STATCOM with FLC and Pi Controller for a Three-Phase SEIG Feeding Single-Phase Loads

Similar documents
Compensation and Harmonic Elimination of Unbalance Currents in SEIG Based Statcom

SEIG based Facts Device for the Three phase Non-Linear Loads

A Novel Topology for Three-Phase SEIG Feeding Single-Phase Loads by using STATCOM Based Controller

Power Quality Enhancement Using VSI Based STATCOM for SEIG Feeding Non Linear Loads

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 3, May 2013

Simulation of Three Phase Cascaded H Bridge Inverter for Power Conditioning Using Solar Photovoltaic System

PERFORMANCE ANALYSIS OF SVPWM AND FUZZY CONTROLLED HYBRID ACTIVE POWER FILTER

Design and Simulation of Fuzzy Logic controller for DSTATCOM In Power System

Improvement of Power Quality Using Hybrid Active Power Filter in Three- Phase Three- Wire System Applied to Induction Drive

Simulation Study of PWM Techniques for Voltage Source Converters

Power Quality Improvement using Hysteresis Voltage Control of DVR

Power Quality enhancement of a distribution line with DSTATCOM

Multi Level Inverter Based Active Power Filter for Harmonic Reduction

Study on Voltage Controller of Self-Excited Induction Generator Using Controlled Shunt Capacitor, SVC Magnetic Energy Recovery Switch

STATCOM BASED ON REDUCTION OF PQ ISSUES IN MICRO GRID APPLICATION SYSTEMS

Application of Fuzzy Logic Controller in Shunt Active Power Filter

Power Quality improvement of a three phase four wire system using UPQC

Application of Fuzzy Logic Controller in UPFC to Mitigate THD in Power System

INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE

ICCCES Application of D-STATCOM for load compensation with non-stiff sources

Modeling and Simulation of STATCOM

Simulation of D-STATCOM for Power Quality Improvement With Fuzzy Based Phase Locked Loop Control Strategy

CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE

[Mahagaonkar*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

Indirect Current Control of LCL Based Shunt Active Power Filter

Power Quality Improvement of Distribution Network for Non-Linear Loads using Inductive Active Filtering Method Suresh Reddy D 1 Chidananda G Yajaman 2

Available online at ScienceDirect. Procedia Technology 21 (2015 ) SMART GRID Technologies, August 6-8, 2015

A New Control Scheme for Power Quality Improvement with STATCOM

Current Control Technique for Three Phase Shunt Active Power Filter by Using Adaptive Hysteresis Current Controller

Mitigating Voltage Sag Using Dynamic Voltage Restorer

Analysis of Single Phase Self-Excited Induction Generator with One Winding for obtaining Constant Output Voltage

P. Sivakumar* 1 and V. Rajasekaran 2

A Simple Control Algorithm for Three-Phase Shunt Active Power Filter for Reactive Power and Current Harmonic Compensation

Modified Three-Phase Four-Wire UPQC Topology with Reduced DC-Link Voltage Rating

Size Selection Of Energy Storing Elements For A Cascade Multilevel Inverter STATCOM

Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology

Cascaded H-Bridge Five Level Inverter for Harmonics Mitigation and Reactive Power Control

Volume I Issue VI 2012 September-2012 ISSN

Power Quality Improvement of Grid Connected Wind Energy System by Statcom for Balanced and Unbalanced Linear and Nonlinear Loads

Stability of Voltage using Different Control strategies In Isolated Self Excited Induction Generator for Variable Speed Applications

Improvement of Power Quality Using a Hybrid Interline UPQC

ISSN: Page 20. International Journal of Engineering Trends and Technology- Volume2Issue3-2011

PI-VPI Based Current Control Strategy to Improve the Performance of Shunt Active Power Filter

Power Quality Improvement using Active shunt Power filter using PI Controller

Bhavin Gondaliya 1st Head, Electrical Engineering Department Dr. Subhash Technical Campus, Junagadh, Gujarat (India)

Power Quality Improvement in Conventional Electronic Load Controller. for an Isolated Power Generation

ENHANCEMENT OF POWER QUALITY USING 9-LEVEL CASCADED H-BRIDGE BASED D-STATCOM WITH IRP THEORY SK. Meeravali* 1, Dr. K.

