

SAFETY AND HEALTH STANDARD ELECTRICAL GROUNDING Effective Date: 07/17/10 Standard: Document Number: KUCSH0039 Rev: 4

GRID-CONNECTED SOLAR PV SYSTEMS. Design Guidelines for Accredited Installers NO BATTERY STORAGE. January 2013 (Effective 1 February 2013)

USER MANUAL 600A AC Clamp Meter + NCV Model MA610

DC Current Transducers

Section 3. Test Procedures

ENERGY SAVINGS THROUGH POWER CONDITIONING WITH THE PowerGUARD SYSTEM

Alternating Current Power

LINCO MEASUREMENT MODEL CP-2B MASTER METER PROVER COUNTER INSTRUCTION MANUAL

DEIF A/S. Insulation monitor. Type SIM-Q/SIM-Q LF

FG2 TWO-CHANNEL DETECTOR

PLOT PLAN INSTRUCTIONS ROOF MOUNT SOLAR AN ACCURATE PLOT PLAN IS NECESSARY TO PROCESS YOUR PERMIT

Operating Instructions

Operating Instructions for SymCom s INFORMER MS EDITION DIAGNOSTIC TOOL

POWER DELEGATOR SERIES 7200A POWER DISTRIBUTION UNIT WITH POWER CONDITIONING GENERAL SPECIFICATIONS

Installation and Operating Instructions. Power IT Power Factor Controller RVC

Heritage MedCall. Sentry E-Call Model HM-527 Resident Host Panel

System Components and Accessories

Com-Trol ADV-6000 Trouble Shooting Guide Click on red text to go to that page in guide

Transcription:

DC PV Arc fault detection Unit Installation, usage and other information Author: Peter v. Galen, Product Manager Date: 15-09-2014 Revision: B

1. Introduction The National Electrical Code 2011 states arc-fault protection requirements. The NEC 2011 states that all rooftop installations with a DC voltage over 80V, need to be equipped with a means of DC Arc fault protection. The new NEC 2014 expands this requirement to ground mounted PV installations. The main reason for this requirement in the NEC is improved safety, in specific the prevention of fires generated by arcing events. Because of this requirement Santon has developed the arc fault detection unit (ADU). The Arc-fault Detection Unit (ADU) is a detection device for detecting series arcing in photovoltaic systems. Arcing in electric systems can cause fires. In DC photovoltaic systems the arc will be even more dangerous than in an AC system as the continuous supply of current will continue to feed the arc. The arc will become more intense and hotter, eventually causing fire or burn damage on other system components if it is not detected and extinguished by interrupting the current. This paper describes relevant information on arc fault detection in general and the best practices, usage of the Santon Arc-fault detection unit. 2. General information - UL standard The UL standard applicable to the Arc fault circuit interruption as required by the National Electric Code is the UL 1699 - Sub B. This standard embeds the definitions, requirements and testing of Arc fault circuit interruption solutions. There are three of devices indicated in the standard. The Arc fault circuit interrupter (PV AFCI) which includes the detection as well as the interruption of the circuitry, the Arc fault detector (PV AFD) which includes only the detection and the Arc fault interruption device (PV ID) which includes only the interruption. Each of the devices mentioned in the standard can be listed as a type 1 device (series arcing) or as a type 2 device (series and parallel arcing). 2.1 Requirements In the NEC 2011 and NEC 2014 the required type of Arc fault circuit interruption is a type 1 according to UL1699 sub B. The UL 1699 sub B explains that four types of arcs need to be detected. The arcing conditions that need to be mitigated are: - 300W within 2.0 seconds with a current of 7A and a gap of 1.6mm - 500W within 1.5 seconds with a current of 7A and a gap of 4.8mm - 650W within 1.2 seconds with a current of 14A and a gap of 3.2mm - 900W within 0.8 seconds with a current of 14A and a gap of 6.4mm Besides these arcing tests, nuisance tripping testing is also required. However the UL standard does not cover all the real world conditions to which a device will be subjected. 2

