Phoenix Communication System Architecture and Protocols Consolidated Design

Similar documents
ANTARES System Design Iris Public Event, 4-5 February 2013 University of Salzburg Unipark, Salzsburg

SAMARA Satellite communication system for Atm service

Synchronisation Keeping in an Aeronautical Satellite Communications Environment

FEASIBILITY OF LDACS1 CELL PLANNING IN EUROPEAN AIRSPACE

DYNAMIC BANDWIDTH ALLOCATION IN SCPC-BASED SATELLITE NETWORKS

Feb 7, 2018 A potential new Aeronautical Mobile Satellite Route Service system in the 5 GHz band for the RPAS C2 link ICAO WRC19 Workshop, Mexico

LDACS1 Overview and Current Status

SwiftBroadband Safety Frequency Management

Preparation for Internet to Trains Initiative: Broadband on Trains, Analysis of the Opportunity and Development Roadmap Phase 2

Concept of Self-synchronized Automatic Dependent Surveillance using Satellite

Frequency Synchronization in Global Satellite Communications Systems

ETSI SMG#24 TDoc SMG2 898 / 97 Madrid, Spain December 15-19, 1997 Source: SMG2. Concept Group Delta WB-TDMA/CDMA: Evaluation Summary

Offering AMS(R)S Safety Services in the Entire L- Band MSS Allocations

RECOMMENDATION ITU-R M.1167 * Framework for the satellite component of International Mobile Telecommunications-2000 (IMT-2000)

L-DACS2 System Definition Proposal: Deliverable D2

L-DACS1/2 Data Link Analysis Part I: Functional Analysis

Multiple Access (3) Required reading: Garcia 6.3, 6.4.1, CSE 3213, Fall 2010 Instructor: N. Vlajic

Satcom for Railway Communications - Benefits in a Bearer Flexible Scenario

The L*IP Access System

Chapter 2 Overview. Duplexing, Multiple Access - 1 -

Cellular systems 02/10/06

GTBIT ECE Department Wireless Communication

Level 6 Graduate Diploma in Engineering Wireless and mobile communications

RECOMMENDATION ITU-R BO.1834*

Multiple Access. Difference between Multiplexing and Multiple Access

Page 1. Problems with 1G Systems. Wireless Wide Area Networks (WWANs) EEC173B/ECS152C, Spring Cellular Wireless Network

MOBILE COMPUTING 4/8/18. Basic Call. Public Switched Telephone Network - PSTN. CSE 40814/60814 Spring Transit. switch. Transit. Transit.

ADJACENT BAND COMPATIBILITY OF TETRA AND TETRAPOL IN THE MHZ FREQUENCY RANGE, AN ANALYSIS COMPLETED USING A MONTE CARLO BASED SIMULATION TOOL

Wireless and Mobile Network Architecture. Outline. Introduction. Cont. Chapter 1: Introduction

Analysis of L-Band L Digital Aeronautical Communication Systems: L-DACS1 and L-DACS2L

Wireless and Mobile Network Architecture

Network Management System for Telecommunication and Internet Application

DOWNLINK AIR-INTERFACE...

INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA

Medium Access Control. Wireless Networks: Guevara Noubir. Slides adapted from Mobile Communications by J. Schiller

Multiple Access System

B-VHF Operational Concept

RECOMMENDATION ITU-R S.1063 * Criteria for sharing between BSS feeder links and other Earth-to-space or space-to-earth links of the FSS

Satellite Communications. Chapter 9

Satellite Communications. Chapter 9

Opportunistic Vehicular Networks by Satellite Links for Safety Applications

Aeronautical Communication Systems: L-DACS1 L

Final Project Report. Abstract. Document information

Data and Computer Communications. Chapter 10 Cellular Wireless Networks

COSC 3213: Computer Networks I Instructor: Dr. Amir Asif Department of Computer Science York University Section B

Emerging Digital Radio Services

INTEGRITY AND CONTINUITY ANALYSIS FROM GPS JULY TO SEPTEMBER 2016 QUARTERLY REPORT

Chapter 6 Solution to Problems

Access Methods and Spectral Efficiency

SC - Single carrier systems One carrier carries data stream

Bandwidth Utilization:

Mobile Communication Systems. Part 7- Multiplexing

ARTES 10 Phase 1 workplan of activities.

WHAT PUSHED US INTO HTS SYSTEMS?