Simulation and Comparison of DVR and DSTATCOM Used For Voltage Sag Mitigation at Distribution Side

Voltage Control of Variable Speed Induction Generator Using PWM Converter

Shunt active filter algorithms for a three phase system fed to adjustable speed drive

Mitigation of Current Harmonics with Combined p-q and Id-IqControl Strategies for Fuzzy Controller Based 3Phase 4Wire Shunt Active Filter

POWER QUALITY IMPROVEMENT OF GRID CONNECTED WIND ENERGY SYSTEMS USING STATCOM-BATTERY ENERGY STORAGE SYSTEM

Mitigation of Voltage Sag and Swell using Distribution Static Synchronous Compensator (DSTATCOM)

Load Compensation at a Reduced DC Link Voltage by Using DSTATCOM with Non-Stiff Source

A Novel Fuzzy Variable-Band Hysteresis Current Controller For Shunt Active Power Filters

PUBLICATIONS OF PROBLEMS & APPLICATION IN ENGINEERING RESEARCH - PAPER CSEA2012 ISSN: ; e-issn:

Harmonics Elimination Using Shunt Active Filter

A Novel Control Method for Input Output Harmonic Elimination of the PWM Boost Type Rectifier Under Unbalanced Operating Conditions

Power Quality Improvement of Unified Power Quality Conditioner Using Reference Signal Generation Method

ISSN Vol.03,Issue.07, August-2015, Pages:

IJCSIET--International Journal of Computer Science information and Engg., Technologies ISSN

GRID CONNECTED HYBRID SYSTEM WITH SEPIC CONVERTER AND INVERTER FOR POWER QUALITY COMPENSATION

Grid Interconnection of Wind Energy System at Distribution Level Using Intelligence Controller

Ripple Reduction Using Seven-Level Shunt Active Power Filter for High-Power Drives

Transient Analysis of Self-Excited Induction Generator with Electronic Load Controller (ELC) for Single-Phase Loading

STATCOM WITH POD CONTROLLER FOR REACTIVE POWER COMPENSATION Vijai Jairaj 1, Vishnu.J 2 and Sreenath.N.R 3

Enhancement of Power Quality using D-Statcom Fed Induction Motor Drive

DRIVE FRONT END HARMONIC COMPENSATOR BASED ON ACTIVE RECTIFIER WITH LCL FILTER

Adaptive ANN based STATCOM and DVR for optimal integration of wind energy with grid using permanent magnet synchronous generator

Australian Journal of Basic and Applied Sciences. Simulation and Analysis of Closed loop Control of Multilevel Inverter fed AC Drives

Multilevel Inverter Based Statcom For Power System Load Balancing System

Design and Development of MPPT for Wind Electrical Power System under Variable Speed Generation Using Fuzzy Logic

ISSN: [Yadav* et al., 6(5): May, 2017] Impact Factor: 4.116

ENHANCING POWER SYSTEM STABILITY USING NEURO-FUZZY BASED UPFC

Compare Stability Management in Power System Using 48- Pulse Inverter, D-STATCOM and Space Vector Modulation Based STATCOM

Pid Plus Fuzzy Logic Controller Based Electronic Load Controller For Self Exited Induction Generator.

