ELECTRICAL ENGINEERING - TEACHER MODULE 1 LOGIC GATES

Similar documents
Gates and Circuits 1

EXPERIMENT 12: DIGITAL LOGIC CIRCUITS

LOGIC GATES AND LOGIC CIRCUITS A logic gate is an elementary building block of a Digital Circuit. Most logic gates have two inputs and one output.

Exercise 1: EXCLUSIVE OR/NOR Gate Functions

Logic diagram: a graphical representation of a circuit

(CSC-3501) Lecture 6 (31 Jan 2008) Seung-Jong Park (Jay) CSC S.J. Park. Announcement

Lecture #1. Course Overview

What is Digital Logic? Why's it important? What is digital? What is digital logic? Where do we see it? Inputs and Outputs binary

DIGITAL ELECTRONICS. Methods & diagrams : 1 Graph plotting : - Tables & analysis : - Questions & discussion : 6 Performance : 3

LogicBlocks & Digital Logic Introduction

ELEC1 (JUN13ELEC101) General Certificate of Education Advanced Subsidiary Examination June Introductory Electronics TOTAL. Time allowed 1 hour

Chapter 3 Describing Logic Circuits Dr. Xu

LogicBlocks & Digital Logic Introduction a

I. Computational Logic and the Five Basic Logic Gates 1

Chapter 1: Digital logic

2 Logic Gates THE INVERTER. A logic gate is an electronic circuit which makes logic decisions. It has one output and one or more inputs.

Gates and and Circuits

Lab# 13: Introduction to the Digital Logic

Introduction to Electronics. Dr. Lynn Fuller

The Non Inverting Buffer

Digital Applications (CETT 1415) Credit: 4 semester credit hours (3 hours lecture, 4 hours lab) Prerequisite: CETT 1403 & CETT 1405

1.) If a 3 input NOR gate has eight input possibilities, how many of those possibilities result in a HIGH output? (a.) 1 (b.) 2 (c.) 3 (d.) 7 (e.

Multiple input gates. The AND gate

Digital Fundamentals. Lab 4 EX-OR Circuits & Combinational Circuit Design

Department of Electrical and Electronics Engineering Logic Circuits Laboratory EXPERIMENT-1 BASIC GATE CIRCUITS

Digital Applications (CETT 1415) Credit: 4 semester credit hours (3 hours lecture, 4 hours lab) Prerequisite: CETT 1403 & CETT 1405

In this lecture: Lecture 3: Basic Logic Gates & Boolean Expressions

Digital Systems Principles and Applications TWELFTH EDITION. 3-3 OR Operation With OR Gates. 3-4 AND Operations with AND gates

o What happens if S1 and S2 or S3 and S4 are closed simultaneously? o Perform Motor Control, H-Bridges LAB 2 H-Bridges with SPST Switches

3.1 There are three basic logic functions from which all circuits can be designed: NOT (invert), OR, and

hij Teacher Resource Bank GCE Electronics Exemplar Examination Questions ELEC2 Further Electronics

Subject: Analog and Digital Electronics Code:15CS32

UNIT 2. Digital Signals: The basics of digital encoding and the use of binary systems.

Getting Started. 0.1 Breadboard

This Figure here illustrates the operation for a 2-input OR gate for all four possible input combinations.

ENG 100 Electric Circuits and Systems Lab 6: Introduction to Logic Circuits

EE283 Electrical Measurement Laboratory Laboratory Exercise #7: Digital Counter

Digital Logic Circuits

Electrical Engineering 40 Introduction to Microelectronic Circuits

Introduction (concepts and definitions)

Lecture 2: Digital Logic Basis

Dr. Nicola Nicolici COE/EE2DI4 Midterm Test #1 Oct 18, 2006

DARK ACTIVATED COLOUR CHANGING NIGHT LIGHT KIT

Basic Logic Circuits

ENGR-4300 Fall 2006 Project 3 Project 3 Build a 555-Timer

EE100Su08 Lecture #16 (August 1 st 2008)

