All-optical AND gate with improved extinction ratio using signal induced nonlinearities in a bulk semiconductor optical amplifier

Similar documents
All-optical clock division at 40 GHz using a semiconductor amplifier. nonlinear interferometer

Experimental demonstration of both inverted and non-inverted wavelength conversion based on transient cross phase modulation of SOA

SOA-BASED NOISE SUPPRESSION IN SPECTRUM-SLICED PONs: IMPACT OF BIT-RATE AND SOA GAIN RECOVERY TIME

OCIS codes: ( ) Optical logic; ( ) lasers, injection-locked.

To investigate effects of extinction ratio on SOA based wavelength Converters for all Optical Networks

Simulation of All-Optical XOR, AND, OR gate in Single Format by Using Semiconductor Optical Amplifiers

Implementation of All-Optical Logic AND Gate using XGM based on Semiconductor Optical Amplifiers

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber

Study of All-Optical Wavelength Conversion and Regeneration Subsystems for use in Wavelength Division Multiplexing (WDM) Telecommunication Networks.

Performance Evaluation of Wavelength Conversion Using a Wideband Semiconductor Optical Amplifier at 40 Gbit/s

Theoretical and experimental study of fundamental differences in the noise suppression of high-speed SOA-based all-optical switches

RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

Semiconductor Optical Amplifiers with Low Noise Figure

A broadband fiber ring laser technique with stable and tunable signal-frequency operation

A proposal for two-input arbitrary Boolean logic gates using single semiconductor optical amplifier by picosecond pulse injection

Title. Author(s)Saitoh, Emi; Kawaguchi, Yuki; Saitoh, Kunimasa; Kosh. CitationOptics Express, 19(17): Issue Date

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010

PHASE TO AMPLITUDE MODULATION CONVERSION USING BRILLOUIN SELECTIVE SIDEBAND AMPLIFICATION. Steve Yao

ANALYSIS OF THE CROSSTALK IN OPTICAL AMPLIFIERS

All Optical Universal logic Gates Design and Simulation using SOA

Application Instruction 001. The Enhanced Functionalities of Semiconductor Optical Amplifiers and their Role in Advanced Optical Networking

All-Optical Signal Processing and Optical Regeneration

Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise

Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity

Extending the Offset Frequency Range of the D2-135 Offset Phase Lock Servo by Indirect Locking

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers

All-optical logic gates using a semiconductor optical amplifier assisted by an optical filter

All-optical NRZ to RZ format and wavelength converter by dual-wavelength injection locking

SCIENCE CHINA Technological Sciences. A flexible multi-16qam transmitter based on cascaded dual-parallel Mach-Zehnder modulator and phase modulator

Packet clock recovery using a bismuth oxide fiber-based optical power limiter

Eye-Diagram-Based Evaluation of RZ and NRZ Modulation Methods in a 10-Gb/s Single-Channel and a 160-Gb/s WDM Optical Networks

Multi-format all-optical-3r-regeneration technology

Gigabit Transmission in 60-GHz-Band Using Optical Frequency Up-Conversion by Semiconductor Optical Amplifier and Photodiode Configuration

Differential measurement scheme for Brillouin Optical Correlation Domain Analysis

A HIGH SPEED WDM PON FOR DOWNSTREAM DPSK ASK SIGNALS AND UPSTREAM OOK SIGNAL WITH BROADCAST CAPABILTY

All-optical logic based on silicon micro-ring resonators

All-Optical Clock Division Using Period-one Oscillation of Optically Injected Semiconductor Laser

Characterization of the Semiconductor Optical Amplifier for Amplification and Photonic Switching Employing the Segmentation Model

Module 16 : Integrated Optics I

Dynamic gain-tilt compensation using electronic variable optical attenuators and a thin film filter spectral tilt monitor

Simultaneous Four-Wave Mixing and Cross-Gain Modulation for Implementing All Optical Full Adder without Assist Light

Performance of Optical Encoder and Optical Multiplexer Using Mach-Zehnder Switching

Performance Analysis of SOA-MZI based All-Optical AND & XOR Gate

Optical Fiber Technology

Mechanism of intrinsic wavelength tuning and sideband asymmetry in a passively mode-locked soliton fiber ring laser

Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion

Performance of A Multicast DWDM Network Applied to the Yemen Universities Network using Quality Check Algorithm

Long-distance fiber grating sensor system using a fiber ring laser with EDWA and SOA

Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode

2-R REGENERATION EXPLOITING SELF-PHASE MODULATION IN A SEMICONDUCTOR OPTICAL AMPLIFIER

ELSEVIER FIRST PROOFS

Performance analysis of semiconductor optical amplifier using four wave mixing based wavelength Converter for all Optical networks.