Mobile Communication and Mobile Computing

ISHIK UNIVERSITY Faculty of Science Department of Information Technology Fall Course Name: Wireless Networks

Frequency bands and transmission directions for data relay satellite networks/systems

TS 5G.201 v1.0 (2016-1)

MACHINE TO MACHINE (M2M) COMMUNICATIONS-PART II

Mobile Wireless Communications - Overview

Multiple Access Techniques for Wireless Communications

Protection criteria for Cospas-Sarsat local user terminals in the band MHz

RECOMMENDATION ITU-R M.1468* TECHNICAL CHARACTERISTICS AND SHARING SCENARIOS OF SATELLITE SYSTEMS OFFERING MULTIPLE SERVICES. (Question ITU-R 104/8)

Reti di Telecomunicazione. Channels and Multiplexing

Chapter 3. TETRA overview: a cellular system different from GSM

Introduction to Wireless Networks p. 1 Evolution of Wireless Networks p. 2 Early Mobile Telephony p. 2 Analog Cellular Telephony p.

Mobile Network Evolution Part 1. GSM and UMTS

Planning of LTE Radio Networks in WinProp

RECOMMENDATION ITU-R F Radio interface standards for broadband wireless access systems in the fixed service operating below 66 GHz

RECOMMENDATION ITU-R M.1184

ADJACENT BAND COMPATIBILITY OF 400 MHZ TETRA AND ANALOGUE FM PMR AN ANALYSIS COMPLETED USING A MONTE CARLO BASED SIMULATION TOOL

Continuous Monitoring Techniques for a Cognitive Radio Based GSM BTS

INTRODUCTION TO WIRELESS SENSOR NETWORKS. CHAPTER 3: RADIO COMMUNICATIONS Anna Förster

ETSI SMG#24 TDoc SMG 903 / 97. December 15-19, 1997 Source: SMG2. Concept Group Alpha - Wideband Direct-Sequence CDMA: System Description Summary

P. 241 Figure 8.1 Multiplexing

DRAFT ICAO TECHNICAL SPECIFICATION FOR AERONAUTICAL MOBILE SATELLITE (ROUTE) SERVICE (AMS(R)S) PROVIDED BY IRIDIUM SATELLITE SYSTEM

Background: Cellular network technology

MANUAL FOR ICAO AERONAUTICAL MOBILE SATELLITE (ROUTE) SERVICE Part 2-IRIDIUM. DRAFT v March 2007

RESOLUTION 155 (WRC-15)

Future Concepts for Galileo SAR & Ground Segment. Executive summary

Technical Aspects of LTE Part I: OFDM

Satellite Navigation Principle and performance of GPS receivers

Future Communications Infrastructure - Technology Investigations Description of AMACS

TELE4652 Mobile and Satellite Communications

Future Aeronautical Communication System - FCI

BASIC CONCEPTS OF HSPA

ON-AIR MULTIPLEXED UPLINKING OF EUREKA-147 DAB TO EMS

Novel Satellite Random Access E-SSA Receiver with SIC Simulation and Prototyping

Minimum requirements related to technical performance for IMT-2020 radio interface(s)

Cooperation in Random Access Wireless Networks

ETSI TS V1.3.1 ( )

Wireless Medium Access Control and CDMA-based Communication Lesson 14 CDMA2000

Wireless WANS and MANS. Chapter 3

We are IntechOpen, the first native scientific publisher of Open Access books. International authors and editors. Our authors are among the TOP 1%

New Cross-layer QoS-based Scheduling Algorithm in LTE System

Mobile Computing. Chapter 3: Medium Access Control

DEVELOPMENT OF A DIGITAL TERRESTRIAL FRONT END

3GPP: Evolution of Air Interface and IP Network for IMT-Advanced. Francois COURAU TSG RAN Chairman Alcatel-Lucent

ICT 5305 Mobile Communications. Lecture - 4 April Dr. Hossen Asiful Mustafa

Smart Antenna ABSTRACT

Transcription:

ESA Artes-10 Iris Phoenix Communication System Architecture and Protocols Consolidated Design Robert Schweikert (AUDENS ACT) Markus Werner (TriaGnoSys) ESTEC, Noordwijk 06.02.2009

Presentation Outline Overview of objectives and scope of work AMSS basics Enhanced AMSS ( AMSS+ ) design System dimensioning Sensitivity studies Summary and Conclusions (AMSS = Aeronautical Mobile Satellite Service) Phoenix Final Presentation ESTEC, Noordwijk, 06.02.2009 2