ECE/CoE 0132: FETs and Gates

Electronics Merit Badge Kit Theory of Operation

Name EGR 2131 Lab #2 Logic Gates and Boolean Algebra Objectives Equipment and Components Part 1: Reading Pin Diagrams 7400 (TOP VIEW)

COMPUTER ORGANIZATION & ARCHITECTURE DIGITAL LOGIC CSCD211- DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF GHANA

Stand Alone VXO (SAVXO) Assembly Manual Manual Version 1.0B_

Series and Parallel Circuits

Fall Lab2_ET150.docx

Course Outline Cover Page

Experiment #3: Experimenting with Resistor Circuits

ANALOGUE AND DIGITAL ELECTRONICS STUDENT S WORKBOOK U3: DIGITAL ELECTRONICS

Exercise 1: AND/NAND Logic Functions

Basic Electronics Course Part 2

Physics 309 Lab 3 Bipolar junction transistor

INTRODUCTION TO DIGITAL CONCEPT

R PROFLAME Instruction Book Collection

CHAPTER 3 BASIC & COMBINATIONAL LOGIC CIRCUIT

CS302 - Digital Logic Design Glossary By

PREVIEW COPY. Digital Logic Systems. Table of Contents. Digital Logic Fundamentals...3. Logic Building Blocks Medium- and Large-Scale ICs...

Combinational Circuits DC-IV (Part I) Notes

Physics 335 Lab 1 Intro to Digital Logic

Spec. Instructor: Center

Logic Gates with Boolean Functions

Troubleshooting SENET SENET

CSE208W Lecture #1 Notes Barry E. Mapen

ANALOG TO DIGITAL CONVERTER

IRF6644 IRF6644. Figure 1. IRDC5001-LS370W Active ORing Demo Board

9 Feedback and Control

University of Technology

A B. 1 (a) (i) Fig shows the symbol for a circuit component. Fig Name this component. ... [1]

Electrical, Electronic and Communications Engineering Technology/Technician CIP Task Grid

Digital Electronics Course Objectives

EK307 Lab 3 Spring Lab Assignment 3 Logic Gates

Pulse-Width-Modulation Motor Speed Control with a PIC (modified from lab text by Alciatore)

Construction of a high-voltage Buck-Boost capacitor charger. Transformer and logic

Dev Bhoomi Institute Of Technology Department of Electronics and Communication Engineering PRACTICAL INSTRUCTION SHEET

GCSE Electronic Products Revision Exercises Part 1

INMOTION Controls Series INSTALLATION & OPERATION MANUAL. INMOTION Series - INMOTION INMOTION-260. Page: 1/15

Disclaimers. Important Notice

Topic Notes: Digital Logic

Chapter # 1: Introduction

Micro Wizard Instructions

3. RESISTOR - TRANSISTOR LOGIC CIRCUITS 3.1 AN RTL NOT GATE

UNIT III. Designing Combinatorial Circuits. Adders

Module 4: Design and Analysis of Combinational Circuits 1. Module-4. Design and Analysis of Combinational Circuits

UC Berkeley CS61C : Machine Structures

Exercise 3-3. Manual Reversing Starters EXERCISE OBJECTIVE DISCUSSION. Build manual reversing starters and understand how they work.

Rotary Relay Replacement. for the ICOM 720A KA6BFB

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM. Course Title: Digital Electronics (Code: )

EET 150 Introduction to EET Lab Activity 12 Temperature Sensor Amplifier Project

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design

Experiment # 2 The Voting Machine

EMT1250 LABORATORY EXPERIMENT. EXPERIMENT # 4: Combinational Logic Circuits. Name: Date:

OBJECTIVE TYPE QUESTIONS FOR PRACTICAL EXAMINATION Subject : Electronics-I ( EC 112)

"Sophisticated Model Railroad Electronics"

Transcription:

Revision: 02/16/01 SUMMER INSTITUTE FOR ENGINEERING AND TECHNOLOGY EDUCATION ELECTRICAL ENGINEERING - TEACHER MODULE 1 LOGIC GATES CONCEPT This unit will introduce you to logic gates and truth tables. Logic gates are the basic elements of all digital electronic devices. OJECTIVES At the completion of this unit you will be able to do the following: Define a digital device. Define gate. Define truth table. Write the correct truth tables for AND and OR gates. Construct a simple logic circuit and determine its results. SCIENCE PROCESS SKILLS Observing Measurement Communication Inferring Hypothesizing Design An Experiment Predicting Discerning Patterns Group Decision Making Communication AAAS SCIENCE ENCHMARKS 1 Scientific Inquiry 3A Technology and Science 4E Energy Transformation 4G Forces of Nature 8C Energy Sources and Uses SCIENCE EDUCATION CONTENT STANDARDS (NRC) Grades 5-8: Transformations of Energy Grades 9-12: Conservation of Energy Interactions of Energy and Matters Forces and Motion

LOGIC GATES ELECTRICAL ENGINEERING: MODULE 1/2 STATE SCIENCE CURRICULUM FRAMEWORKS: Grades 5-8: 1.1.9, 1.1.10, 2.1.9, 3.1.19, 3.1.20, 3.1.23, 3.1.24 Grades 9-12: 1.1.20, 1.1.23, 2.1.13, 2.1.14, 3.1.32, 3.1.33, 3.1.34, 3.1.39, 3.1.43, 3.1.44 WHAT IS A DIGITAL DEVICE? A digital device can be defined as any device that operates on or manipulates binary, or twostate, information. inary coding can be represented by any type of two state device, such as an on or off light, an open or closed switch, two different voltage levels, or the abstract symbols 0 (off) and 1 (on). In digital electronics, we are especially interested in electronic digital devices that manipulate binary information that is in the form of voltage levels (+5 volts for the logic 1 state and GROUND potential for the logic 0 state). Through rather startling advances in the electronics industry, it is now possible to construct devices that will change state very quickly, in times as fast as 2 nanoseconds, or 0.000000002 seconds. Furthermore, a wide variety of such devices can be purchased in quantities of one for prices ranging from $ 0.14 to $ 1.50. Thus, two important considerations -- speed and low cost -- have combined to make digital electronics a powerful force for the improvement of society in the areas of communications, controls, and data-processing. WHAT ARE GATES? A gate is the simplest digital device that has one or more inputs and one output. The digital information appearing at the output depends upon the combination of digital information that appears at the inputs. Actually, the term "gate" has several meanings in the field of electronics. Here, we are concerned only with the gate as a digital device. What is a Nanosecond? Some Examples of scale: A nanosecond (ns) is a thousand times faster than a microsecond (µs). There are a thousand microseconds in a millisecond (ms), and there are a thousand milliseconds in a second (s). If your computer s CPU is running at 66 MHz, it is able to do part of an instruction every 15 nanoseconds. If you were to race your computer and you could calculate by hand in one second what it could do in a microsecond, it would take you 11 days, 13 hours, and 46 minutes to finish the calculations your computer could do in a second. (You know it doesn t take you over a week to multiply 5.5 and 2, but it may take a computer many steps to do the calculation and if those steps require input, output, or memory, the CPU spends most of it s time waiting.) WHAT IS A TRUTH TALE? A truth table is a tabulation that shows the relationship of all output logic levels of a digital circuit to all possible combinations of input logic levels in such a way as to characterize the