3. General information Arc detection 3.1 Typical system Typical photovoltaic (PV) systems consist of a series connection of multiple solar panels, called a PV string, which typically have a voltage of up to 1000Vdc. These PV strings can also be connected in parallel, called a PV array, to increase the current. These PV strings or PV arrays are connected to a PV Inverter which converts the generated DC power of the PV panels to AC power to feed into the grid. Figure 1 shows a typical setup of a simple PV system. A lot of different setups are possible. Figure 1: Typical PV system 3.2 Arc detection performance To understand how the performance of detection devices is influenced throughout the PV installation, it is good to understand what arcing is and how this can be detected. 3.2.1 What is Arcing An electrical arc is current that flows from one conductor to another when there is a gap between these two conductors. The arc generates heat which can create fire. There are two types of arcing events that can occur in PV installations: - Series arcing (arcing between two conductors in line with a load) e.g. this is possible when connectors or other cable connections are not fixed properly. - Parallel arcing (arcing between two conductors in parallel to a load) e.g. this is possible when the insulation of two conductors of opposite polarity are damaged and current starts flowing from one to the other. 3.2.2 How to detect arcing? All electrical circuits produce unintended frequencies/signals, called noise. This noise can best be described as random fluctuations of an electrical signal. The noise can be generated by various electronic devices with several different effects and the noise can vary greatly. All forms of arcing also introduce additional noise in the electrical circuit. In a PV system the noise is detectable as different frequencies on top of the normal DC current/voltage. An arc fault detection/protection unit needs to be able to distinguish the normal background noise of the system and 3

an arcing event. The technical solution to do this can vary, but basically they all come down to analysis of the frequencies. In Ffigure 2 it is shown how the frequency spread can be in a simple two string PV installation. Figure 2: Typical noise in 5kW installation (frequency domain) 3.2.3 Influences on detection The task of a protection/detection device is to detect the arcing event in the mix of all frequencies in the system. The inverter generates a lot of noise in a PV system, in the process of constant searching for the Maximum Point of Power (MPP). The way the inverters search for (optimal) MPP varies from manufacturer to manufacturer. Next to the MPP tracking process, the inverter also can generate additional excessive noise during start up phase, or during the self test of the inverter, or during high solar irradiance at/over the maximum input of the inverter, or during cloudy conditions. To accurately detect an arcing event all these possible disturbances generated must be considered to avoid false tripping of a protection/detection device. Next to the noise generated by an inverter, the detection range (distance) between the arcing event and the detection device is important. Arc detection works best when there is a high signal-to-noise ratio. The greater the distance between the arc protection/detection device and the arcing event, the lower the signal-to-noise ratio will be. The arc will be masked by the background noise. The UL 1699 sub B has incorporated tests that are intended to determine if the AFCI or AFD is functioning correctly (detection). The tests consist of detection of the earlier stated arcing wattages near the device as well as at 66 meters (200 feet) from device. But also tests are included to determine if the device is subject to false tripping (detection when there is no arcing event). The tests consist of testing the functioning of the device when installed in combination with an inverter that can create disturbances that could mask the arcing event. But also the device may not detect the switching of an interrupting device, like a DC isolator. 3.3 Santon Arc Fault detection Unit The Santon arc fault detection unit (ADU) is developed, tested and certified in accordance with the requirements of the UL1699 sub B and the NEC 2011/2014. The Santon ADU is UL recognized as a PV Arc Fault Detection device - type 1. This means the Santon ADU will detect series arcing. The correct follow up in case of the detection of an arcing event must consist of disconnecting the DC current flow from the PV modules to the PV inverter. 4