THE rapid development of power electronics in recent

IJESR/Nov 2012/ Volume-2/Issue-11/Article No-21/ ISSN International Journal of Engineering & Science Research

A Novel Voltage and Frequency Control Scheme for a Wind Turbine Driven Isolated Asynchronous Generator

TRANSFORMER LESS H6-BRIDGE CASCADED STATCOM WITH STAR CONFIGURATION FOR REAL AND REACTIVE POWER COMPENSATION

ISSN Vol.03,Issue.42 November-2014, Pages:

Multi-Pulse Voltage Source Converter Statcom For Voltage Flicker Mitigation

Protection from Voltage Sags and Swells by Using FACTS Controller

Improvement of Power Quality using Unified Power Quality Conditioner with Distributed Generation

Improvement of Voltage Profile using D- STATCOM Simulation under sag and swell condition

Voltage Flicker Mitigation in Electric Arc Furnace using D-STATCOM

DIGITAL SIMULATION OF MULTILEVEL INVERTER BASED STATCOM

Level Shifted Pulse Width Modulation in Three Phase Multilevel Inverter for Power Quality Improvement

Implementation of D-STACTOM for Improvement of Power Quality in Radial Distribution System

Synchronous Reference Frame Control Algorithm Based Four -Leg Inverter DSTATCOM For Power Quality Improvement

2020 P a g e. Figure.2: Line diagram of series active power filter.

Design and Simulation of Three Phase Shunt Active Power Filter Using SRF Theory

A THREE PHASE SHUNT ACTIVE POWER FILTER FOR HARMONICS REDUCTION

Modeling and Simulation of SRF and P-Q based Control DSTATCOM

IMPROVEMENT OF POWER QUALITY USING CUSTOM POWER DEVICES

ISSN Vol.03,Issue.11, December-2015, Pages:

PI Controller Based Shunt Active Power Filter with Cascaded Multilevel Inverter

Performance of Indirectly Controlled STATCOM with IEEE 30-bus System

MMC based D-STATCOM for Different Loading Conditions

Design of Interline Dynamic Voltage Restorer for Voltage Sag Compensation

Transcription:

STATCOM with FLC and Pi Controller for a Three-Phase SEIG Feeding Single-Phase Loads Ponananthi.V, Rajesh Kumar. B Final year PG student, Department of Power Systems Engineering, M.Kumarasamy College of Engineering, Karur, Tamilnadu, India Assistant Professor, Department of Electrical and Electronics Engineering, M.Kumarasamy College of Engineering, Karur, Tamilnadu, India ABSTRACT: Induction generators are increasingly being used in non conventional energy systems. The self excited induction generators has some drawbacks such as poor voltage regulation, it requires reactive power source and while connecting non-linear loads the harmonics are injected. When single phase loads are connected to three-phase SEIG it cause unbalance in source current. The three-phase static synchronous compensator (STATCOM) connected at the point of common coupling (PCC) to compensate the unbalance current and to eliminate the harmonics. The hysteresis based control algorithm is used to generate the switching pulses to the STATCOM. The fuzzy controller is used instead of PI controller. The fuzzy logic controller gives better performance than conventional PI controller. This method is simulated using MATLAB/SIMULINK software. The simulated results shows that SEIG terminal voltage is maintained constant even with unbalanced loads using STATCOM based voltage regulation. KEYWORDS: Self Excited Induction Generator (SEIG); single-phase synchronous D-Q frame theory; Static Synchronous Compensator (STATCOM). І.INTRODUCTION In remote areas, plenty of non-conventional energy sources are available. These non-conventional energy sources are used as prime input for the generating systems. Externally driven induction machine operates as a self-excited induction generator (SEIG) with its excitation requirements being met by a capacitor bank connected across its terminals. The SEIG has advantages like simplicity, maintenance free, absence of DC, brushless etc. as compare to the conventional synchronous generator. Self-excitation phenomenon in induction machines although known for more than a half century. This induction generator is self excited by a suitable capacitor banks across the terminals. This phenomenon is known as capacitor self-excitation and the induction generator is called a SEIG [2]. A major disadvantage of SEIG is its poor voltage regulation requires a variable capacitance bank to maintain constant terminal voltage under varying loads. Attempts have been made to maintain constant terminal voltage by using passive elements [5], short shunt [6] and long -shunt method for a three-phase SEIG [7]. fixed capacitor and thyristor-controlled inductor known as static var compensator (SVC) [10] for voltage compensation. By the invention of solid-state self-commutating devices, it is possible to make a static, noiseless voltage regulator, which can provide continuously variable reactive power to the SEIG with varying load to keep terminal voltage constant. This system called STATCOM has specific benefits compared to SVC [12], Schauder and Mehta [13] have derived governing equations of STATCOM to determine the response of the STATCOM. Copyright to Author www.saeindiaskcet.org 96