LOGIC GATES ELECTRICAL ENGINEERING: MODULE 1/3 circuit functions completely. y input or output "logic levels", we are referring to the logic 0 or logic 1. GATE SYMOLS AND FUNCTION The symbolic representation of gates has become standard throughout the digital electronics Inputs Outputs industry. We shall use these A Q standard symbols in our discussions and in experiments 0 0 0 A Q provided with these modules. 0 1 0 1 0 0 AND The behavior of a 2-input AND gate can be stated as follows. If input A is logic 1 and input is 1 1 1 logic 1, then output Q is logic 1; Figure 1: A 2-input AND gate and its truth table. otherwise, output Q is logic 0. In Figure 1, we show the symbol for this gate, as well as its truth table. Inputs Outputs A Q OR 0 0 0 An OR gate is a binary circuit A Q 0 1 1 with two or more inputs and a single output, in which the output 1 0 1 is logic 0 only when all inputs are logic 0, and the output is logic 1 if any one of the inputs is logic 1. 1 1 1 The behavior of a 2-input OR gate can be stated as follows. If input Figure 2: A 2-input OR gate and its truth table. A is logic 1 or input is logic 1, then output Q is logic 1; otherwise, output Q is logic 0. Included in this statement is the condition when both input A and input are logic 1, in which case, output Q is also logic 1. The symbol and truth table for a 2- input OR gate are given in Figure 2. DIGITAL LOGIC ACTIVITIES Purpose The purpose of this experiment is to determine experimentally the truth table for the 2-input AND gate and the 2-input OR gate, and a two-level logic circuit.

LOGIC GATES ELECTRICAL ENGINEERING: MODULE 1/4 MATERIALS 1-Experimental Logic oard 10-Short wires ( 6" ) 8-Long wires ( 12" ) 1-6-volt lantern battery. This will serve as the "5 volt " power source and ground. EXAMPLE QUESTIONS 1. Circle one or more of the following terms that refer to an OFF condition in digital electronics: no yes false one zero true on ANSWER: no, false, zero 2. Draw the schematic symbol for a 2-input AND gate. 3. Draw the truth-table for an OR gate with two inputs. 4. How many milliseconds are in a second? ANSWER: 1000 ms in one second MANAGEMENT SUGGESTIONS Have the students examine each component separately. LED s should be tested separately before use. LED s work in only one direction. Make sure that, if an LED does not light, that the polarity is reversed. SAFETY CAUTIONS Electricity always carries a potential for shock. Use caution when working with batteries. Electrical components sometimes get hot enough to cause burns. Components and wires have sharp points and, if handled improperly, can puncture the skin. PROCEDURES Please refer to Figure 3 for the layout of the Experimental Logic oard. The board has hardwired ground connections so wires can be connected from one component to another. The components provided on the board are 6 switches (labeled A-F), 6 LED s (labeled 1-6), 4 AND gates in one IC package (labeled A1-A4), and 4 OR gates in one IC package (labeled O1-O4). The actual labels are on the schematic, but may not be on the actual Experimental Logic oard. There are 3 sockets available for each connection point on the board. If you have trouble putting a wire in one socket try one of the two other corresponding sockets. All switches, LED s, AND gates, and OR gates are equivalent to their respective sets, i.e. Switch A may be interchanged in an experiment with Switch as long as the substitutions are kept track of.

LOGIC GATES ELECTRICAL ENGINEERING: MODULE 1/5 Each of the AND gates and OR gates has an A and input and a Q output (and 3 sockets associated with each of one). The A and inputs are interchangeable and will perform identically if swapped. Wire Socket Pins A C Input A Sockets of AND Gate A1 A3 AND A2 A4 2-input AND Gate 1 2 3 Connector Socket for LED LED s (light) Output Sockets of AND Gates D E F O1 O3 OR + O2 O4 4 5 6 Input Sockets of AND Gates Figure 3: Experimental Logic oard Push utton Switch attery Terminals 2-Input OR Gate

