KOMPSAT Constellation. November 2012 Satrec Initiative

Similar documents
Introduction to KOMPSAT

Geospatial Vision and Policies Korean Industry View 26 November, 2014 SI Imaging Services

Big picture with KOMPSAT KOMPSAT-3A / KOMPSAT-3 / KOMPSAT-5 / KOMPSAT-2

OVERVIEW OF KOMPSAT-3A CALIBRATION AND VALIDATION

Futrajaya, Malaysia JULY 12, Jeong Heon SONG. Korea Aerospace Research Institution

Advanced Optical Satellite (ALOS-3) Overviews

9/12/2011. Training Course Remote Sensing Basic Theory & Image Processing Methods September 2011

Operational Space-Based Imaging Systems

WHAT IS NEXT IN EARTH OBSERVATION. SkyMed Mission

ROLE OF SATELLITE DATA APPLICATION IN CADASTRAL MAP AND DIGITIZATION OF LAND RECORDS DR.T. RAVISANKAR GROUP HEAD (LRUMG) RSAA/NRSC/ISRO /DOS HYDERABAD

FORMOSAT-2, KOMPSAT-2, ASTROTERRA

The Sentinel-1 Constellation

US Commercial Imaging Satellites

CHARACTERISTICS OF VERY HIGH RESOLUTION OPTICAL SATELLITES FOR TOPOGRAPHIC MAPPING

Drafting Committee for the Asia Pacific Plan of Action for Space Applications for Sustainable Development ( ) Republic of Korea

PLANET IMAGERY PRODUCT SPECIFICATIONS PLANET.COM

Time Trend Evaluations of Absolute Accuracies for PRISM and AVNIR-2

FORMOSAT-5. - Launch Campaign-

Monitoring Natural Disasters with Small Satellites Smart Satellite Based Geospatial System for Environmental Protection

The DigitalGlobe Constellation. World s Largest Sub-Meter High Resolution Satellite Constellation

NON-PHOTOGRAPHIC SYSTEMS: Multispectral Scanners Medium and coarse resolution sensor comparisons: Landsat, SPOT, AVHRR and MODIS

KONGSBERG SATELLITE SERVICES 2017 Line Steinbakk, Director Programs. Himmel og hav - Ålesund 3. Oktober 2017

Sentinel-1 System Overview

The world s most advanced constellation

GMES DA COPERNICUS

NovaSAR-S - Bringing Radar Capability to the Disaster Monitoring Constellation

DEMS BASED ON SPACE IMAGES VERSUS SRTM HEIGHT MODELS. Karsten Jacobsen. University of Hannover, Germany

KOMPSAT-2 DIRECT SENSOR MODELING AND GEOMETRIC CALIBRATION/VALIDATION

KEY TECHNOLOGY DEVELOPMENT FOR THE ADVENACED LAND OBSERVING SATELLITE

HEMERA Constellation of passive SAR-based micro-satellites for a Master/Slave configuration

Sentinel-1 Overview. Dr. Andrea Minchella

Table of Contents 1. INTRODUCTION KOMPSAT-3 SYSTEM OVERVIEW Mission Orbit Mission Constraints Imaging Modes...

Aral Sea profile Selection of area 24 February April May 1998

Title of presentation runs here on two lines / Arial Regular 30 pt

A Constellation of CubeSats for Amazon Rainforest Deforestation Monitoring

Mission requirements and satellite overview

Geomatica OrthoEngine v10.2 Tutorial Orthorectifying ALOS PRISM Data Rigorous and RPC Modeling

Summary of the VHR image acquisition Campaign 2014 and new sensors for 2015

PLANET IMAGERY PRODUCT SPECIFICATION: PLANETSCOPE & RAPIDEYE

An integrated telemetry system for multi-satellite operations

TerraSAR-X Calibration Status 2 Years in Flight

New capabilities in Earth Observation for agriculture

Planet Labs Inc 2017 Page 2

Advanced Meteorological Imager (AMI) Development for GEO-KOMPSAT-2A

Lecture 6: Multispectral Earth Resource Satellites. The University at Albany Fall 2018 Geography and Planning

Introduction to Radar

Compact High Resolution Imaging Spectrometer (CHRIS) siraelectro-optics

School of Rural and Surveying Engineering National Technical University of Athens

PALSAR SCANSAR SCANSAR Interferometry

ROSCOSMOS Agency Report. 36 th CEOS WGCV Plenary May 2013, Shanghai, China

Trend of Small EO Satellites and Their Applications

Sensor resolutions from space: the tension between temporal, spectral, spatial and swath. David Bruce UniSA and ISU

WorldView-2. WorldView-2 Overview

PEGASUS : a future tool for providing near real-time high resolution data for disaster management. Lewyckyj Nicolas

3/31/03. ESM 266: Introduction 1. Observations from space. Remote Sensing: The Major Source for Large-Scale Environmental Information