In this paper, the single phase linear and non-linear loads are connected to the three-phase SEIG which cause unbalance current and draws non-sinusoidal current due to non-linearity of load which injects harmonics into the system. The STATCOM is introduced to eliminates the harmonics, provides load balancing and supplies the reactive power and feeding single-phase loads using a three-phase SEIG without de-rating the machine. The transient analysis of the SEIG-STATCOM system under balanced/ unbalanced single-phase linear and non-linear loads and simulated results show that the SEIG-STATCOM system behaves an ideal supply under these unbalanced loads. II. SELF EXCITED INDUCTION GENERATOR (SEIG) Induction generator The induction generators offer advantages over synchronous machines, resulting in a simplified installation with economy in first cost and in operating and maintenance expenses. The attractive feature of the induction generator is simplicity of operation. Process of self excitation When an induction machine is driven at a speed greater than the synchronous speed then there will be negative slip. By means of an external prime mover, the direction of induced torque is reversed and it starts working as an induction generator. When the slip is negative then the induction machine draws a current, which lags the voltage by more than 90. This means that real power flows out of the machine but the machine needs the reactive power. To build up voltage across the generator terminals, excitations must be provided by two modes (i.e., grid connected and isolated mode). In case of a grid-connected mode, the induction generator can draw reactive power either from the grid but it will place a burden on the grid For an isolated mode, there must be a suitable capacitor bank connected across the generator terminals. This phenomenon is known as capacitor self-excitation and the induction generator is called a SEIG. Figure 1: self excitation of induction generator III. STATIC SYNCHRONOUS COMPENSATOR (STATCOM) The static synchronous compensator is a shunt-connected reactive power compensation device which provides voltage support by generating or absorbing reactive power at the point of common coupling without the need of large external reactors or capacitor banks. Modelling of control scheme of STATCOM The control scheme of STATCOM is based on bang-bang controller. This controller uses a hysteresis current control technique with fuzzy logic controller. The control scheme for generating the switching signals to the STATCOM as shown in figure 2. The control algorithm needs the measurements of variables such as three-phase source current, DC voltage, inverter current. The current control block receives an input of reference current and actual current are subtracted to activate the operation of STATCOM in current control mode. Copyright to Author www.saeindiaskcet.org 97

Figure 2: Block diagram of hysteresis current control technique In three-phase balance system, the RMS voltage source amplitude is calculated at the sampling frequency from the source phase voltage (Vsa,Vsb,Vsc) and is expressed, as sample template Vsm, sampled peak voltage, as, 1/ 2 2 2 2 2 V sm Vsa Vsb Vsc (1) 3 The in-phase unit vectors are obtained from AC source phase voltage and the RMS value of unit vector as, Vsa u V sa V ; sb u V sb sm V ; sc u sc sm V (2) sm The in-phase generated reference currents are derived using in-phase unit voltage template as, i * I isa ; i I. i sb *. sa * sb ; i. sc isc Where I is proportional to magnitude of filtered source voltage for respective phases. This ensures that the source current is controlled to be sinusoidal. The unit vectors implement the important function in the grid connection for the synchronization for STATCOM. This method is simple, robust and favourable as compared with other methods. The switching function for phase a is expressed as isa < ( * isa -- HB) Sa = 0 (4) isa > ( isa I * -- HB) Sa = 1 (5) Where HB is a hysteresis current-band, similarly the switching function can be derived for phases b and c. 1) Hysteresis controller with PI voltage regulator The STATCOM controller for SEIG voltage regulation and harmonic suppression with voltage regulator is of proportional plus integral type as shown in figure 3. (3) Copyright to Author www.saeindiaskcet.org 98

