A TUNABLE GHz BANDPASS FILTER BASED ON SINGLE MODE

Similar documents
A Simple Bandpass Filter with Independently Tunable Center Frequency and Bandwidth

A NOVEL MICROSTRIP LC RECONFIGURABLE BAND- PASS FILTER

Novel Compact Tri-Band Bandpass Filter Using Multi-Stub-Loaded Resonator

A Miniaturized Tunable Bandpass Filter with Constant Fractional Bandwidth

COMPACT DUAL-MODE TRI-BAND TRANSVERSAL MICROSTRIP BANDPASS FILTER

A NOVEL COUPLING METHOD TO DESIGN A MI- CROSTRIP BANDPASS FILER WITH A WIDE REJEC- TION BAND

A Folded SIR Cross Coupled WLAN Dual-Band Filter

NOVEL PLANAR MULTIMODE BANDPASS FILTERS WITH RADIAL-LINE STUBS

Compact Planar Quad-Band Bandpass Filter for Application in GPS, WLAN, WiMAX and 5G WiFi

NOVEL IN-LINE MICROSTRIP COUPLED-LINE BAND- STOP FILTER WITH SHARP SKIRT SELECTIVITY

A Phase Diversity Printed-Dipole Antenna Element for Patterns Selectivity Array Application

Progress In Electromagnetics Research C, Vol. 32, 43 52, 2012

DESIGN OF COMPACT MICROSTRIP LOW-PASS FIL- TER WITH ULTRA-WIDE STOPBAND USING SIRS

A Broadband High-Efficiency Rectifier Based on Two-Level Impedance Match Network

COMPACT MICROSTRIP BANDPASS FILTERS USING TRIPLE-MODE RESONATOR

A NOVEL WIDE-STOPBAND BANDSTOP FILTER WITH SHARP-REJECTION CHARACTERISTIC AND ANA- LYTICAL THEORY

Progress In Electromagnetics Research, Vol. 107, , 2010

A Frequency Reconfigurable Dual Pole Dual Band Bandpass Filter for X-Band Applications

A NOVEL G-SHAPED SLOT ULTRA-WIDEBAND BAND- PASS FILTER WITH NARROW NOTCHED BAND

A MINIATURIZED OPEN-LOOP RESONATOR FILTER CONSTRUCTED WITH FLOATING PLATE OVERLAYS

ANALYSIS AND APPLICATION OF SHUNT OPEN STUBS BASED ON ASYMMETRIC HALF-WAVELENGTH RESONATORS STRUCTURE

High Selectivity Wideband Bandpass Filter Based on Transversal Signal-Interaction Concepts Loaded with Open and Shorted Stubs

Compact Microstrip UWB Power Divider with Dual Notched Bands Using Dual-Mode Resonator

H.-W. Wu Department of Computer and Communication Kun Shan University No. 949, Dawan Road, Yongkang City, Tainan County 710, Taiwan

Design of a Compact and High Selectivity Tri-Band Bandpass Filter Using Asymmetric Stepped-impedance Resonators (SIRs)

RCS Reduction of Patch Array Antenna by Complementary Split-Ring Resonators Structure

Compact Dual-Band Microstrip BPF with Multiple Transmission Zeros for Wideband and WLAN Applications

Microstrip even-mode half-wavelength SIR based I-band interdigital bandpass filter

Progress In Electromagnetics Research Letters, Vol. 23, , 2011

Design of Asymmetric Dual-Band Microwave Filters

A Dual-Band Two Order Filtering Antenna

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

A NOVEL DUAL-BAND BANDPASS FILTER USING GENERALIZED TRISECTION STEPPED IMPEDANCE RESONATOR WITH IMPROVED OUT-OF-BAND PER- FORMANCE

A Modified Gysel Power Divider With Arbitrary Power Dividing Ratio

Electronic Science and Technology of China, Chengdu , China

A NOVEL DUAL-MODE BANDPASS FILTER US- ING STUB-LOADED DEFECTED GROUND OPEN-LOOP RESONATOR

A Compact Quad-Band Bandpass Filter Using Multi-Mode Stub-Loaded Resonator

NOVEL DESIGN OF DUAL-MODE DUAL-BAND BANDPASS FILTER WITH TRIANGULAR RESONATORS

Design of Frequency and Polarization Tunable Microstrip Antenna

Bandpass-Response Power Divider with High Isolation

A COMPACT DUAL-BAND POWER DIVIDER USING PLANAR ARTIFICIAL TRANSMISSION LINES FOR GSM/DCS APPLICATIONS

MINIATURIZED WIDEBAND BANDPASS FILTER UTI- LIZING SQUARE RING RESONATOR AND LOADED OPEN-STUB

A Varactor-tunable Filter with Constant Bandwidth and Loss Compensation

An Electronically Tunable Dual-Band Filtering Power Divider with Tuning Diodes Sharing Technique