4. Santon ADU usage 4.1 Intended use The Santon ADU is intended to be used as a string level detector, but can be used as array and inverter level detector. Each system will influence the effectiveness of the detection device. Because of this there are some guidelines to be taken into account when using the ADU in each system. Basically the ADU can be installed in either the positive (recommended position) or negative conductor. In general one ADU per electrical circuit is needed, as the frequencies in the system will travel through all connected cabling. Based on measurements performed by the ADU on this conductor, the unit can determine if an arcing event is taking place. In case of an arcing event the ADU will trip and give an acoustic signal, a flashing red LED as visual indication and a relay state change (alarm output). This output can be used to perform the correct follow up of the arcing event. Again, please note that it is advised that there is only one ADU needed per MPP tracker. If there is only 1 MPP tracker in the inverter all the string inputs will be connected internally resulting in the noise signal being present in all strings as well. Therefore only one detection device is advised in this type of application 4.2 String level detector 4.2.1 Usage For the usage of the ADU as a string level detector it is advised to install the ADU near the PV inverter. The ADU will then be accessible in case of an arcing event. Also the follow up signal, in case of an arcing event, can be easily connected into the inverter or switch off device. 4.2.2 Installation Typical for this type of installations is a relative low current (approx. maximum 8A). Figure 3 shows two possible setups with the ADU as string level detector. - Two string inputs on a 2 MPPT inverter two separate strings with ADU s in each positive conductor. - Two string inputs on a 1 MPPT inverter two strings combined in the inverter with ADU in positive conductor string 1. Figure 3: Locations for arc fault protection According to the UL standard the detectable distance is 66 meters (up- or downstream) between the ADU and the arcing event. If distances in the installation is greater than 66 meters it is allowed to place multiple ADU s in series, although this could mean both ADU will detect an arcing event. 5

4.3 Array level detector 4.3.1 Usage For the usage of the ADU as an array level detector it is advised to install the ADU near the PV inverter or in the unit where the strings are combined (combiner/junction box). If the ADU is located near the inverter, the ADU will then be accessible in case of an arcing event. Also the follow up in case of an arcing event can be connected easily to the inverter. If the ADU is located in the combiner box, the ADU is not always accessible in case of an arcing event. The follow up must then be handled locally by means of an automated interrupting device or the inverter. 4.3.2 Installation Typical for this type of installations is a high current (e.g. 16A). Figure 4 shows some possible setups with the ADU as array level detector. - Two arrays on a 2 MPPT inverter two times two strings in parallel connected to a 2 MPPT inverter. An ADU in each positive conductor to each MPPT input is required. - One arrays on a 1 MPPT inverter four single strings in parallel connected to a 1MPPT inverter. An ADU in the positive conductor to the MPPT input is required. - Two Combiner boxes on a central 2MPPT inverter two times two strings in parallel connected to a 2 MPPT inverter. In each positive conductor one ADU per MPPT is required. e.g. ADU s are integrated in a combiner box. - One Combiner box on a central 1MMPT inverter four single strings in parallel connected to a 1 MPPT inverter. One ADU in the positive conductor to the MPPT input is required. e.g. the ADU is integrated in a combiner box. Figure 4: Locations for arc fault detection As shown in Figure 4 when the current rating of the array is higher than the allowed 40A of the ADU, it is also allowed to place an ADU in the incoming string before the junction in a junction box. According to the UL standard the detectable distance is 66 meters (up- or downstream) between the ADU and the arcing event. If distances in the installation is greater than 66 meters it is allowed to place multiple ADU s in series, although this could mean both ADU will detect an arcing event. 6

4.4 Inverter level detector 4.4.1 Usage The ADU can also be used inside the inverter. The inverter manufacturer shall then keep in mind the advices of one ADU per MPPT and the other technical details as stated in the manual. 4.4.2 Installation The setup for the ADU inside the inverter is very dependent on the inverter itself. Figure 5: Locations for arc fault detection 4.5 ADU Operation 4.5.1 Powering up After switching on power, the Arc fault detection unit will start up with a self test (small beep) and the green LED (Power) will be blinking. After finishing the self test the green LED will be on continuously. 4.5.2 Normal operation The arc fault detection unit will monitor the current flow and analyze the signal measured to determine if there is an arc fault situation. It will do this continuously until an arc fault occurs and/or the DC power supply is removed. 4.5.3 Arcing event detected In case an arc fault is detected the ADU will signal this with a blinking red LED (fault). At the same time a buzzer will start beeping for 30 seconds (after 30 seconds the buzzer will only beep once a minute). The alarm output will change state, ensuring that any connected actuator gets the signal to isolate the DC supply between the inverter and the solar panels. 4.5.4 Reset of arcing event The arc fault situation can be resolved by briefly pressing the reset button with a small pin (soft reset).!! MAKE SURE THAT THE ROOT CAUSE FOR THE ARC IS RESOLVED!! Once the reset is performed the ADU will go back to normal operation and the alarm output will switch back to the normal state. 4.5.5 Fault state/initiation ADU self test In case an ADU error occurs, the unit will indicate this with the blinking green and red LED s, also the buzzer will start beeping and the relay output will change state. 7