Objectives and Work Performed Based on existing Aeronautical Mobile Satellite Service (AMSS) as specified in ICAO SARPS: Development of extensions to meet future key user requirements Reuse as much AMSS protocol design as appropriate Focus on lower layers: Physical & link layer, incl. FEC coding Channel structure and rates Communication system architecture & dimensioning Protocol design impact Capacity analysis, channel & bandwidth dimensioning Link budgets & satellite parameters Sensitivity analyses Phoenix Final Presentation ESTEC, Noordwijk, 06.02.2009 3

Aeronautical Mobile Satellite Service (AMSS) Key Characteristics ICAO approved air-ground data & voice communications including safety-critical services P- channel ( 10.5 kbps) Forward (FWD) direction, user traffic and signaling Time Division Multiplexing (TDM) T- channel ( 10.5 kbps) Return (RTN) direction, user data/messages Time Division Multiple Access (TDMA) R- channel ( 10.5 kbps) Return (RTN) direction, signaling/system managm. & user data Random Access (slotted ALOHA) channel (contention based) C- channel ( 21 kbps) Bi-directional circuit mode voice and data Phoenix Final Presentation ESTEC, Noordwijk, 06.02.2009 4

Requirements, Assumptions, Constraints Phoenix key input and requirements COCR mainly short messages stringent delay requirements Voice comm.: a few seconds lasting message exchange Phoenix key challenges Increase bandwidth efficiency (e.g. reduction of guard spaces) Login, initial terminal acquisition without any navigation aid Meet specific AES terminal constraints Single TX channel Low gain antenna Tackle inherent multiple access efficiency issue <-> resource management Phoenix Final Presentation ESTEC, Noordwijk, 06.02.2009 5

Key Design Elements for AMSS+ (1) Removal of the C-Channel concept; incorporation of voice data onto the P-channel in forward, and in the T-channel in return direction, respectively, Introduction of a modified P-channel with a channel bit rate of 42 kbps in forward direction, Introduction of 21 kbps modified T- and R- channel in return direction Proposed channel rates are a result of trade-off mainly between delay requirements and link budget limitations Phoenix Final Presentation ESTEC, Noordwijk, 06.02.2009 6

Key Design Elements for AMSS+ (2): Queuing Analysis / Meeting Delay Requirements Strictly following the COCR queuing analysis, adapted to satellite case Tx delay (sec) Service Class Considering all applicable message/packet overheads Key requirement is the total delay (TT 95 ) including all delay elements Available delay for queuing (sec) P-channel rates (kbps) T-channel rates (kbps) Forward Return 21 42 10,5 21 NETCONN DG-A 0,19 0,10 0,47 0,26 9,43 8,73 NETKEEP DG-A 0,12 0,06 0,34 0,19 9,47 8,80 ACL DG-C 0,12 0,06 0,34 0,19 1,07 0,40 ACM DG-C 0,16 0,08 0,34 0,19 1,05 0,40 AMC DG-D 0,12 0,06 0,00 0,00 3,47 2,99 ARMAND DG-D 0,31 0,16 0,34 0,19 4,27 3,70 C&P ACL DG-D 0,12 0,06 0,34 0,19 2,07 1,40 COTRAC (interactive) DG-D 2,32 1,17 4,03 2,13 0,96-0,54 COTRAC (Wilco) DG-D 1,91 0,96 4,03 2,13 1,17-0,54 D-ALERT DG-D 0,11 0,06 3,36 1,78 2,07-0,19 D-ATIS (arrival) DG-D 0,13 0,06 0,34 0,19 2,07 1,40 DLL DG-D 0,58 0,29 0,64 0,34 4,14 3,55 D-ORIS DG-D 0,56 0,28 0,34 0,19 1,85 1,40 D-OTIS DG-D 0,24 0,12 0,38 0,21 2,01 1,38 D-RVR DG-D 0,15 0,07 0,42 0,23 2,06 1,36 DSC DG-D 0,12 0,06 0,32 0,18 8,87 8,21 D-SIGMET DG-D 0,16 0,08 0,43 0,24 2,05 1,35 DYNAV DG-D 0,62 0,31 0,32 0,18 4,12 3,71 FLIPCY DG-D 0,13 0,07 0,53 0,28 2,06 1,31 FLIPINT DG-D 0,18 0,09 8,07 4,27 2,04-2,68 ITP ACL DG-D 0,12 0,06 0,34 0,19 2,07 1,40 M&S ACL DG-D 0,12 0,06 0,34 0,19 2,07 1,40 PPD DG-D 0,13 0,07 0,87 0,47 4,36 3,42 SAP (Contract Establishment) DG-D 0,12 0,06 0,36 0,20 2,07 1,39 SAP (Periodic Report) DG-D 0,00 0,00 0,38 0,21 2,13 1,38 URCO DG-D 0,13 0,06 0,32 0,18 2,07 1,41 Phoenix Final Presentation ESTEC, Noordwijk, 06.02.2009 7