Complex Impedance-Transformation Out-of-Phase Power Divider with High Power-Handling Capability

Multi-pole Microstrip Directional Filters for Multiplexing Applications

DESIGN OF A TRIPLE-PASSBAND MICROSTRIP BAND- PASS FILTER WITH COMPACT SIZE

QUASI-ELLIPTIC MICROSTRIP BANDSTOP FILTER USING TAP COUPLED OPEN-LOOP RESONATORS

Ultra-Compact LPF with Wide Stop-Band

COMPACT RECONFIGURABLE HMSIW BANDPASS FILTER LOADED BY CSRR

Metamaterial Inspired CPW Fed Compact Low-Pass Filter

High-Selectivity UWB Filters with Adjustable Transmission Zeros

Progress In Electromagnetics Research C, Vol. 12, , 2010

PRINTED BLUETOOTH AND UWB ANTENNA WITH DUAL BAND-NOTCHED FUNCTIONS

Study on Transmission Characteristic of Split-ring Resonator Defected Ground Structure

IEEE Antennas and Wireless Propagation Letters. Copyright Institute of Electrical and Electronics Engineers.

A Compact Miniaturized Frequency Selective Surface with Stable Resonant Frequency

QUADRI-FOLDED SUBSTRATE INTEGRATED WAVEG- UIDE CAVITY AND ITS MINIATURIZED BANDPASS FILTER APPLICATIONS

K-BAND HARMONIC DIELECTRIC RESONATOR OS- CILLATOR USING PARALLEL FEEDBACK STRUC- TURE

Design of Duplexers for Microwave Communication Systems Using Open-loop Square Microstrip Resonators

MODIFIED BROADBAND SCHIFFMAN PHASE SHIFTER USING DENTATE MICROSTRIP AND PATTERNED GROUND PLANE

Microstrip Dual-Band Bandpass Filter Using U-Shaped Resonators

Compact Triple-Band Monopole Antenna with Inverted-L Slots and SRR for WLAN/WiMAX Applications

A RECONFIGURABLE HYBRID COUPLER CIRCUIT FOR AGILE POLARISATION ANTENNA

Broadband and Gain Enhanced Bowtie Antenna with AMC Ground

A Novel Triple-Mode Bandpass Filter Using Half-Wavelength-Resonator-Coupled Square-Loop Resonator

A Very Wideband Dipole-Loop Composite Patch Antenna with Simple Feed

On the Development of Tunable Microwave Devices for Frequency Agile Applications

DESIGN OF A NOVEL WIDEBAND LOOP ANTENNA WITH PARASITIC RESONATORS. Microwaves, Xidian University, Xi an, Shaanxi, China

MICROSTRIP PHASE INVERTER USING INTERDIGI- TAL STRIP LINES AND DEFECTED GROUND

DUAL-MODE SPLIT MICROSTRIP RESONATOR FOR COMPACT NARROWBAND BANDPASS FILTERS. Federal University, Krasnoyarsk , Russia

GPS Patch Antenna Loaded with Fractal EBG Structure Using Organic Magnetic Substrate

DESIGN OF EVEN-ORDER SYMMETRIC BANDPASS FILTER WITH CHEBYSHEV RESPONSE

DESIGN OF TRI-BAND PRINTED MONOPOLE ANTENNA FOR WLAN AND WIMAX APPLICATIONS

COMPACT WIDE-SLOT TRI-BAND ANTENNA FOR WLAN/WIMAX APPLICATIONS

F. Fan, Z. Yan, and J. Jiang National Laboratory of Antennas and Microwave Technology Xidian University Xi an, Shaanxi , China

Dual-Band Bandpass Filter Based on Coupled Complementary Hairpin Resonators (C-CHR)