This fault situation can be resolved by pressing the reset button for longer than 5 seconds with a small pin or a finger nail (hard reset). This will restart the ADU and initiate a self test. The ADU self test will check if the arc detection unit is still functional. If successful the ADU will return to normal operation, if the self test fails this will result in the fault state. Please note that if the ADU is used in as an inverter level detector or installed in a combiner box, the reset button is sometimes difficult to access. In this case it is allowed to use the removal/interruption of the 24V power supply for more than 1 second as a reset of an arcing event or reset of a fault state/ initiation of a self test. 5. Validation of the ADU by Santon Each ADU will be assembled and tested during the manufacturing process at Santon. Periodically manufactured ADU s will be tested on detection of arc fault events in a real PV system to verify manufacturing process is still in order. 5.1 Testing of the ADU During the development as well as after, the ADU has been subjected to various tests in the testing facility of Santon. These tests have been done to confirm the correct functioning of the unit under different conditions. The conditions that have been tested are: - Temperature/humidity conditions o Temperatures up to -20degC o Temperatures up to +70degC o High humidity conditions up to 90% o Low humidity conditions up to 0% - Weather conditions o Sunny, Cloudy and Rainy o Warm, normal and cold temperatures - Installation conditions o Location of the ADU in the installation o Location of the generated series arc fault o Length of the cabling o Type of cable diameter o Parallel connected strings o Impact of switching devices 5.2 Test conclusions Temperature/humidity testing The tests on the ADU have been performed inside a climate chamber. The ADU has passed all the tests. The unit is able to detect several different arcing conditions when installed and operated on the maximum of (and sometimes beyond) the specifications. Weather condition testing As all tests have been performed in the test facility of Santon, with real PV power, the tests have been done under different and fluctuating conditions. The ADU performed optimal under these changing conditions and did not have any failures due to these conditions. 8

Installation conditions As all ADU s can be installed in different types of installation the most common situations have been tested. By installing different cable types, lengths and by varying the location of the generated arc the tests have confirmed that all arcing events can be detected up to 66 meters(up- or downstream) from an ADU. Also the tests of several panels in parallel, monitored by one ADU revealed that the ADU will detect arcing events in parallel strings. The effect of a switching device like the Santon X-type switch in an inverter does not influence the detection of the ADU. All the tests performed at Santon during and after the development of the Arc fault detection unit have been carefully analyzed and the results of all the tests have been included in the UL recognized Santon Arc-fault Detection unit. 6. Validation of the ADU by Customers 6.1 Testing ADU functioning with real arcing event (non PV setup) The ADU functioning can also be verified by connecting a DC power source (series of Car batteries) and a resistive load in series with the ADU. When an arc generator setup as described in the UL1699 Sub B, chapter 23 (see also below figure) is also included, an arcing event can be made to check the functioning of the ADU. Figure 6: UL1699 Sub B Arc generator Please be aware that there are more requirements to this setup to ensure that the ADU will detect the arc. Amongst others there needs to be sufficient power (min. Voltage = 100Vdc and min. Current = 1Amp) and the arc must be sustained for approx. 1 sec. As load there must be a resistive load, an inductive load will not work properly. If the ADU works correctly, it detects the arcing event. The unit will indicate this with the blinking of the red LED, the sounding of the buzzer and the change of state of the relay contact. Please note that the usage of DC power supplies that simulate PV panels have proven to be unreliable due to noise signals generated by the power supply that disturb the arc detection and therefore can cause unwanted detections. 6.2 Testing ADU functioning with real arcing event (PV setup) The ADU functioning can also be verified by connecting a PV source (series of PV panels) to the Inverter. When an arc generator setup is also included, an arcing event can be created to check the functioning of the ADU. 9