Figure 3: STATCOM model with PI Voltage Regulator block diagram 2) Hysteresis controller with Fuzzy logic The fuzzy logic controller is fed by one input that is voltage error. This gives the reactive source current to the system as shown in figure 4. Figure 4: STATCOM model with Fuzzy- Voltage Regulator block diagram IV. SYSTEM CONFIGURATION AND PRINCIPLE OF OPERATION The schematic block diagram of SEIG with excitation capacitor, STATCOM, load and voltage reference based control scheme is shown in Figure 5. The system consists of an SEIG driven by renewable energy-based prime mover. The single-phase consumer loads are connected across a and c phases of the SEIG. The STATCOM is connected at point of common coupling (PCC). The hysteresis control algorithm can be modulated for generating switching pulses to the STATCOM. The out-coming signals from the SEIG are the three-phase AC voltages. Copyright to Author www.saeindiaskcet.org 99

Figure 5: Block diagram of SEIG-STATCOM model The STATCOM is employed to compensate the unbalanced currents caused by single-phase loads that are connected across the two terminals of the three-phase SEIG. Therefore, the SEIG is capable of feeding single-phase loads up to its rated power. The STATCOM acts as a source of lagging or leading current to maintain the constant terminal voltage with variation in load. Moreover, the STATCOM suppresses harmonics injected by nonlinear loads and provides load balancing while feeding single-phase loads. The STATCOM consists of a two- level, three-phase IGBT based current controlled voltage source inverter and DC bus capacitor. For simulation a 3.7-kW, 230-V, 50-Hz, Y-connected induction generator has been used to investigate the performance while feeding single-phase loads. A Δ-connected 4-kVAR capacitor bank is connected across the induction generator terminals to provide self-excitation and a induction motor having 3.7-kW, 415-V, 50-Hz, Y- connected is used to drive the SEIG. A three-phase two-level IGBT based VSI has been used as the STATCOM. The STATCOM is connected across the PCC through filter inductors. Both linear and nonlinear loads are considered for testing the system. A single-phase uncontrolled diode bridge rectifier feeding a series R-L load is used as a nonlinear load. V. RESULTS AND DISCUSSION The three-phase self excited induction generator feeding single-phase linear and non-linear loads with STATCOM is simulated using MATLAB/simulink software as shown in figure 6. While connecting single phase loads the THD value of the source current using FFT analysis without STATCOM are shown in figure 7. Figure 6: simulink model of SEIG-STATCOM Copyright to Author www.saeindiaskcet.org 100

Figure 7: FFT analysis of source current waveform without STATCOM The compensating currents are generated as using the STATCOM to balance the unbalanced current caused by single phase loads and to reduce harmonics. The switching pulse generated is given to the three-phase two level IGBT based voltage source inverter. STATCOM absorbs or generate reactive power and in which the output can be varied to control the specific parameters of an electric power system. Figure 8 shows the compensating currents at the point of common coupling. The icoma, icomb, icomc are the compensating current to regulate the terminal voltage of the SEIG. The PCC voltage is found very stable and well regulated during the load perturbation. After the compensating currents the source current is balanced in the system. Figure 9 shows the source current and voltage after compensation. Figure 8: compensating current Figure 9:source voltage and current after compensation Copyright to Author www.saeindiaskcet.org 101

The figure 7 and 10 shows the harmonic suppression from 26.92% to 2.92% when connecting STATCOM controller with PI. The figure 11 shows the THD value of source current from the FFT analysis with FLC based STATCOM, it is observed that the THD of the source current waveform of the test system with FLC based STATCOM is 1.42 %. Thus, it is observed that there is a further reduction in the THD value of the source current waveform. Figure 10: FFT analysis of source current waveform with PI based STATCOM Figure 11: FFT analysis of source current waveform with FLC based STATCOM VI. CONCLUSION The proposed method of feeding single-phase loads from a three-phase SEIG with STATCOM combination has been tested, and it has been proved that the SEIG is able to feed single-phase loads up to its rated capacity. Hysteresis based Fuzzy controller of a three-phase STATCOM has been proposed, discussed, and experimentally implemented for current balancing of the SEIG system. From the simulated results, it is found that SEIG terminal voltage remains constant and sinusoidal feeding the three-phase or single-phase rectifiers with R and R-L loads. The proposed FLC based STATCOM have improved the power quality of source current significantly by reducing the THD from 26.92% to1.42 %. It is clearly presented that STATCOM with FLC gives better performance than STATCOM with conventional PI controller. Therefore, it is concluded that STATCOM acts as voltage regulator, load balancer and also harmonic eliminator. ACKNOWLEDGMENT I would like to thank Dr. K.Sundararaju, professor and HOD of Electrical and Electronics engineering department, The M.Kumarasamy College of Engineering, Karur for his valuable support to develop this project. Copyright to Author www.saeindiaskcet.org 102