BROADBAND ASYMMETRICAL MULTI-SECTION COU- PLED LINE WILKINSON POWER DIVIDER WITH UN- EQUAL POWER DIVIDING RATIO

A VARACTOR-TUNABLE HIGH IMPEDANCE SURFACE FOR ACTIVE METAMATERIAL ABSORBER

Compact Varactor-Tuned Bandpass Filter Using Open Split-Ring Resonators

A 10:1 UNEQUAL GYSEL POWER DIVIDER USING A CAPACITIVE LOADED TRANSMISSION LINE

Enhanced Couplings in Broadband Planar Filters with Defected Ground Structures

TRIPLE-BAND OMNI-DIRECTIONAL ANTENNA FOR WLAN APPLICATION

PLANAR MICROSTRIP BANDPASS FILTER WITH WIDE DUAL BANDS USING PARALLEL-COUPLED LINES AND STEPPED IMPEDANCE RESONATORS

A Simple Dual-Wideband Magneto-Electric Dipole Directional Antenna

NEW DUAL-BAND BANDPASS FILTER WITH COM- PACT SIR STRUCTURE

THE GENERALIZED CHEBYSHEV SUBSTRATE INTEGRATED WAVEGUIDE DIPLEXER

Compact microstrip stepped-impedance lowpass filter with wide stopband using SICMRC

A Novel Dual-Band Scheme for Magnetic Resonant Wireless Power Transfer

Coupled Line Rat-Race Coupler with Wide Adjustable Power Dividing Ratio and Uncrossed Input/Output Ports

Research Article Harmonic-Rejection Compact Bandpass Filter Using Defected Ground Structure for GPS Application

Progress In Electromagnetics Research Letters, Vol. 9, , 2009

COMPLEMENTARY SPLIT RING RESONATORS WITH DUAL MESH-SHAPED COUPLINGS AND DEFECTED GROUND STRUCTURES FOR WIDE PASS-BAND AND STOP-BAND BPF DESIGN

DUAL-WIDEBAND BANDPASS FILTERS WITH EX- TENDED STOPBAND BASED ON COUPLED-LINE AND COUPLED THREE-LINE RESONATORS

X. Wu Department of Information and Electronic Engineering Zhejiang University Hangzhou , China

A SIMPLE FOUR-ORDER CROSS-COUPLED FILTER WITH THREE TRANSMISSION ZEROS

An MNG-TL Loop Antenna for UHF Near-Field RFID Applications

Citation Electromagnetics, 2012, v. 32 n. 4, p

Low-Profile Wideband Circularly Polarized Patch Antenna Using Asymmetric Feeding

A Broadband Omnidirectional Antenna Array for Base Station

Transcription:

Progress In Electromagnetics Research, Vol. 135, 261 269, 2013 A TUNABLE 1.4 2.5 GHz BANDPASS FILTER BASED ON SINGLE MODE Yanyi Wang *, Feng Wei, He Xu, and Xiaowei Shi National Laboratory of Science and Technology on Antennas and Microwaves, Xidian University, Xi an 710071, P. R. China Abstract A new type of varactor-tuned microstrip bandpass filter (BPF) based on a single 1/2λ resonator is investigated. The proposed resonator is composed of a transmission line with both ends shortended and two varactors inserted symmetrically in the middle section. The variation of coupling coefficient can be controlled by using an inductor. With the proposed structure, it is easy to adjust the external quality factor of the filter and to control the bandwidth. Extra dc-block capacitors for the input and output ports are not necessary because the design of the proposed tunable 1/2λ resonator makes the varactor act as both a frequency tuning element and a dc-block circuit. The proposed BPF is found to have the advantages of compact size, low insertion loss, large tuning range and good linearity. 1. INTRODUCTION Electronically reconfigurable or tunable microwave filters [1 6] are attracting more attention for research because of their increasing importance in improving the capability of current and future wireless systems. The tunability of such filters is usually accomplished by using different tunable components such as: RF micro-electromechanical systems (MEMS), p-i-n diodes and varactor diodes. Among various tuning technologies, varactor-tuned BPFs are highly attractive due to their compactness, high tuning speed and low cost. Most research in tunable filters has been mainly focused on the realization of frequency tuning. However, in practical application, there are some requirements for bandwidth control. A mixed electric and magnetic coupling scheme is introduced to control absolute bandwidth (ABW) in [7]. Recently, filters with both frequency and Received 17 November 2012, Accepted 14 December 2012, Scheduled 21 December 2012 * Corresponding author: Yanyi Wang (yanyiwang@foxmail.com).