A continuously tunable and filterless optical millimeter-wave generation via frequency octupling

THE USE OF SOA-BASED MACH-ZEHNDER INTERFEROMETER IN DESIGNING/IMPLEMENTING ALL OPTICAL INTEGRATED FULL ADDER-SUBTRACTOR AND DEMULTIPLEXER

Optical data transmission using periodic in-line all-optical format conversion

A WDM passive optical network enabling multicasting with color-free ONUs

DIAMOND-SHAPED SEMICONDUCTOR RING LASERS FOR ANALOG TO DIGITAL PHOTONIC CONVERTERS

LABORATORY INSTRUCTION NOTES ERBIUM-DOPED FIBER AMPLIFIER

Linear cavity erbium-doped fiber laser with over 100 nm tuning range

New pumping scheme for high gain and low noise figure in an erbium-doped fiber amplifier

EDFA Applications in Test & Measurement

Waveguide-based single-pixel up-conversion infrared spectrometer

Chapter 8. Wavelength-Division Multiplexing (WDM) Part II: Amplifiers

Dispersion engineered As 2 S 3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals

Optical Fiber Amplifiers. Scott Freese. Physics May 2008

Phase Modulator for Higher Order Dispersion Compensation in Optical OFDM System

Performance Analysis Of Hybrid Optical OFDM System With High Order Dispersion Compensation

Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature

Suppression of Rayleigh-scattering-induced noise in OEOs

DIRECT MODULATION WITH SIDE-MODE INJECTION IN OPTICAL CATV TRANSPORT SYSTEMS

URL: < /ictonmw >

A bidirectional radio over fiber system with multiband-signal generation using one singledrive

Simultaneous Wavelength Preserving and Wavelength Converting Regeneration of NRZ DPSK Signal Using FWM in SOA

Bit error rate and cross talk performance in optical cross connect with wavelength converter

Compensation of gain saturation in SOA-gates by interferometric Mach-Zehnder wavelength converters

Slow light on Gbit/s differential-phase-shiftkeying

All-Optical Logic Gates Based on No Title Waveguide Couplers. Author(s) Fujisawa, Takeshi; Koshiba,

A high performance photonic pulse processing device

Multiwavelength Single-Longitudinal-Mode Ytterbium-Doped Fiber Laser. Citation IEEE Photon. Technol. Lett., 2013, v. 25, p.

HIGH-EFFICIENCY MQW ELECTROABSORPTION MODULATORS

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

Analysis of Nonlinearities in Fiber while supporting 5G

Flat Frequency Comb Generation Based on Efficiently Multiple Four-Wave Mixing Without Polarization Control

THE USE OF POLARIZATION EFFECTS IN SEMICONDUCTOR OPTICAL AMPLIFIERS TO PERFORM ALL-OPTICAL SIGNAL PROCESSING

Optimisation of DSF and SOA based Phase Conjugators. by Incorporating Noise-Suppressing Fibre Gratings

High bit-rate combined FSK/IM modulated optical signal generation by using GCSR tunable laser sources

A photonic analog-to-digital converter based on an unbalanced Mach-Zehnder quantizer

Title. Author(s)Fujisawa, Takeshi; Koshiba, Masanori. CitationOptics Letters, 31(1): Issue Date Doc URL. Rights. Type.

Optical fiber-fault surveillance for passive optical networks in S-band operation window

Agilent 81980/ 81940A, Agilent 81989/ 81949A, Agilent 81944A Compact Tunable Laser Sources

Fiberoptic Communication Systems By Dr. M H Zaidi. Optical Amplifiers

Self-phase-modulation induced spectral broadening in silicon waveguides

Analysis of Techniques for Wavelength Conversion in Semiconductor Optical Amplifier

Pulse Restoration by Filtering of Self-Phase Modulation Broadened Optical Spectrum

The Theta Laser A Low Noise Chirped Pulse Laser. Dimitrios Mandridis

Photonic Generation of Millimeter-Wave Signals With Tunable Phase Shift

DESIGN AND CHARACTERIZATION OF HIGH PERFORMANCE C AND L BAND ERBIUM DOPED FIBER AMPLIFIERS (C,L-EDFAs)

C. J. S. de Matos and J. R. Taylor. Femtosecond Optics Group, Imperial College, Prince Consort Road, London SW7 2BW, UK

RECENTLY, using near-field scanning optical

Transcription:

All-optical AND gate with improved extinction ratio using signal induced nonlinearities in a bulk semiconductor optical amplifier L. Q. Guo, and M. J. Connelly Optical Communications Research Group, Department of Electronic and Computer Engineering, University of Limerick, Limerick, Ireland li-qiang.guo@ul.ie Abstract: An all-optical AND gate based on optically induced nonlinear polarization rotation of a probe light in a bulk semiconductor optical amplifier is realized at a bit rate of 2.5Gbit/s. By operating the AND gate in an up and inverted wavelength conversion scheme, the extinction ratio is improved by 8dB compared with previously published work. 26 Optical Society of America OCIS codes: (2.466) optical logic; (25.598) semiconductor optical amplifiers. References and links. M. J. Connelly, Semiconductor Optical Amplifiers (Kluwer Academic Publishers, Boston, 22), Chap.7 and references therein. 2. L. Q. Guo, and M. J. Connelly, Demonstration of birefringence in a bulk semiconductor optical amplifier and its application to all-optical wavelength conversion, in Technical Digest: Symposium on Optical Fiber Measurements 24, P. A. Williams, and G. W. Day, ed. (NIST, Boulder, Colo., 24), pp. 67-7. 3. L. Q. Guo, and M. J. Connelly, Signal-induced birefringence and dichroism in a tensile-strained bulk semiconductor optical amplifier and its application to wavelength conversion, J. Lightwave Technol. 23, 437-445 (25). 4. C. S. Wong, and H. K. Tsang, Polarization-independent wavelength conversion at Gb/s using birefringence switching in a semiconductor optical amplifier, IEEE Photonics Technol. Lett. 5, 87-89 (23). 5. H. Soto, J. D. Topomondzob, D. Erasmeb, and M. Castro, All-optical NOR gates with two and three input logic signals based on cross-polarization modulation in a semiconductor optical amplifier, Opt. Commun. 28, 243-247 (23). 6. L. Q. Guo, and M. J. Connelly, All-optical AND gate using nonlinear polarization rotation in a bulk semiconductor optical amplifier, in Technical Digest: Optical Amplifiers and Their Applications 25 (The Optical Society of America, Washington, DC, 25), Pres. no.: SuB9. 7. B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, New York, 99), Chap. 9. 8. D. C. Hutchings, J. S. Aitchison, and J. M. Arnold, Nonlinear refractive coupling and vector solitons in anisotropic cubic media, J. Opt. Soc. Am. B 4, 869-879 (997). 9. S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, P. Doussiere, and T. Ducellier, Effect of birefringence in a bulk semiconductor optical amplifier on four-wave mixing, IEEE Photonics Technol. Lett., 22-24 (998).. H. Soto, D. Erasme, and G. Guekos, Cross-polarization modulation in semiconductor optical amplifiers, IEEE Photonics Technol. Lett., 97-972 (999).. K. Obermann, S. Kindt, D. Breuer, K. Petermann, C. Schmidt, S. Diez, and H. G. Weber, Noise characteristics of semiconductor-optical amplifiers used for wavelength conversion via cross-gain and cross-phase modulation, IEEE Photonics Technol. Lett. 9, 32-34 (997). 2. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, A review of lithium niobate modulator for fiber-optic communications systems, IEEE J. Sel. Top. Quantum Electron. 6, 69-82 (2). 3. J. M. Wiesenfeld, A. H. Gnauck, G. Raybon, and U. Koren, High-speed multiple-quantum-well optical power amplifier, IEEE Photonics Technol. Lett. 4, 78-7 (992). 4. J. Jacquet, P. Brosson, A. Olivier, A. Perales, A. Bodere, and D. Leclerc, Carrier-induced differential refractive index in GaInAsP-GaInAs separate confinement multiquantum well lasers, IEEE Photonics Technol. Lett. 2, 62-622 (99). #9948 - $5. USD Received 3 December 25; revised 3 March 26; accepted 23 March 26 (C) 26 OSA 3 April 26 / Vol. 4, No. 7 / OPTICS EXPRESS 2938

