Practical Design Considerations for a 3.3kW Bridgeless Totem-pole PFC Using GaN FETs. Jim Honea Transphorm Inc

Similar documents
VDSS (V) 650 V(TR)DSS (V) 800. RDS(on)eff (mω) max* 85. QRR (nc) typ 90. QG (nc) typ 10

VDSS (V) 650 V(TR)DSS (V) 800 RDS(on)eff (mω) max* 180. QRR (nc) typ 47. QG (nc) typ 10

Reference Design. TDTTP3300-RD 3.3kW Bridgeless Totem-pole PFC. Test Report

VDSS (V) 650. V(TR)DSS (V) 800 RDS(on)eff (mω) max* 180. QRR (nc) typ 52. QG (nc) typ 6.2

VDSS (V) 650 V(TR)DSS (V) 800. RDS(on)eff (mω) max* 130. QRR (nc) typ 54. QG (nc) typ 10

VDSS (V) 900. V(TR)DSS (V) 1000 RDS(on)eff (mω) max* 205. QRR (nc) typ 49. QG (nc) typ 10

VDSS (V) 650 V(TR)DSS (V) 800 RDS(on)eff (mω) max* 180. QRR (nc) typ 52. QG (nc) typ 6.2 VIN=230VAC; VOUT=390VDC VIN=380VDC; VOUT=240VAC

VDSS (V) 650 V(TR)DSS (V) 800 RDS(on)eff (mω) max* 60. QRR (nc) typ 136. QG (nc) typ 28 VIN=230VAC; VOUT=390VDC VIN=380VDC; VOUT=240VAC

VDSS (V) 650 V(TR)DSS (V) 800 RDS(on)eff (mω) max* 130. QRR (nc) typ 54. QG (nc) typ 14 VIN=230VAC; VOUT=390VDC VIN=380VDC; VOUT=240VAC

PRELIMINARY. VDSS (V) 600 V(TR)DSS (V) 750 RDS(on)eff (mω) max* 60. QRR (nc) typ 120. QG (nc) typ 22 PRELIMINARY

Reference Design. TDTTP3300-RD 3.3kW Bridgeless Totem-pole PFC. Test Report

VDS (V) min 650 VTDS (V) max 800 RDS(on) (mω) max* 130. Qrr (nc) typ 54. * Dynamic R(on)

Designing a 99% Efficient Totem Pole PFC with GaN. Serkan Dusmez, Systems and applications engineer

IBM Technology Symposium

TPH3205WSB. 650V Cascode GaN FET in TO-247 (source tab)

VDS (V) min 600 VTDS (V) max 750 RDS(on) (mω) max* 63. Qrr (nc) typ 136. * Dynamic R(on)

VDS (V) min 650 VTDS (V) max 800 RDS(on) (mω) max* 60. Qrr (nc) typ 136. Qg (nc) typ 28. * Dynamic RDS(on)

VDS (V) min 600 VTDS (V) max 750 RDS(on) (mω) max* 180. Qrr (nc) typ 54. * Dynamic R(on)

TPH3212PS. 650V Cascode GaN FET in TO-220 (source tab)

Power of GaN. Enabling designers to create smaller, more efficient and higher-performing AC/DC power supplies

Application Note 0011

GaN Based Power Conversion: Moving On! Tim McDonald APEC Key Component Technologies for Power Electronics in Electric Drive Vehicles

GaN in Practical Applications

Design Guide. 100 khz Dual Active Bridge for 3.3kW Bi-directional Battery Charger. Introduction. Converter Design

Title. Description. Date 16 th August, Revision 1.1 RD W Telecoms DC/DC PSU Input : 37Vdc to 60Vdc Output : 32V/10A

GaN Reliability Through Integration and Application Relevant Stress Testing

High-Voltage (600 V) GaN Power Devices: Status and Benefits Power Electronics Conference 2017 Munich Airport Hilton, December 05, 2017

Designing High density Power Solutions with GaN Created by: Masoud Beheshti Presented by: Xaver Arbinger

Designing Reliable and High-Density Power Solutions with GaN

Designing reliable and high density power solutions with GaN. Created by: Masoud Beheshti Presented by: Paul L Brohlin

Symbol Parameter Typical

Get Your GaN PhD in Less Than 60 Minutes!