262 Wang et al. bandwidth tuning capabilities have been reported [8 11]. Chiou and Rebeiz realized a varactor-tuned combline bandpass filter at 1.5 2.2 GHz with the 1-dB bandwidth of 50 170 MHz and insertion loss of 5.1 3.2 db, respectively [8]. Serrano and Correra developed a tunable dual-mode triangular patch filter at 2.9 3.5 GHz with the 3-dB bandwidth of 4% 12% [10]. In this paper, the investigation aims to reduce the insertion loss and to explore the unique characteristics of the two resonant modes when varactors are introduced in the middle section. This leads to a simple tuning scheme for tuning the passband bandwidth, which is obviously influenced by the coupling inductor. For the experimental filter, the tuning range is 58% from 1.38 to 2.50 GHz whose 3-dB ABW is 116±11 MHz, and insertion loss of 2.7 3.9 db ( better than 3 db from 1.8 to 2.5 GHz). 2. THEORY AND DESIGN EQUATIONS 2.1. Electric Field Distribution Two conventional 1/2λ resonators with one varactor and two varactors are depicted in Figs. 1 and. Both types of conventional configurations require a dc-block capacitor for each port when the input/output coupling is directly tapped to the resonators [7], which accumulates extra loss. In this design, center frequency tuning can be achieved by the varactors inserted symmetrically in the middle section, as shown in Fig. 1(c). The microstrip line in the middle is very short and mainly used for the welding of varactors. The electric field distribution of the two types of conventional tunable 1/2λ resonators are both similar to that of a conventional 1/2λ resonator with both ends open-circuited as depicted in Fig. 2, whose voltage is minimum in the midpoint, as shown in Fig. 3. Hence, both ends must be Figure 1. and Two types of conventional tunable 1/2λ resonator. (c) Proposed tunable 1/2λ resonator. (c)

Progress In Electromagnetics Research, Vol. 135, 2013 263 short-circuited if a large electric field is desired in the middle section of the resonator. So the proposed tunable 1/2λ resonator has both ends short-circuited whose electric field is similar to that in Fig. 3. Since the proposed tunable 1/2λ resonator is symmetrical in structure, the odd-even-mode method can be implemented. For oddmode excitation, the voltage is null in the midpoint. However, the point loaded with a virtual grounding varactor in the mid-part in odd-mode, as shown in Fig. 4, can not be analyzed in the traditional way as an Figure 2. and The equivalent models of the two kinds of tunable 1/2λ resonator. V V 0 0 Length Length Figure 3. Voltage distribution of two kinds of 1/2λ resonator. 1/2λ resonator loaded with a varactor. 1/2λ resonator with both the ends short-circuited. V the odd mode the even mode 0 Length the influence part on the even mode the influence part on the odd mode Figure 4. The voltage/electric-field distribution for the dual-mode of the proposed 1/2λ resonator.

264 Wang et al. Figure 5. Model of the input impedance for even-mode. open-circuited transmission line. Referring to Fig. 4, the influence of varactors on frequency shifting in odd-mode is very weak according to the electric field distribution. So the resonant frequency of odd-mode is nearly invariable. As for even-mode excitation, there is no current flow through the symmetrical plane. The influence of varactors is great in the middle section where the electric field is strong, and the varactors have an obvious influence in the change of center frequency. Therefore, only the even-mode is utilized in the proposed BPF. 2.2. Analysis of External Quality Factor Figure 5 is the input and output network of the proposed filter. Once Z in is found, external quality factor Q e is then determined as Q e = χ = ω 0 Im [Z in ] Z 0 2Z 0 ω (1) ω=ω0 where χ is the reactance-slope parameter of the resonator. input/output impedance for even-mode can be deduced as The Z 1 = jz 01 tan θ 1 (2) ( ) 1 jωc jz 02 cot θ 3 + jz 01 tan θ 2 Z 2 = Z 01 Z 01 + ( 1 ωc + Z ) (3) 02 cot θ 3 tan θ2 Z = Z 1Z 2 Z 1 + Z 2 (4) Z in = jωl + Z 0 Z + jz 0 tan θ 4 Z 0 + jz tan θ 4 (5) Although Q e is defined for a singly loaded resonator, if the resonator is symmetrical, one could add another symmetrical load or port to form a two-port network, define a doubly loaded external quality factor Q e as Q e = Q e 2 = ω 0 ω 3 db (6)