. Introduction The semiconductor optical amplifier (SOA), utilized as an active nonlinear optical medium, has demonstrated its feasibilities in all-optical functional applications, such as optical switching, wavelength conversion, pulse generation and optical logic gate Ref. []. Cross polarization modulation (XPolM), which is based on optically-induced anisotropy in the SOA, is a promising approach to wavelength conversion Ref. [2-4], and has been applied in the design of all-optical logic gate Ref. [5, 6]. In this paper, we report an optical AND gate with improved extinction ratio by utilizing XPolM in a bulk SOA in an up and inverted wavelength conversion scheme. 2. Principle of operation The AND gate is based on a wavelength conversion scheme Ref. [3], which is realized by nonlinear polarization rotation due to optically-induced refractive index nonlinearities in a bulk SOA. During the operation, intense pump lights modify the optical properties of the SOA which, in turn, modify a probe light or even the pump lights themselves Ref. [7]. One significant consequence of this pump-probe technique is that the polarization azimuth and the ellipticity angle of the probe are expected to change on propagation through the medium Ref. [8]. If a linearly polarized probe light is coupled into the SOA, upon leaving the SOA, its polarization ellipticity could be elliptical, circular or linear with rotated azimuth depending on the power level of the pump lights in the SOA. An optical polarizer at the SOA output can virtually detect this nonlinear polarization rotation and convert the phase difference into intensity difference. In this sense, one can obtain a logic function because these intensity variations depend on the presence or absence of the pump lights in the SOA. The schematic operation is depicted in Fig., along with truth table. The optical AND gate is carried out by a weak probe beam in a counter-propagation scheme. During the operation, the absence of both data and 2 does not change the state of polarization (SOP) of the probe. One data alone does not change the SOP of the probe dramatically, and this small change cannot be detected by the polarizer right after the SOA output. When both data and 2 are present in the SOA, strong refractive index nonlinearities are induced. Thus the polarization azimuth and the ellipticity angle of the probe are modified, and the polarizer can convert these SOP variations into intensity variations. input data input data 2 output data probe polarizer SOA probe data data 2 output AND Fig. Principle of optical AND gate by XPolM in a counter-propagation scheme, and the truth table. 3. Experiment The SOA used in this work is a commercially available SOA (Kamelian, OPA series), employing a tensile-strained bulk InGaAsP/InP active region. The experimental setup of the AND gate is shown in Fig. 2, and a counter-propagation scheme is used. The SOA bias current and temperature are maintained at 2mA and 2 C, respectively. The power of CW probe signal, at 552.2nm, is around -8dBm at the SOA input. The pump light, at 546.8nm, is modulated at a bit rate of 2.5Gbit/s via a LiNbO 3 Mach-Zehnder modulator, and then split #9948 - $5. USD Received 3 December 25; revised 3 March 26; accepted 23 March 26 (C) 26 OSA 3 April 26 / Vol. 4, No. 7 / OPTICS EXPRESS 2939

into two data trains by a polarization-maintaining (PM) splitter. The applying of an optical delay line (ODL) in one arm is to produce pulse trains (data ), which is different from trains (data 2) in the other arm. After combination by a PM combiner, data and data 2 are amplified by an erbium-doped fiber amplifier (EDFA) and enter the SOA through an optical circulator. A band pass filter (nm) is placed after the circulator to suppress the spontaneous noise from the SOA. PM fibers and PM isolator are used throughout the experiment. All components in the setup are taped down on the optical bench to preserve the polarizations at each stage. The optical output data is measured on an HP8348A digital communications analyzer with a 2GHz O/E plug-in module (HP83485A). The total power of data and data 2 coupled into the SOA has four values:.dbm when both input data are at high logic level ; -2.4dBm and -2.9dBm when one of the input data is at high level and, respectively; and finally -6.8dBm when both are at low logic level. probe PC3 isolator circulator Laser SOA BPF pump Laser LN Modulator 2.5Gbit/s Pulse Pattern Generator data data 2 BPF BPF ODL PC PC2 EDFA PC4 Polarizer Digital Communication Analyzer Fig. 2 Experimental setup for optical AND gate by XPolM. PC: polarization controller; BPF: band pass filter; ODL: optical delay line; EDFA: erbium-doped fiber amplifier. We have reported previously that cross gain modulation (XGM) always takes place simultaneously with XPolM in the SOA Refs. [2, 3]. In terms of wavelength conversion by XPolM, inverted-conversion shows better performance due to positive contribution from XGM. In the operation of optical logic gate by XPolM, the XGM effect in the invertedconversion scheme essentially reduces the power level of logic, and makes it less ripple. Meanwhile by operating the logic gate at longer probe wavelength compared with that of pump light, the power level difference between logic and logic can be further increased due to larger birefringence induced by pump lights in longer wavelength range Refs. [3, 9]. Figure 3 presents the realization of the AND function. The time scale for the optical traces is 4ps/div. Data and 2 are split from pump light, as shown in Fig. 2. The output of AND gate, which is operated in an up and inverted scheme as analyzed above, is shown in output data A, and the difference between logic state and logic state is >8µW. This amplitude is large enough to distinguish the two levels. For comparison, the optical trace of AND function operated in non-inverted scheme is also shown in output data B in Fig. 3. This trace is taken from Ref. [6], and the experimental #9948 - $5. USD Received 3 December 25; revised 3 March 26; accepted 23 March 26 (C) 26 OSA 3 April 26 / Vol. 4, No. 7 / OPTICS EXPRESS 294