Impact of Fringing Effects on the Design of DC-DC Converters

State of Demonstrated HV GaN Reliability and Further Requirements

The Quest for High Power Density

Breaking Speed Limits with GaN Power ICs March 21 st 2016 Dan Kinzer, COO/CTO

Demands for High-efficiency Magnetics in GaN Power Electronics

AONS V N-Channel MOSFET

Vishay Siliconix AN724 Designing A High-Frequency, Self-Resonant Reset Forward DC/DC For Telecom Using Si9118/9 PWM/PSM Controller.

Application Note 0009

GaN Power ICs at 1 MHz+: Topologies, Technologies and Performance

Interleaved PFC technology bring up low ripple and high efficiency

MAXREFDES121# Isolated 24V to 3.3V 33W Power Supply

EVALUATION KIT AVAILABLE 28V, PWM, Step-Up DC-DC Converter PART V IN 3V TO 28V

Application Note 0006

Improving Totem-Pole PFC and On Board Charger performance with next generation components

Recommended External Circuitry for Transphorm GaN FETs. Zan Huang Jason Cuadra

A new era in power electronics with Infineon s CoolGaN

Making Reliable and High-Density GaN Solutions a Reality

Bias Stress Testing of SiC MOSFETs

X-GaN TTP Simulation Manual Ver. 1.0

GS66502B Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

Unlocking the Power of GaN PSMA Semiconductor Committee Industry Session

INTRODUCTION THEORY. Formulas:

+ - GaN. Output Voltage. Auxiliary Supply: Input High Voltage. Application Note: TDPS500E2C1Totem Pole PFC Evaluation Board GND. 1.

235 W Maximum Power Dissipation (whole module) 470 T J Junction Operating Temperature -40 to 150. Torque strength

GS66504B Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

Symbol Parameter Typical

GS66508P Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

ANP030. Contents. Application Note AP2014/A Synchronous PWM Controller. 1. AP2014/A Specification. 2. Hardware. 3. Design Procedure. 4.

High voltage GaN cascode switches shift power supply design trends. Eric Persson Executive Director, GaN Applications and Marketing

GS66508B Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

25 Watt DC/DC converter using integrated Planar Magnetics

AN2001 Application note

GS66516B Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

GaN Power ICs: Integration Drives Performance

Cree PV Inverter Tops 1kW/kg with All-SiC Design

ATR28XXS SERIES HYBRID - HIGH RELIABILITY DC-DC CONVERTER. 28V Input, Single Output. Description ATR. Features.

MOSFET. CoolMOS C6. Data Sheet. Industrial & Multimarket. Metal Oxide Semiconductor Field Effect Transistor

Single Switch Forward Converter

EPC2107 Enhancement-Mode GaN Power Transistor Half-Bridge with Integrated Synchronous Bootstrap

WD1015 WD1015. Descriptions. Features. Order information. Applications. Http//: 1.5MHz, 1.2A, Step-down DC-DC Converter

MW75S single-output AC/DC power supply Power factor corrected Vin, 2 28Vout, 75 watts. I - M3 inserts. Max

GaN Reliability Report 2018

The First Step to Success Selecting the Optimal Topology Brian King

1.2 KW, N+1 REDUNDANT, POWER-FACTOR CORRECTED, 12V FRONT END

800 W PFC evaluation board

ABC400 Series is a compact and efficient series of AC-DC open frame power supplies suited for telecom, datacom and many other applications.

MP A, 55V, 100kHz Step-Down Converter with Programmable Output OVP Threshold

GS66516B Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

SPS10-24 Series small size isolated DC/DC converters

MAXREFDES116# ISOLATED 24V TO 5V 40W POWER SUPPLY

GaN based Power Devices. Michael A. Briere. RPI CFES Conference

Incorporating Active-Clamp Technology to Maximize Efficiency in Flyback and Forward Designs

n-channel Power MOSFET

n-channel Power MOSFET

12V-65W WIDE-RANGE INPUT MAINS ADAPTER USING THE L6566B

MOSFET. CoolMOS E6. Data Sheet. Industrial & Multimarket. Metal Oxide Semiconductor Field Effect Transistor

Reliability and qualification of CoolGaN

n-channel Power MOSFET

CHAPTER 3. SINGLE-STAGE PFC TOPOLOGY GENERALIZATION AND VARIATIONS

ACT111A. 4.8V to 30V Input, 1.5A LED Driver with Dimming Control GENERAL DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATION CIRCUIT

GS66516T Top-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

AHE28XXD SERIES HYBRID-HIGH RELIABILITY DC/DC CONVERTER. 28V Input, Dual Output. Description AHE. Features.