There are requirements to this setup to ensure that the ADU will detect the arc. There needs to be sufficient power (min. Voltage = 100Vdc and min. Current = 1Amp) and the arc must be sustained for approx. 1 sec. As load an inverter or resistive load can be used. If the ADU works correctly, it detects the arcing event. The unit will indicate this with the blinking of the red LED, the sounding of the buzzer and the change of state of the relay contact. 7. Best practices for the Santon ADU After the product launch the ADU has been tested and installed in real PV installations. The results from these installations have led to the following best practices Santon likes to point out. 7.1 Number of ADU s to be used The number of ADU s to be used is depending on the type of installation, inverter and distances that are present. Santon advises to use 1 ADU per MPP Tracker. This ADU will cover the detection up to 66meters from the ADU. If distances are bigger than 66meters, multiple ADU s on the same MPP Tracker might be necessary. This could in case of a strong arcing event lead to the alarm of both ADU s. 7.2 Reset of multiple ADU s Larger installations, equipped with multiple ADU s can be reset all at once. By removing/interrupting the 24Vdc power feeding these ADU s for more than 1 second the ADU s will stop operating. When the 24Vdc power returns all the ADU s will start up and perform a self test after which the ADU s will start normal operation. 7.3 Cabling of the installation The cabling of the installation has a great influence on the signal-to-noise ratio and thus the performance of the ADU. 7.3.1 Balance positive & negative DC cabling When there is an unbalance between positive and negative DC cabling there could be cross talk between the two. As the cross talk could result in a high signal-to-noise ratio in the detection range of the ADU, it could be that the ADU s connected trip falsely. It is advised to balance the cabling. balanced Cable duct unbalanced Figure 7: cabling balanced - unbalanced 10

7.3.2 AC and DC in same cable duct Not only cross talk between the positive and negative DC cabling is possible but also cross talk from the AC-grid can cause false tripping on the ADU. Most likely the AC cabling and DC cabling is routed in the same cable duct. This has to be prevented. 7.3.3 Excessive cable lengths As the ADU works best when there is a high signal-to-noise ratio, it is best to minimize the cable lengths. Excessive cable lengths that are not necessary will damp the noise signals and lower the signal-to-noise ratio. This could lead to a situation in which an arcing event is not detected. 7.4 Disturbances by other equipment As the detection of arcing event is based on the frequencies and the signal-to-noise ratio, any disturbing equipment could cause the detection devices to trip falsely. For example if the ADU s are installed in an industrial environment where frequency inverters for motor drives are also installed, it is advised to mount the ADU s in a metal enclosure. This way the ADU s are installed in a Faraday cage which minimizes the risk of falsely tripping. 7.5 Parallel arcing Although the Santon ADU is developed, tested and certified as a series arc detection device, in most cases the Santon ADU will be able to detect parallel arcing as well. However the ADU is not officially certified for detecting parallel arcing events. 7.6 False tripping/no detection When implementing the ADU in a PV system, there are two possible problems that have been seen in practice. The problems that can occur are false tripping or no detection. For all proposals below: functionality of the arc detection system needs to be verified per PV system installation. 7.6.1 Implementing an additional filtering in case of false tripping When the ADU (e.g. inside the junction box) is subject to false tripping, the root cause for false tripping must be checked first of all. If all trouble shooting on cabling, components etc did not resolve the false tripping it is most likely that the false tripping is a result of the switching behavior of the inverter searching the MPP. If this is the case an additional filter on the DC lines will help to cancel out the generic noise level on the DC lines. One of the means to do so is the implement a so called Common mode choke in the junction box. Santon has performed testing on this solution with positive results. Even though this filter was implemented arcing events could be detected as these are not the same as the generic noise of the system. The tests performed by Santon are done with a core (Nanocrystalline Vitroperm) which we have winded with as many windings as possible (minimal 3 windings). limiting dimensions (incl. case) iron cross section mean path length weight Inductance (number of turns =1) 10 khz 100 khz part number OD ID H A Fe l Fe m Fe AL (nominal) mm mm mm cm 2 cm g µh 48,3 26,4 18,2 0,86 11,8 74 87,5 20,3 T60006-L2045-V102 95,4 54,7 24,7 2,28 23,6 395 81,0 25,1 T60006-L2090-W518 105,5 75,0 29,6 1,90 28,3 379 56,3 16,9 T60006-L2100-V082 108,1 70,0 30,3 2,47 28,0 508 68,8 21,6 T60006-L2102-W468 11

