D1 GS SS12 AIC AIC AIC AIC VOUT GND. One Cell Step-Up DC/DC Converter

Similar documents
GS SS14 AIC AIC AIC AIC EXT GND. 100mA Load Current Step-Up Converter

AIC AIC AIC AIC EXT GND. 100mA Load Current Step-Up Converter

AIC1642. One Cell Step-Up DC/DC Converter

L1 GS SS14 EXT AIC1639 GND. 100mA Load Current Step-Up Converter

id8603 PFM Step-Up DC-DC Converters with Internal Schottky Diode General Description Applications Features Ordering Information Marking Information

Analog Integrations Corporation 4F, 9 Industry E. 9th Rd, Science-Based Industrial Park, Hsinchu, Taiwan DS

VIN VOUT GND SHDN V SHDN AIC1730. Low Noise Low Dropout Linear Regulator

+ C1. Note: V IN 1.8V, V OUT 7V. High Efficiency Step-Up DC/DC Converter

AIC1848 C+ 6 VIN 5 C FLY. Regulated 5V Output from 2.7V to 4.5V Input WLED series number: NSPW310BS, V F =3.6V, I F =20mA

HT77xxS 100mA PFM Synchronous Step-up DC/DC Converter

UM1361S. Hysteretic Buck High Brightness LED Driver with Internal Switch UM1361S SOT23-5. General Description

1.5MHz, 800mA, High-Efficiency PWM Synchronous Step-Down Converter

UM mA, 600kHz Step-Up DC-DC Converter UM3433 SOT23-6. General Description. Rev.05 Dec /9

AIC mA, 1.2MHz Synchronous Step-Up Converter

1.5MHz 600mA, Synchronous Step-Down Regulator. Features

UM1660. Low Power DC/DC Boost Converter UM1660S SOT23-5 UM1660DA DFN AAG PHO. General Description

20mA R FB. Fig. 1 Li-Ion Powered Driver with Over Voltage Protection for Three White LEDs

AIC1896. Efficiency (%) I LED R1. Fig. 1 Li-Ion Powered Driver for three white LEDs

EUP2511. HQI Boost Converter With 2.1A Switch In Tiny SOT-23 Package FEATURES DESCRIPTION APPLICATIONS. Typical Application Circuit

EVALUATION KIT AVAILABLE 1-Cell to 2-Cell, Low-Noise, High-Efficiency, Step-Up DC-DC Converter PFO LOW-BATTERY DETECTOR OUTPUT

eorex EP MHz, 600mA Synchronous Step-down Converter

1.5MHz 600mA, Synchronous Step-Down Regulator. Features

EUP A,30V,1.2MHz Step-Down Converter DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit

600mA, 1.2MHz, Synchronous Step-Down DC-DC Converter UM3501 SOT23-5 UM3501DA DFN Features. Efficiency (%) C3 10uF

MT3420 Rev.V1.2 GENERAL DESCRIPTION FEATURES APPLICATIONS. 1.4MHz, 2A Synchronous Step-Down Converter

UNISONIC TECHNOLOGIES CO., LTD UC3750 Preliminary CMOS IC

1.5MHz, 1A Synchronous Step-Down Regulator

A7115. AiT Semiconductor Inc. APPLICATION ORDERING INFORMATION TYPICAL APPLICATION

23V 3A Step-Down DC/DC Converter

1.5MHz, 3A Synchronous Step-Down Regulator

UNISONIC TECHNOLOGIES CO., LTD UC3656

1.5MHz, 800mA Synchronous Step-Down Regulator

MPM V-5.5V, 4A, Power Module, Synchronous Step-Down Converter with Integrated Inductor

LN2402. PWM/PFM Automatic Switching Controlled Synchronous DC-DC Converters. General Description. Applications. Package. Features

SUN MHz, 800mA Synchronous Step-Down Converter GENERAL DESCRIPTION EVALUATION BOARD APPLICATIONS. Typical Application

Battery Powered, High Efficiency Synchronous DC/DC Boost Converter. Features

A7108. AiT Semiconductor Inc. APPLICATION ORDERING INFORMATION TYPICAL APPLICATION