Improvements of LLC Resonant Converter

SiC Solution for Industrial Auxilliary Power Supply

MPM V-5.5V, 4A, Power Module, Synchronous Step-Down Converter with Integrated Inductor

ATW28XXD SERIES HYBRID-HIGH RELIABILITY DC/DC CONVERTERS. 28V Input, Dual Output. Description ATW. Features.

Gate Drive Optimisation

Welcome. High Efficiency SMPS with Digital Loop Control

Transcription:

Practical Design Considerations for a 3.3kW Bridgeless Totem-pole PFC Using GaN FETs Jim Honea Transphorm Inc

Overview of the Circuit Specifications 3.3kW (max) CCM bridgeless totem-pole PFC, Universal input range: 80VAC-265VAC, 50/60Hz, 15Arms Fixed Frequency Operation, with user-defined switching frequency (45-150kHz) Firmware-programmable VOUT: 373VDC-397VDC Integrated auxiliary power supply, provides second-stage power Applications Automotive on-board chargers (AEC-Q101 qualified GaN FETs now available ) Industrial power supplies 80 PLUS Titanium class power for telecom, data center, server

3 Design Details

Block Diagram AC Line In L N Filter Input Current + Voltage sense PFC Inductor Synchronous Bridge + Vdc out - PE PWM Digital Control - DSP - Firmware Vout Sense Auxiliary DC/DC Converter

The Bridgless Totempole PFC Topology Simplified schematic, CCM operation S2 on S1 on S2 off S1 off Positive Half Cycle (Vac>0) Negative Half Cycle (Vac<0)

6 GaN Synchronous Half Bridge

GaN Cascode Power Switches 3 rd Generation GaN cascode technology. Normally-off 30V Si FET in series with normally-on 650V GaN FET Robust Si gate; standard gate drive; Vth=3.9V Also available: Ron=50, 72, 110 150 290 mω SMD packaging

GaN Cascode Power Switches Qoss is the dominate component of Qrr

AEC-Q101 Qualified GaN Tests and Test Conditions Test Symbol Conditions Sample Pass Criteria TPH3205WSQA: First device with automotive qualification, in-stock and available. Additional devices are now in the qualification process. High Temperature Reverse Bias Highly Accelerated Temp and Humidity Temperature Cycle Temperature Cycling Hot Test HTRB HAST TC TCHT T J =150 C, V DS =650V, 1000 HRS 130 C, 85% RH, 33.3 PSI, Bias=100V, 96 HRS -55 C / 150 C, 2 Cycles / HR, 1000 Cycles 125 C Test After TC Wire Bond Integrity WBI 150 C, 500 HRS 3 lots, 77 parts per lot, 231 total parts 3 lots, 5 parts per lot, 15 total parts 0 Fails PASS 0 Fails PASS 0 Fails PASS 0 Fails PASS 0 Fails PASS Test Specifications Power Cycle PC 25 C / 125 C, T=105 C, 15,000 Cycles 0 Fails PASS Idss Igss Parameter Spec Limit Max Shift Allowed <40µA <100nA Dynamic R(on) 62mΩ <20% Vth 2.6/1.6 V <20% 5x increase (10x increase for environmental testing) Not applicable (low leakage) High Temperature Storage Life High Temperature Gate Bias (Cascode) High Temperature Gate Bias (HEMT only) High Humidity High Temp Reverse Bias Unbiased Accelerated Stress Test HTSL 150 C, 1000 HRS HTGB 150 C, 1000 HRS, V GSS =18V HTGB #2 H3TRB UHAST 150 C, 1000 HRS, V GSS =-35V 85 C/85% RH, 1000 HRS, 100V 130 C, 85% RH, 96 HRS 3 lots, 77 parts per lot, 231 total parts 0 Fails PASS 0 Fails PASS 0 Fails PASS 0 Fails PASS 0 Fails PASS Destructive Physical Analysis DPA Post TC & HAST 3 lots, 2 parts per lot, 6 total parts 0 Fails PASS

Effects of Off State Acceleration Factors Process variability is as important as determining acceleration factors Use plot with extrapolated lifetime for all devices tested ~300 devices from 9 different lots Test conditions ranged: VD from 1150V to 1300V Temperature from -20 C to 150 C Process evaluated at 480V Temperature range for automotive is -40 C to 150 C Nominal temperature expected to be 85 C Process shows 1% failure ++500 years Off state for 480V @ -40 C 480V -40 C 85 C 150 C Process shows excellent extrapolated lifetime with good stability