News on Image Acquisition for the CwRS Campaign new sensors and changes

IKONOS High Resolution Multispectral Scanner Sensor Characteristics

Rich Data, Cheap Satellites

Abstract Quickbird Vs Aerial photos in identifying man-made objects

Remote Sensing Platforms

Coral Reef Remote Sensing

FEDERAL SPACE AGENCY SOVZOND JSC компания «Совзонд»

Commissioning of the NigeriaSat-2 High Resolution Imaging Mission

Korea s First Satellite for Satellite Laser Ranging

European Space Imaging. Your Partner for Very High-Resolution Satellite Imagery GEOGRAPHIC

The Current Status and Brief Results of Engineering Model for PALSAR-2 onboard ALOS-2 and Science Project

Affordable space based radar for homeland security

EVALUATION OF PLEIADES-1A TRIPLET ON TRENTO TESTFIELD

RADARSAT-2 and RCM Conjunction Analysis and Mitigation Operations

RECONNAISSANCE PAYLOADS FOR RESPONSIVE SPACE

ERS/ENVISAT ASAR Data Products and Services

Hyper-spectral, UHD imaging NANO-SAT formations or HAPS to detect, identify, geolocate and track; CBRN gases, fuel vapors and other substances

Utilization of Radar data for Maritime Surveillance

Data Sharing Issues in SE Asia

7.7 TerraSAR-X & TanDEM-X

COSMO-SkyMed Mission Status Presented by Fabrizio BATTAZZA (ASI)

TechTime New Mapping Tools for Transportation Engineering

Topographic mapping from space K. Jacobsen*, G. Büyüksalih**

Changing the economics of space. Redefining the word Responsive in Operationally Responsive Space

SPOT6. Impact of Spot 6 and 7 in the Constitution and Update of Spatial Data Infrastructures over Africa

9/12/2011. Training Course Remote Sensing Basic Theory & Image Processing Methods September 2011

GEO 428: DEMs from GPS, Imagery, & Lidar Tuesday, September 11

The Ability of a Small Satellite Constellation to Tip and Cue Other Commercial Assets

TerraSAR-X Applications Guide

EARTH OBSERVATION WITH SMALL SATELLITES

First inflight results of Pleiades-1A innovative methods for optical calibration

COSMO-SkyMed Mission Status Presented by Giovanni VALENTINI (ASI)

The Role of RADARSAT-2 for Flood and Agriculture Monitoring

Maximize Utilization of the performance of EOSs and strengthen. The First Steering Committee Secretariat JAXA

Synthetic Aperture Radar for Rapid Flood Extent Mapping

STRATEGIC CHOICES FOR SMALL AND MIDDLE POWERS

TerraSAR-X Applications Guide

SAR Interferometry Capabilities of Canada's planned SAR Satellite Constellation

Remote Sensing Platforms

A CONCEPT FOR NATURAL GAS TRANSMISSION PIPELINE MONITORING BASED ON NEW HIGH-RESOLUTION REMOTE SENSING TECHNOLOGIES

The studies began when the Tiros satellites (1960) provided man s first synoptic view of the Earth s weather systems.

Copernicus Introduction Lisbon, Portugal 13 th & 14 th February 2014

PLANET IMAGERY PRODUCT SPECIFICATION: PLANETSCOPE & RAPIDEYE

Forest Discrimination Analysis of Combined Landsat and ALOS-PALSAR Data

Indian Remote Sensing Satellites

Transcription:

KOMPSAT Constellation November 2012 Satrec Initiative

KOMPSAT Constellation KOMPSAT National program Developed and operated by KARI (Korea Aerospace Research Institute) Dual use : Government & commercial Worldwide imagery distribution by Satrec Initiative KOMPSAT-2 2006.7.28 ~ 1.0 m EO Payload LTAN : 10:50 KOMPSAT-5 To be launched early 2013 1.0 m SAR Payload LTAN : 6:00 KOMPSAT-3 2012.5.18 ~ 0.7 m EO Payload LTAN : 13:30-2 -

KOMPSAT Data Continuity 06 07 08 09 10 11 12 13 14 15 16 17 18 Operation Life : 7 years (Expected) KOMPSAT-2 (Optic 1m) Design Life : 3 years KOMPSAT-5 (SAR 1m) Operation Life : 7 years (Expected) Design Life : 5 years KOMPSAT-3 (Optic 0.7m) - 3 - Operation Life : 7 years (Expected) Design Life : 4 years Korean Government has clear policy to have high resolution imagery by own satellites