7.6.2 Implemention of filtering in PV systems per MPPT Santon proposes to implement the above mentioned common mode choke only when needed, so for instance when the PV system is causing the ADU to trip falsely. See figure 8 for the implementation of the common mode choke. PV modules Inverter side MPPT 1 MPPT 2 MPPT x Figure 8: ADU single MPPT set-up with filter 7.6.3 Implementing an ADU in junction box (max. 8 Strings) Santon proposes to implement the previously mentioned common mode choke only when needed, so for instance when the PV system is causing the ADU to trip falsely. See figure 9 and/or figure 10 for how to set up the junction box with the common mode choke. PV modules Inverter side Figure 9: Junction box with filter (max 8 strings) 12

7.6.4 Implementing an ADU in junction box (more than 8 Strings) When the ADU is placed in an junction box which has more than 8 strings, the damping in the PV system as well as the larger inverter connected to the junction box/boxes have the tendency to mask an arcing event. Therefore additional units can be installed to ensure the complete solar field to be protected with the detection devices. PV modules Inverter side Figure 10: Junction box with filter (>8 strings) Important note: This system set-up for more than 8 strings has to be tested by installing the ADU with optionally the common mode choke (as described above) before rolling out this configuration of the set-up throughout the complete solar plant. 13

8. ADU Product details 8.1 Technical specifications String specifications Maximal string voltage / current 1000VDC / 40A Number of poles 1 pole (positive or negative) Minimal cable diameter cage clamp 2,5mm² / AWG14 Maximal cable diameter cage clamp 10mm² / AWG8 Power specifications Power supply 24VDC (± 10%) Current consumption (passive) 60mA Current consumption (active) 120mA Maximal cable diameter connector (2P) 2,5mm² / AWG14 Alarm specifications Alarm relay load (resistive) 0,3A at 125VAC; 1A at 30VDC Minimal arc detection level 100VDC - 1A Maximal cable diameter connector (3P) 2,5mm² / AWG14 Arc fault detection (according) UL1699B - PV AFD Type 1 Other specifications Protection degree IP20 / NEMA1 Operating temperature range -20 C till +70 C Storage temperature range -40 C till +85 C Humidity (RH) 0% - 90% at 20 C Weight (approx.) 120 g 8.2 Dimensions and connections Dimensions are in mm 14