GaN Half-Bridge Design Details

GaN Half Bridge Design Details Ferrite bead in series with Drain: Damps ringing, overshoot increases. Overshoot is well within the specified transient-voltage limit (800V). http://www.transphormusa.com/document/recommended-external-circuitry-transphorm-gan-fets/

13 PFC Inductor Design

PFC inductor design Two versions of the inductor have been developed, - For use at different switching frequencies - Wound on the same toroidal core Frequency L (typical) Turns AWG Core R (T=25C) 45 khz 577 µh 56 10 CH610060 High Flux 0.017 Ω 100 khz 338 µh 42 10 CH610060 High Flux 0.013 Ω 45 khz 100 khz

PFC inductor design High Flux core permits operation at max current with a single core. Alternatives: - MPP or Sendust would require larger or stacked cores of the same size - Ferrite E core would be larger 15A 2 56Turns = 1188Ampere Turns http://www.changsung.com/_eng/product/goods.php?goods_no=14

16 AC Power Entry: EMI Filter

EMI Filter 8121-RC 8121-RC PFC Inductor

EMI Filter This plot shows Z from the switching inductor node looking back into the AC line, neglecting the LISN terminating impedance. Test result from the TTP4000W066 4kW PFC evaluation board which uses the same EMI filer.

19 PCB

PCB 388mm Fabrication Notes: 4 Layers 92mm Board Thickness: 93 mils Copper Thickness: a) Outer Layers: 2oz (70µm) b) Inner Layers: 1oz (35µm) Material: a) Base material: FR4 140 Tg as per IPC-4101 b) Prepreg material: FR4 as per IPC-4101 Minimum track thickness: 6 mil Minimum spacing: 6 mil

PCB Vdc out Top Layer Agnd Dgnd Pgnd Mid Layer 2 +3V3 Vdc out Mid Layer 1 Pgnd Bottom Layer

22 Control: Algorithm, Firmware Implementation

Digital Signal Controller TMS320F28335PGFA Texas Instruments Digital Signal Controller (DSC). QFP package was used to accommodate small production runs. BGA is significantly smaller. Use of a vertical, fixed (soldered/no-connector) daughter board for the DSP would improve power density.

Control Diagram for the Totempole PFC 24

25 Test Results

Efficiency vs Load 99% Load Efficiency 50kHz 99% Load Efficiency 100kHz 98% 98% 97% 97% 96% Efficiency (%) 96% 95% 90 VAC 115 VAC 180 VAC 230 VAC 260 VAC Efficiency (%) 95% 94% 93% 92% 90 VAC 115 VAC 180 VAC 230 VAC 94% 91% 260 VAC 93% 0 500 1000 1500 2000 2500 3000 Input Power (W) [15Arms rated] 90% 0 500 1000 1500 2000 2500 3000 Input Power (W) [15Arms rated]

Power Factor vs Load 1 POWER FACTOR versus Input Power, 50kHz 1 POWER FACTOR versus Input Power, 100kHz 0,98 Power Factor 0,96 0,94 90VAC 115 VAC 180 VAC 230 VAC 260 VAC Power Factor 0,98 0,96 90VAC 115 VAC 180 VAC 230 VAC 260 VAC 0,92 0,9 0 500 1000 1500 2000 2500 3000 Input Power (W) 0,94 0 500 1000 1500 2000 2500 3000 Input Power (W)

Current and Voltage Waveforms 90 VAC, 50% Load. 90 VAC, 100% Load. Red: Vin, 100V/div Gold: Iin, 5A/div 5ms/div Red: Vin, 100V/div Gold: Iin, 10A/div 5ms/div 230 VAC, 50% Load. 230 VAC, 100% Load. Red: Vin, 200V/div Gold: Iin, 5A/div 5ms/div Red: Vin, 200V/div Gold: Iin, 10A/div 5ms/div

Start up Operation 90 VAC, 0% Load. Red: VIN, 100 V / div. Gold: IIN, 5 A / div. Green: Vout, 100 V / div., 200 ms / div. 90 VAC, 100% Load. Red: VIN, 100 V / div. Gold: IIN, 10 A / div. Green: Vout, 100 V / div., 200 ms / div.

Danke fürs Zuhören