Progress In Electromagnetics Research, Vol. 135, 2013 265 The singly loaded external quality factor Q e is simply twice of Q e. From Equations (1) and (5), it can be concluded that Q em increases as the inductance L increases, i.e., Q em can be adjusted by the inductance L. When the Q em factor decreases, at a fixed resonant frequency the ABW will increase indicated by Equation (6). Then the insertion loss will decrease [12] because of the increase of BW indicated by Equation (7): n ω 0 Ω c IL (db) = 4.343 g i db (7) BWQ ui i=1 where g i (i = 1 n) is the value of low-pass prototype, and Q ui represent the unloaded quality factors of the resonator corresponding to g i. Illustrated in Fig. 6, the value of the varactor is set as 2.5 pf and when the value of the inductor decreases from 11 to 5 nh, the following results can be concluded: 1) the center frequency keeps almost constant; 2) the bandwidth of the passband increases as a result of the decrease of Q em ; 3) the insertion loss decreases. So the simulation with the help of Agilent-ADS verifies the accuracy of the analysis discussed above. The structure of the propose BPF is shown in Fig. 7: 1) The input/output impedance matching is realised by a small inductance which has less loss compared with a capacitor. 2) Two varactors not only act as frequency tuning elements, but a dc-choke for both input and output ports. Thus, this circuit doesn t need to introduce dc-choke Figure 6. The bandwidth versus the value of the inductor based on the topology in Fig. 7 when the value of the varactor is fixed. S 21, S 11. (W 0 = 2.2 mm, W 1 = 1.5 mm, W 2 = 2 mm, W = 2.5 mm, R = 0.8 mm, L 1 = 11.0 mm, L 2 = 3.8 mm, L 3 = 2.0 mm and L 4 = 5.2 mm.)

266 Wang et al. W W R L 1 W 0 L W 0 L 2 L 4 L W 1 W 2 V b RF Choke Figure 7. Topology of the fabrication model of the filter. capacitors. 3) A first-order filter is adopted. In every aspect discussed above, it can reduce the insertion loss of the tunable filter. 3. IMPLEMENTATION AND RESULTS The structure of the experimental BPF is shown in Fig. 7. The substrate is Teflon with the thickness of 0.8 mm and the dielectric constant of 2.65. SMV1405-079LF surface mount varactor diodes from Skyworks Corporation are used in the prototype circuit. To get a better Q value, two parallel SMV1405-079s are used at the position of the varactor. The capacitance of the varactor diode can be tuned from 2.67 to 0.66 pf by varying the bias voltage from 0 to 30 V. The equivalent electric length is adjusted by the capacitance of the varactors. The external coupling inductor is selected as 6.8 nh from Coilcraft. All the dimensions of the symmetrical structure are selected as follows: W 0 = 2.2 mm, W 1 = 1.5 mm, W 2 = 2 mm, W = 2.5 mm R = 0.8 mm, L 1 = 11.0 mm, L 2 = 3.8 mm, L 3 = 2.0 mm and L 4 = 5.2 mm. The fabricated compact tunable BPF is shown in Fig. 8. It was measured with a vector network analyzer (Agilent N5230A). The measured and simulated responses are plotted in Fig. 9. Good agreement between simulation and measurement is obtained. As indicated in Table 1, the 3-dB ABW keeps nearly constant when the frequency varies from 2.023 to 2.5 GHz. The filter can be tuned from 1.387 to 2.5 GHz, and among the tuning range, the insertion loss of the fabricated filter varies from 3.9 to 2.5 db. This is mainly due to the low Q value of the silicon varactor diodes, lump elements and low unload quality factor of microstrip resonator. Only one RF-block circuit is needed in the midpoint of the structure for the applied controlling voltage. Figure 10 shows that the frequency and bias voltage have almost L 3