difference is that data and data 2 are from two laser sources of different wavelength, 549.5nm and 555.8nm respectively. The wavelength of the probe light is the same as this work, 552.2nm. Therefore the AND operation in Ref. [6] is neither in up- nor in downconversion scheme. It is easy to see that, in trace A of Fig. 3, the ripples in logic are sufficiently suppressed compared with those in trace B, and logic is much enhanced. While the extinction ratio in trace A is.6db (which is further demonstrated in Fig. 4 for two different time scales), it is only 3.5dB in trace B. Therefore, a significant improvement in extinction ratio has been achieved by using up and inverted wavelength conversion scheme. input data input data 2 output data A with improved extinction ratio output data B from [6] Fig. 3 Optical AND operation. The time scale is 4ps/div. Output data A is AND operation using inverted, up-conversion scheme, showing much improve extinction ratio; while output data B is AND operation using non-inverted schemes (optical trace is taken from Ref. [6]), showing fluctuations in logic state. 4. Discussion The key point to improve extinction ratio in this work is to suppress the ripples and reduce the power level of the output logic. This is realized in the up and inverted conversion scheme. During the experiment, it was found that the output logic fluctuated occasionally. This is due to several reasons. First, there is a mismatch between the pump lights polarization and the optical axes of the SOA. The optically induced refractive index nonlinearities appear to be much stronger for a TE or TM polarization of the pump lights Ref. []. Unfortunately, due to #9948 - $5. USD Received 3 December 25; revised 3 March 26; accepted 23 March 26 (C) 26 OSA 3 April 26 / Vol. 4, No. 7 / OPTICS EXPRESS 294

the polarization sensitive nature of the scheme, they cannot be perfectly matched to each other and maintained all the time during the operation. Secondly, the spontaneous emission noise is more prominent in logic Ref. [], which results in a more noisy logic state. Third, the power levels of logic and are slightly different, which lead to some discrepancies in optical gain compression, differential gain and differential refractive index at these two power levels. Moreover, the performance of the LiNbO 3 modulator is still polarization-dependent, although a PM fiber is utilized for the input pigtail Ref. [2]. Even if these factors are of less prominence in the operation as long as the up and inverted conversion scheme is used, it is, as always, preferable to keep them as low as possible. (a) (b) Fig. 4 Optical traces displayed on the digital communications analyzer with the values of Q-factor and extinction ratio for optical trace A in Fig. 3. (a) 2ps/div; (b) 8ps/div. #9948 - $5. USD Received 3 December 25; revised 3 March 26; accepted 23 March 26 (C) 26 OSA 3 April 26 / Vol. 4, No. 7 / OPTICS EXPRESS 2942

5. Conclusion An AND function with an improved extinction ratio is demonstrated at a bit rate of 2.5Gbit/s. The improved logic function is realized in up and inverted wavelength conversion scheme by XPolM. Logic operation outside this scheme is also displayed for comparison. Because of sufficient suppression of ripples in the output logic, and much enhancement of power level in the output logic in the suggested operation scheme, high extinction ratio is readily achieved. Although this work was conducted at a bit rate of 2.5 Gbit/s using a bulk SOA, it should be noted that by using multiple quantum wells (MQWs) SOA as the nonlinear medium, the data rate could exceed 4Gbit/s. This is largely due to the rapid gain recovery time Ref. [3] and the large differential refractive index in a MQWs structure Ref. [4]. Acknowledgments This work was supported by Science Foundation Ireland Investigator Grant 2/IN/I42. L. Q. Guo would like to thank Dr. Zhilin Peng of Department of Engineering Physics, McMaster University, Hamilton, ON, Canada, for his technical advice. #9948 - $5. USD Received 3 December 25; revised 3 March 26; accepted 23 March 26 (C) 26 OSA 3 April 26 / Vol. 4, No. 7 / OPTICS EXPRESS 2943