Key Design Elements for AMSS+ (3) In forward and return direction, the application of more efficient FEC, (such as turbo coding, rate 1/2 (data), rate 2/3 (voice) In forward direction, pre-compensation of the Doppler on the feeder uplink due to satellite motions as well as satellite oscillator drifts In return direction, establishment of closed loop (GES AES) frequency & timing control Phoenix Final Presentation ESTEC, Noordwijk, 06.02.2009 8

Key Design Elements for AMSS+ (4): Random Access Because of permissible traffic load ~ 20%! of channel capacity on R/A -channel only signaling/system management data but no user data; For services requiring e.g. a periodic message transfer over a longer period of time (such as reporting type service) the allocation of a fixed resource share on the T-channel; Signaling on R/A channel (resource request, termination info) only at beginning and end of the service Phoenix Final Presentation ESTEC, Noordwijk, 06.02.2009 9

Key Design Elements for AMSS+ (5): P- and T- Channel Parameters Phoenix Final Presentation ESTEC, Noordwijk, 06.02.2009 10

Key Design Elements for AMSS+ (6): R/A-Channel Concept and Parameters Supports fixed assignment and random access Phoenix Final Presentation ESTEC, Noordwijk, 06.02.2009 11

Handover and Mobility Handover of AES between (i) ground earth stations (GES) and (ii) beams/satellites is basically supported in AMSS Beam and GES handovers in current AMSS require log-off/log-on of AES with corresponding communication interruption To meet future ATM comms requirements, further work on AMSS+ should include seamless handover frequency/timing synchronisation between intra-ges and inter- GES carriers Integration with higher-layer mobility (e.g., mobile IP) is important for future work consider existing frameworks (ETSI-BSM/SI-SAP, IEEE 802.21) consider ongoing project work (NEWSKY etc.) Phoenix Final Presentation ESTEC, Noordwijk, 06.02.2009 12

System-Level Issues of Comms System Design Overall capacity and bandwidth requirements over space and time break-down into channels and services Potential of frequency reuse Link budgets (for spot beams) Phoenix Final Presentation ESTEC, Noordwijk, 06.02.2009 13

Considered Services and Modelling Approach ATS (addressed) data - COCR message/queuing models AOC (addressed) data - COCR message/queuing models ATS voice - COCR voice parameters/erlang model AOC voice - ECTL voice parameters/erlang model (Broadcast and surveillance) - COCR message/queuing models Domain-specific message and call parameters according to COCR Completely parametric calculation/simulation throughout Propagation, MAC, and transmission delays considered before queuing analysis! Phoenix Final Presentation ESTEC, Noordwijk, 06.02.2009 14

Spot Beam System and Frequency Plan Phoenix Final Presentation ESTEC, Noordwijk, 06.02.2009 15

Reference Results: Normalized Worst Case Capacity and Channels Beam/Area Worst Case Capacities Required Number of Channels FWD RTN RTN Reservat. P T T R/A (voice+data) (voice+data) (surv.) Requests (v.+d.) (v.+d.) (surv.) [kbit/s] [kbit/s] [kbit/s] [req./s] S1 14,2% 11,4% 6,0% 0,8% 6,7% 10,5% 6,2% 1,6% S2 4,0% 3,0% 0,8% 0,1% 2,0% 3,0% 1,0% 0,2% S3 8,4% 5,1% 2,0% 0,4% 3,8% 4,8% 2,0% 0,8% S4 38,0% 28,9% 19,0% 2,7% 16,7% 26,8% 19,2% 4,8% S5 10,5% 7,1% 3,2% 0,5% 4,8% 6,5% 3,4% 1,0% S6 7,6% 4,6% 1,7% 0,3% 3,6% 4,4% 1,8% 0,6% ECAC non-adaptive 82,8% 60,1% 32,5% 4,8% 37,5% 56,0% 33,5% 8,9% ECAC adaptive 76,8% 56,5% 30,3% 4,3% 34,1% 52,2% 30,8% 7,7% R1 1,9% 1,4% 1,0% 0,2% 1,0% 1,4% 1,0% 0,4% R2 2,3% 1,1% 0,3% 0,1% 1,0% 1,2% 0,4% 0,4% R3 2,6% 1,2% 0,3% 0,2% 1,2% 1,2% 0,4% 0,4% R4 1,5% 0,9% 0,1% 0,1% 0,8% 1,0% 0,2% 0,2% R5 1,1% 0,9% 0,1% 0,0% 0,6% 1,0% 0,2% 0,2% R6 1,2% 0,9% 0,1% 0,0% 0,6% 1,0% 0,2% 0,2% R7 1,7% 0,9% 0,1% 0,1% 0,8% 1,0% 0,2% 0,2% SAT non-adaptive 95,1% 67,4% 34,6% 5,4% 43,5% 63,7% 36,1% 10,9% SAT adaptive 87,2% 63,1% 32,0% 4,8% 38,7% 58,7% 32,5% 8,7% Normalized RTN capacity 100% Normalized RTN channels 100% Phoenix Final Presentation ESTEC, Noordwijk, 06.02.2009 16