Progress In Electromagnetics Research, Vol. 135, 2013 267 Figure 8. Photograph of the fabricated tunable filter. Figure 9. Simulated and measured results with different reverse voltages. S 21, S 11. Table 1. Filter specifications. Vol. (V) Freq. (GHz) Insertion Loss (db) Return Loss (db) 3-dB ABW (MHz) 0.5 1.38 3.9 8.0 105 3 1.72 3.1 9.5 115 5 1.88 2.9 10.0 117 8 2.02 2.8 11.4 124 10 2.10 2.6 11.0 121 15 2.24 2.5 11.5 120 29 2.50 2.5 12.2 127

268 Wang et al. Figure 10. Center frequency versus the bias voltage. linear relationship when the bias voltage varies from 5 to 30 V. However, when the bias voltage varies from 0.1 to 5 V, the relationship of them is not linear. That is maybe result of the performance of the varactor. According to the datasheet of SMV1405, when the bias voltage varies from 0.1 to 5 V, the value of the capacitance and bias voltage are not linear relationship. That phenomenon is reasonable. 4. CONCLUSION A varactor-tuned microstrip BPF based on a novel 1/2λ resonator has been proposed and designed. A study of the bandwidth tuning is done with the external coupling section, and the bandwidth is mainly influenced by the value of the coupling inductor. This topology is easy to implement, can be used for the demand of Wi-Fi and WLAN, and will adapt to many other applications due to its design flexibility. ACKNOWLEDGMENT This work was supported by the Fundamental Research Funds for the Central Universities (K50511020013). REFERENCES 1. Chen, J.-X., J. Shi, Z.-H. Bao, and Q. Xue, Tunable and switchable bandpass filters using slot-line resonators, Progress In Electromagnetics Research, Vol. 111, 25 41, 2011. 2. Lee, W.-S., H.-L. Lee, K.-S. Oh, and J.-W. Yu, Switchable distance-based impedance matching networks for a tunable HF

Progress In Electromagnetics Research, Vol. 135, 2013 269 system, Progress In Electromagnetics Research, Vol. 128, 19 34, 2012. 3. Michalski, J. J., Inverse modeling in application for sequential filter tuning, Progress In Electromagnetics Research, Vol. 115, 113 129, 2011. 4. Feng, T., Y. Li, H. Jiang, W. Li, F. Yang, X. Dong, and H. Chen, Tunable single-negative metamaterials based on microstrip transmission line with varactor diodes loading, Progress In Electromagnetics Research, Vol. 120, 35 50, 2011. 5. Costa, F. and A. Monorchio, Design of subwavelength tunable and steerable fabry-perot/leaky wave antennas, Progress In Electromagnetics Research, Vol. 111, 467 481, 2011. 6. Wu, C.-J., Y.-C. Hsieh, and H.-T. Hsu, Tunable photonic band gap in a doped semiconductor photonic crystal in near infrared region, Progress In Electromagnetics Research, Vol. 114, 271 283, 2011. 7. Zhang, H.-L., X. Y. Zhang, and B.-J. Hu, Tunable bandpass filters with constant absolute bandwidth, Antennas Propagation and EM Theory (ISAPE), 1200 1203, 2010. 8. Chiou, Y.-C. and G. M. Rebeiz, A tunable three-pole 1.5 2.2 GHz bandpass filter with bandwidth and transmission zero control, IEEE Trans. on Microw. Theory and Tech., Vol. 59, No. 11, 2872 2878, Nov. 2011. 9. Sanchez-Renedo, M., R. Gomez-Garcia, J. I. Alonso, and C. Briso- Rodriguez, Tunable combline filter with continuous control of center frequency and bandwidth, IEEE Trans. on Microw. Theory and Tech., Vol. 53, No. 1, 191 199, Jan. 2005. 10. Serrano, A. L. C., F. S. Correra, T.-P. Vuong, and P. Ferrari, Synthesis methodology applied to a tunable patch filter with independent frequency and bandwidth control, IEEE Trans. on Microw. Theory and Tech., Vol. 60, No. 3, 484 493, Mar. 2012. 11. Wang, Y.-Y., F. Wei, B. Liu, H. Xu, and X.-W. Shi, A tunable bandpass filter with constant absolute bandwidth based on one ring resonator, Journal of Electromagnetic Waves and Applications, Vol. 26, Nos. 11 12, 1587 1593, Jul. 2012. 12. Hong, J.-S. and M. J. Lancaster, Microstrip Filters for RF/Microwaves Applications, Wiley, New York, 2001.