Space Program of Korea National Space Program - 4 -

KOMPSAT-2 Alternate 1m View

KOMPSAT-2 Specifications Launch Ground Sampling Distance Swath Width 2006.07.28 from Plesetsk Cosmodrome in Northern Russia PAN : 1.0 m @altitude 685km(nadir) MS : 4.0 m @altitude 685km(nadir) 15 km (nadir) Spectral Bands PAN : 500 ~ 900 nm MS2 (Blue) MS1 (Green) MS4 (Red) MS3 (NIR) : 450 ~ 520 nm : 520 ~ 600 nm : 630 ~ 690 nm : 760 ~ 900 nm Modulation Transfer Function > 10% Signal to Noise > 100 Location Accuracy Orbit < 80 m (CE90, with POD/PAD) Sun Synchronous Orbit Altitude : 685 km Inclination : 98.127 degree MLTAN : 10:50-6 -

Huge Archive More than 40,000 Million km 2 all over the world - 7 -

Good for Large Area Mapping Higher duty cycle 20% per orbit Max 15 km x 7900 km per orbit Large collection capacity Daily collection capability of 1,700,000 km 2-8 -

KOMPSAT-3 KOMPSAT-3 Sub-meter in the Afternoon - 9 -

KOMPSAT-3 Specification Ground Sampling Distance Swath Width PAN : 0.7 m @altitude 685km(nadir) MS : 2.8 m @altitude 685km(nadir) 15 km (nadir) Spectral Bands PAN : 450 ~ 900 nm MS1 (Blue) MS2 (Green) MS3 (Red) MS4 (NIR) : 450 ~ 520 nm : 520 ~ 600 nm : 630 ~ 690 nm : 760 ~ 900 nm Modulation Transfer Function System MTF at Nyquist fr. For PAN : 8% System MTF at Nyquist fr. For MS : 12% (at strip imaging mode) Signal to Noise > 100 Location Accuracy Orbit Collection Capability < 70 m CE90 Sun Synchronous Orbit Altitude : 685.13 ± 1km Eccentricity : 0 to 0.001 Inclination : 98.14 ± 0.05 degree MLTAN : 13:30 +10/-15 min 300,000 km 2 / day - 10 -

Very High Resolution 70 cm ground resolution KOMPSAT-2 KOMPSAT-3-11 -

More Information per Pixel Highest bits per pixel among the commercial imagery 14 bits per pixel - 12 -

Better Agility Enhanced agility than KOMPSAT-2 2 1 KOMPSAT-2 KOMPSAT-3-13 -

Another Chance to Monitor Unique local time in the afternoon LTAN at 13:30 Monitor twice a day when complemented with KOMPSAT-2 or any other morning pass satellite KOMPSAT-2 at 10:50 KOMPSAT-3 at 13:30-14 -

Product Level Product level Product Level Absolute Accuracy, CE90 Processing 1R (Basic) 1R (Option) 1G (Standard) Specification :285.0 m Expected < 80.0 m Specification : 70.0 m Expected < 40 m (exclusive of terrain effects) Specification : 70.0 m Expected < 40 m (exclusive of terrain effects) -Without GCP -Using OD/AD -Radiometric Correction -Sensor Correction -MTF Compensation -Geo-information Included -Without GCP -Using POD/PAD -Radiometric Correction -Sensor Correction -MTF Compensation -Geo-information Included -Without GCP -Using POD/PAD -Radiometric Correction -Sensor Correction -MTF Compensation -Geometrical Correction -PAN-MS Registration - 15 -

KOMPSAT-5 High Resolution SAR

KOMPSAT-5 Launch To be launched in Q1, 2013 Orbit Sun-Synchronous, Dawn-dusk 550 km mean altitude with 97.6 deg. Inclination ~ 4 times contacts per day Two dawn contacts between 04 hr and 08 hr local time Two dusk contacts between 17 hr and 21 hr local time Duty: 2 minutes per orbit Revisit time 24 hours on average - 17 -

KOMPSAT-5 Payload SAR (Synthetic Aperture Radar) similar design with Cosmo- SKYMed Imaging performance at 45 degree incidence angle Range Resolution Azimuth Resolution Swath Remark Spotlight Mode (HR) 1m 1m 5 km 5 km x 5 km Strip Mode (ST) 3m 3m 30 km ScanSAR (WS) 20m 20m 100 km - 18 -

KOMPSAT Constellation KOMPSAT Constellation increases your imaging capability: KOMPSAT-2 (1m EO), KOMPSAT-3 (0.7m EO) and KOMPSAT-5 (1m SAR) constellation KOMPSAT-2 provides longer imaging time per pass (high duty cycle, ~20 minutes) KOMPSAT-3 provides another chance to monitor in the afternoon KOMPSAT-5 provides all weather, day and night imaging capability Data continuity by long-term Government Program - 19 -

KOMPSAT Constellation Large area mapping by KOMPSAT-2 SAR & EO fusion by KOMPSAT-3 & KOMPSAT-5 Change detection & stereogram by KOMPSAT-2 & KOMPSAT-3 4 times imaging per day in spotlight, strip and scansar mode by KOMPSAT-5 KOMPSAT-2 Single pass stereo by KOMPSAT-3 KOMPSAT-3 KOMPSAT-5-20 -

We Are At Your Service Kompsat-3 in Dubai