LOGIC GATES ELECTRICAL ENGINEERING: MODULE 1/6 Activity 1: Test A Switch/Light Setup 1. A switch is used to control the flow of electricity in a circuit. It is either closed and allows electrical current to flow through the circuit, or it is open and prevents current from flowing. The switches are labeled A-F in Figure 3, but they may not be labeled on the actual board. The switch is closed (and the current flows) when the switch is depressed and open when it is released. 2. Connect a wire from one of the three holes beside Switch A to one of the three holes beside LED 1. An LED is a Light Emitting Diode. When current flows in the forward direction through the diode it produces light. (A diode is like a one-way street for electrons.) 3. Connect a wire from Switch to LED 2. 4. Connect a long wire from the positive (+) side of the Experiment oard s power terminal to the positive post on the lantern battery. (There is a small hole on the side of the Experiment oard s power terminals that allows a wire to be threaded through and then screwed down tight.) 5. Connect a long wire in a similar manner from the oard s negative (-) terminal to the negative post on the lantern battery. Power is now being supplied to the board. Please disconnect the power before adding or removing wire connections to the oard. Voltage spikes are dangerous to integrated circuits (ICs). 6. Press Switch A. LED 1 should light. Press Switch. LED 2 should light. If either of the LED s fail to light check your connections. If you believe that one of the lights or switches is not functioning properly, try another switch or another LED and see if you can troubleshoot the problem. We can therefore conclude that: A logic switch in the open/unpressed/off state causes an LED lamp monitor to be unlit. This is referred to as the Logic 0 state (sometimes referred to in oolean Algebra as a False condition.) In this example, both the switch and the LED are in the Logic 0 state. There are some circumstances where a switch in the Logic 0 state (off) can cause an LED to be in the Logic 1 state (lit). To do so its logic signals would have to pass through an inverter. A logic switch in the closed/pressed/on state causes an LED lamp monitor to be lighted. This is referred to as the Logic 1 state, or TRUE state.

LOGIC GATES ELECTRICAL ENGINEERING: MODULE 1/7 Activity 2: Determine the Truth Table for a 2-Input AND Gate. 1. Disconnect the power (battery) from the board. Switch 2. Remove the wire connections made in the 2-input AND gate previous activity. A A 3. Connect Switch A to Input A of AND gate Q A2. Take note that the Input connectors of AND gates A2 and A4 are on the left side of the AND gate symbol and the AND gate output (Q) is on the right side of the LED (light) symbol. For gates A1 and A3 the situation is reversed. Figure 4: Activity 2 Schematic 4. Connect Switch to Input of AND gate A2. 5. Connect the Output of AND gate A2 to LED 1. 6. Apply power to the board by reconnecting the battery to the oard s power terminals. 7. Push Switch A and Switch at the same time. LED 1 should light. This indicates that the output of AND gate A2 is at a Logic 1 or TRUE. If the LED doesn t light, recheck your steps for loose connections and try to troubleshoot your system. 8. Vary setting the switches logic levels to match the truth table below of a 2-input AND gate and fill in your results. Check the experimental data with the table in Figure 1. Do they match? Inputs Outputs A Q 0 0 0 1 1 0 1 1

LOGIC GATES ELECTRICAL ENGINEERING: MODULE 1/8 Activity 3: Determine the Truth-Table for a 2-Input OR Gate 1. Disconnect the power from the board. 2. Remove the wire connections made in the previous activity, or substitute a different 2-input OR gate pair of switches and a different LED if you A A would like to keep your Activity 2 circuit Q intact. 3. Connect Switch A to Input A of OR gate O2. The OR gates are in a similar layout to the AND gates. 4. Connect Switch to Input of OR gate O2. Figure 5: Activity 3 Schematic 5. Connect the Output of OR gate O2 to LED 1. 6. Apply power to the board by reconnecting the battery to the oard s power terminals. 7. Push Switch A or Switch. If the LED doesn t light, recheck your steps for loose connections and try to troubleshoot your system. 8. Vary setting the switches logic levels to match the truth table below of a 2-input OR gate and fill in your results. Check the experimental data with the table in Figure 2. Do they match? Inputs Outputs A Q 0 0 0 1 1 0 1 1