9. Troubleshooting - Q & A Single string inverter set-up Q: I use my one MPPT string inverter with an ADU which generates false alarms. What is the solution? A: Either you do have an arc in your system or you might have an inverter which generates a frequency pattern that is disturbing the detection. Santon has tested the ADU with many inverters of different brands, however not all inverter types have been tested. See chapter 7.6 for a possible solution, if this does not help, please contact the Santon main office to find out whether your inverter has been tested in combination with the Santon ADU. Power optimizers Q: I have a set up with power optimizers at the back of the solar panels. The ADU generates false alarms. A: The power optimizers of some systems are exactly generating noise (frequencies) in the detection area of the ADU. Please contact the Santon main office for more information. Multiple MPPT inverters or multiple inverters next to each other Q: My inverter has multiple MPP trackers, how should I connect the ADU? A: Make sure that every MPPT has its own ADU and make sure the plus and the minus of one group of solar panels is joined at the same MPPT input. As soon as the minus and the plus cables of the various groups of solar panels or inverters are mixed, this generates false tripping. Q: Is it allowed to join the plus cables of two MPPT s together before entering the inverter? A: No, that is not. The two MPPT s can interfere with each other and thus generate more noise which generate false tripping. Q: My inverter has multiple MPP trackers and the ADU s are connected properly. What can be the cause of the false tripping? A: There are several possible reasons that could be the cause of the false tripping. - There is really an arc in the system - Cabling is not neatly arranged, see chapter 7.3 - Plus or minus of one MPP tracker is accidently connected to another MPP tracker. - Plus or minus of one inverter is accidently connected to another inverter. - Power optimizers are used - Frequency converters are elsewhere in the building generating electromagnetic disturbance. The solution is to place the ADU within a metal enclosure. - The inverter is of a type which generates a frequency pattern in the detection area of the ADU. Please contact the Santon main office for more information. Integration of arc detection units in junction boxes Q: Is the ADU certified to be used with central inverters? A: No, the Santon ADU is only certified for string inverters. When used in combination with central inverters the test as in chapter 6 has to be fulfilled to establish whether an arc in your PV system can be detected according to the UL standard (UL1699 - sub B). Also false tripping may occur due to different frequency patterns of central inverters compared to string inverters. Q: The ADU has fulfilled the tests in chapter 6 but is falsely tripping, what can I do to resolve this? A: When using the ADU in junction boxes, usually the inverter is a large String inverter or even a Central inverter. These have the tendency to have different switching behaviors. This could cause the false tripping. To prevent this, a common mode choke filter can be implemented in the combiner box. See chapter 7.6 for more details. 15

Q: How should the set-up be to secure my field of PV panels? How should it be integrated in junction boxes? A: We advise one ADU per junction box (up to 8 strings) in which all incoming strings are joined into two outgoing cables (plus & minus). The ADU can be placed in one plus cable of one incoming string. The arcing signal travels through all the connected cables. Please be aware that the ADU is certified up to a maximum cable length of 66meter. After this a second ADU is advised. In case of multiple junction boxes next to each other, a set up which enables simultaneous resetting is necessary since there is a high chance that two or more ADU s will give alarm simultaneously since arc signals generally travel a long distance in a copper cable. During the start-up of the ADU a self test generates a frequency pattern which also can trigger a next ADU in the same electrical circuit. Please ensure that these ADU s in the same circuit are wired with to the same power supply unit. Q: My junction box is set up to accommodate more than 8 strings; can I still use the ADU? A: Although the ADU is not intended for usage in these larger combiner boxes, it still can be used in these set ups. See chapter 7.6 for more details on how to set up the junction box including the ADU. Q: How should I reset multiple ADU s which are in a solar park? A: All ADU units should be connected to one 24volt cable running through the solar park for feeding the ADU s with 24volts. To reset the ADU s simultaneously remove/interrupt the 24volts of the line and restore the 24volts after approximately one second. During the start-up of the ADU a self test generates a frequency pattern which also can trigger a next ADU in the same electrical circuit. Laboratory testing Q: I am testing the arc detection in a laboratory with a DC power supply and I have false tripping. A: The DC power supplies generate frequencies in the detection area of the ADU. The solution is to test the system with true solar panels. Contact Santon Q: I tried all above Q&A s, however I still have problems A: Contact our office in Europe: Telephone: +31 10 283 26 00 E-mail: support@santonswitchgear.com Please provide following information (if known): - Which ADU is installed (please mention type number and production date)? - How is the ADU used/installed? One ADU per MPPT? - Where is the ADU installed (please mention enclosure type, physical location, surrounding equipment) - What are the ratings of the String/Array in which the ADU is installed? - Which inverter is connected (please mention brand and type code)? - When does the problem with the ADU occur? Some examples: o During the startup of the ADU. o During start up inverter after installation. o During start up of the installation every morning. o During shut down of the installation every evening. o During the day when there is high irradiance. 16