REFERENCES [1] Bhim Singh, Fellow, IEEE, S. S. Murthy, Life Fellow, IEEE, and Raja Sekhara Reddy Chilipi, STATCOM-Based Controller for a Three-Phase SEIG Feeding Single-Phase Loads, IEEE transactions on energy conversion, vol. 29, no. 2, june 2014. [2] C. Bansal, Senior Member, IEEE, Three-phase self -excited induction generator : An overview, IEEE transactions on energy conversion, vol. 20, no. 2, june 2005. [3] Dhikra Chermiti, Adel Khedher, A New Method Voltage and Frequency Regulation of Self-Excited wseas transactions on environment and development Induction Generator Operating in Stand Alone [4] G. Dastagir and L. A. C. Lopes, Voltage and frequency regulation of a stand-alone self-excited induction generator, in Proc. IEEE Electr. Power Conf., 2007, pp. 502 506. [5] H. Rai, A. Tandan, S. Murthy, B.Singh, and B. Singh, Voltage regulation of self excited induction generator using passive elements, in Proc. IEEE Int. spp. 240 245. [6] L. Shridhar, B. Singh, and C. Jha, Transient performance of the self regulated short shunt self excited induction generator, IEEE Trans. Energy Convers., vol. 10, no. 2, pp. 261 267, Jun. 1995. [7] E. Bim, J. Szajner, and Y. Burian, Voltage compensation of an induction generator with long-shunt connection, IEEE Trans. Energy Convers., vol. 4, no. 3, pp. 526 530, Sep. 1989. [8] L. Shridhar, B. Singh, C. Jha, B. Singh, and S. Murthy, Selection of capacitors for the self regulated short shunt self excited induction generator, IEEE Trans. Energy Convers., vol. 10, no. 1, pp. 10 17, Mar. 1995. [9] L. Wang and C.-H. Lee, Long-shunt and short-shunt connections on dynamic performance of a SEIG feeding an induction motor load, IEEE Trans. Energy Convers., vol. 15, no. 1, pp. 1 7, Mar. 2000. [10] M. B. Brennen and A. Abbondanti, Static exciters for induction generators, IEEE Trans. Ind. Appl., vol. IA-13, no. 5, pp. 422 428, Sep. 1977. [11] B. Singh, S. Murthy, and S. Gupta, STATCOM-based voltage regulator for self-excited induction generator feeding nonlinear loads, IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1437 1452, Oct. 2006. [12] E. Larsen, N. Miller, S. Nisson and S. Lindgren, "Benefits of GTO based compensation systems for electric utility applications," IEEE Trans, on Power Delivery, Vol. 7, No. 4, pp. 2055-2064, October 1997. [13] C. Schauder and H. Mehta, "Vector analysis and control of advanced static VAR compensator," IEE Proc.-C, Vol. 140, No. 4, pp.299-306, July 1993. [14] T. Chan and L. L. Lai, A novel single-phase self-regulated self-excited induction generator using a three-phase machine, IEEE Trans. Energy Convers., vol. 16, no. 2, pp. 204 208, Jun. 2001.s [15] T. Chan, Performance analysis of a three-phase induction generator selfexcited with a single capacitance, IEEE Trans. Energy Convers., vol. 14, no. 4, pp. 894 900, Dec. 1999. Copyright to Author www.saeindiaskcet.org 103