LOGIC GATES ELECTRICAL ENGINEERING: MODULE 1/9 Activity 4: Construct A 2-Level OR-AND Circuit And Determine Its Truth Table 1. Disconnect the power from the board. 2. Remove the wire A OR gate O1 connections made in the previous activity. 3. Connect Switch A to Input A of OR gate O1. Q 4. Connect Switch to Input of OR gate O1. C 5. Connect Switch C to Input AND gate A4 A of OR gate O2. 6. Connect Switch D to Input OR gate O2 of OR gate O2. D 7. Connect the Output of OR gate O1 to Input A of AND gate A4. Figure 6: Activity 4 Schematic 8. Connect the Output of OR gate O2 to Input of AND gate A4. 9. Connect the Output of AND gate A4 to LED 1. 10. Apply power to the board by reconnecting the battery to the oard s power terminals. 11. Vary setting the switches logic levels to match the truth table below and fill in your results. Answers to the Truth table are at the end of this module.

LOGIC GATES ELECTRICAL ENGINEERING: MODULE 1/10 Inputs Outputs D C A Q 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1

LOGIC GATES ELECTRICAL ENGINEERING: MODULE 1/11 Activity 5: Construct A 2-Level AND-OR Circuit And Determine Its Truth Table 1. Disconnect the power from the board. 2. Remove the wire A AND Gate A3 connections made in the previous activity. 3. Connect Switch A to Input A of AND gate A3. 4. Connect Switch to Input of AND gate C A3. 5. Connect Switch C to OR Gate O2 Input A of AND gate A4. AND Gate A4 6. Connect Switch D to D Input of AND gate A4. Figure 7: Activity 5 Schematic 7. Connect the Output of AND gate A3 to Input A of OR gate O2. 8. Connect the Output of AND gate A4 to Input of OR gate O2. 9. Connect the Output of OR gate O2 to LED 1. 10. Apply power to the board by reconnecting the battery to the oard s power terminals. 11. Vary setting the switches logic levels to match the truth table below and fill in your results. Answers to the Truth table are at the end of this module.

LOGIC GATES ELECTRICAL ENGINEERING: MODULE 1/12 Inputs Outputs D C A Q 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 Activity 6: Design Your own Logic Circuit Have the students design their own Digital Logic circuits. Here are some examples of some possible designs. Construct a binary adder. Have two switches represent the binary numbers 00, 01, 10, and 11. Have one of three lights light up depending on the results of the switch depressions. No switches pressed = no lights on. If I press the combination 10, then the second LED will light. Reverse the adder. Have each switch be given a value (1-6) and depending on which switch is pressed, have a binary number representation light up on the LED s. Ex. If I press Switch C (3) then LED 1 and LED 2 should light up giving a binary value of 3. Try and construct more difficult binary adders. What are the limitations of this board? You may want to tie this module in with math exercises on oolean Algebra. The logic board does have a limitation in that it does not have any inverters. Can an inverter be built out of AND and OR gates? The answer is no it cannot. There is a gate called a NAND gate which follows the normal AND truth table except at the output (Q) all the 1 s are 0 s and vice versa. The neat thing about NAND gates is that you can duplicate the function of any gate (ANDs, ORs, Inverters, or XORs) by tying together NAND gates in different combinations.

LOGIC GATES ELECTRICAL ENGINEERING: MODULE 1/13 An industrious teacher may want to substitute the AND and OR gates with NAND gates to give the students more experiments in oolean Logic. SOLUTIONS TO ACTIVITY 4 AND 5 TRUTH TALES Activity 4: OR-AND Circuit Activity 5 AND-OR Circuit Inputs Outputs Inputs Outputs D C A Q D C A Q 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 1 0 0 0 1 1 1 1 0 1 1 1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 1 1 1 0 0 1 0 1 0 1 0 1 1 0 1 0 0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 ILIOGRAPHY PETER R. RONY, DAVID G. LARSEN, AND JONATHAN A. TITUS; Introductory Experiments in Digital Electronics. Howard W. Sams & Co., Inc. JOHN A. DEMPSEY; Experimentation with Digital Electronics. Addison-Wesley Publishing Company.