Conclusions from Numerical Results Exclusion of surveillance services 30% less mobile uplink bandwidth Dominance of ECAC over rest of satellite/regional beams Dominance of ECAC center beam S4 > 50% of total traffic Hence, frequency reuse will be heavily limited by the inhomogeneous traffic demand saves some 30% in the overall bandwidth requirements, and thus achieves the upper limit of possible gain (for this number of beams) Adaptive configuration is supposed to gain some 10%, exploiting peak loads per beam appearing at different times of the day Phoenix Final Presentation ESTEC, Noordwijk, 06.02.2009 17

Sensitivity Analysis (1): Scenario / Airspace Partitioning Worst-case scenario: satellite serves 100% of the traffic in all domains Beam/Area Worst Case Capacities Required Number of Channels FWD RTN RTN Reservat. P T T R/A (voice+data) (voice+data) (surv.) Requests (v.+d.) (v.+d.) (surv.) [kbit/s] [kbit/s] [kbit/s] [req./s] ECAC non-adaptive 82,8% 60,1% 32,5% 4,8% 37,5% 56,0% 33,5% 8,9% ECAC adaptive 76,8% 56,5% 30,3% 4,3% 34,1% 52,2% 30,8% 7,7% SAT non-adaptive 95,1% 67,4% 34,6% 5,4% 43,5% 63,7% 36,1% 10,9% SAT adaptive 87,2% 63,1% 32,0% 4,8% 38,7% 58,7% 32,5% 8,7% Reduced scenario: 87% 100% 87% 100% satellite does not serve APT, 5% of TMA, 5% of ENR voice, 50% of ENR data, and 100% of ORP traffic. Beam/Area Worst Case Capacities RTN RTN FWD (voice+data) (voice+data) (surv.) Requests FWD (v.+d.) (v.+d.) (surv.) Required Number of Channels FWD RTN RTN Reservat. P T T R/A [kbit/s] [kbit/s] [kbit/s] [req./s] ECAC non-adaptive 20,8% 4,3% 3,9% 1,7% 8,9% 4,8% 4,6% 3,6% ECAC adaptive 18,8% 4,0% 3,5% 1,5% 7,9% 4,0% 3,6% 2,6% SAT non-adaptive 30,8% 9,9% 5,2% 2,2% 13,9% 11,1% 6,5% 5,4% SAT adaptive 27,1% 9,2% 4,5% 1,8% 11,5% 9,1% 4,8% 3,4% 27% 15% 12% 17% Phoenix Final Presentation ESTEC, Noordwijk, 06.02.2009 18

Sensitivity Analysis (2): Service Parameter Values There are some dominating /critical services Their inclusion and/or specific parameter values may influence the total capacity requirements significantly The design freedom to slightly exceed a particular message delay requirement may impact significantly as well Some sensitivity studies have shown tens of percent or even a few orders of magnitude differences There are other less impacting services For instance, the exact call duration of AOC/ATC voice is not that critical Phoenix Final Presentation ESTEC, Noordwijk, 06.02.2009 19

Summary & Conclusions Work done Enhanced AMSS (AMSS+) protocol design Comm. system architecture and dimensioning Main findings A workable solution extending an existing protocol is possible Approach selected so far is considered a good starting point for potential further optimisation / efficiency increase Recommendations for future work Many of the lessons learnt applicable to both other starting points/ existing protocols new protocol design Impact factors to be monitored and/or fixed COCR message set and detailed requirements technology/user terminal development Phoenix Final Presentation ESTEC, Noordwijk, 06.02.2009 20