1.5 MHz, 600mA Synchronous Step-Down Converter

PWM Controlled, Step-up DC/DC Converter in Tiny Package

20mA R FB. Fig. 1 Li-Ion Powered Driver for Three White LEDs

EUP MHz, 800mA Synchronous Step-Down Converter with Soft Start

Liteon Semiconductor Corporation LSP MHZ, 600mA Synchronous Step-Up Converter

23V, 2A, 600KHz Asynchronous Synchronous Step-Down DC/DC Converter

1.5MHz, 2A Synchronous Step-Down Regulator

A7221A DC-DC CONVERTER/BUCK (STEP-DOWN) 600KHz, 16V, 2A SYNCHRONOUS STEP-DOWN CONVERTER

Built-In OVP White LED Step-up Converter in Tiny Package

ACT6311. White LED/OLED Step-Up Converter FEATURES

PWM Controlled, Step-up DC/DC Converter in Tiny Package

Constant Current Switching Regulator for White LED

ULTRA-SMALL PACKAGE PWM/PFM SWITCHING CONTROL STEP-UP SWITCHING REGULATOR. Feature. transistor PACKAGE:SOT23-5. V1.0 Page 1.

Non-Synchronous PWM Boost Controller

EUP3010/A. 1.5MHz,1A Synchronous Step-Down Converter with Soft Start DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit

DIO6305 High-Efficiency 1.2MHz, 1.1A Synchronous Step-Up Converter

FP V, 3.1A, 550KHz High Efficiency Low Ripple Synchronous Step-Up Converter. Description. Features. Applications.

SP mA Buck Converter

PS7516. Description. Features. Applications. Pin Assignments. Functional Pin Description

SGM6232 2A, 38V, 1.4MHz Step-Down Converter

EUP3452A. 2A,30V,300KHz Step-Down Converter DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit

AIC2858 F. 3A 23V Synchronous Step-Down Converter

TFT-LCD DC/DC Converter with Integrated Backlight LED Driver

PART MAX1642C/D MAX1642EUA MAX1643C/D TOP VIEW PFI BATTLO LOW-BATTERY DETECTOR OUTPUT

n Applications l Cellular Telephones l Personal Information Appliances l Wireless and DSL Modems l MP3 Players l Portable Instruments

LR8509 Series 1.5MHz 600mA Synchronous Step-Down Converter

23V, 1.8A, 1.4MHz Asynchronous Step-Down DC/DC Converter

EUP A,40V,200KHz Step-Down Converter

LM /1.6 MHz Boost Converters With 40V Internal FET Switch in SOT-23

1.5MHz 800mA, Synchronous Step-Down Regulator. Features. Applications. 2.2 uh. Cout 10uF CER. Cin 4.7 uf CER 2 GND FIG.1

HT77xxSA 200mA PFM Synchronous Step-up DC/DC Converter

HT77xxSA 200mA PFM Synchronous Step-up DC/DC Converter

MP A, 55V, 100kHz Step-Down Converter with Programmable Output OVP Threshold

16V Input Voltage Step-Down DC/DC Controller

600KHz, 16V/2A Synchronous Step-down Converter

WD3122EC. Descriptions. Features. Applications. Order information. High Efficiency, 28 LEDS White LED Driver. Product specification

A7121A. AiT Semiconductor Inc. APPLICATION ORDERING INFORMATION TYPICAL APPLICATION

180KHZ, 120mA, Synchronous Step-UP DC-DC Converter

High Efficiency Low Noise PFM Step-up DC/DC Converter

AIC1802 R6 1K. *C TC & C TD are optional for delay time adjustment. **R1 & R2: Refer application informations.

ELM620BA 1.4MHz high efficiency synchronous PWM step up DC/DC converter

SGM % Efficient Synchronous Step-Up Converter with 1.1A Switch

PT MHz, 600mA Synchronous Step-Down DC-DC Converter

S-8351/52 Series. Rev.1.0_10. Features. Packages. Applications SMALL PACKAGE PFM CONTROL STEP-UP SWITCHING REGULATOR

PWM Step-Up DC/DC Converter for Panel Backlight. Features. Fig. 1

SGM6132 3A, 28.5V, 1.4MHz Step-Down Converter

SGM % Efficient Synchronous Step-Up Converter with 1.1A Switch

3.3V, Step-Down, Current-Mode PWM DC-DC Converters

RT V DC-DC Boost Converter. Features. General Description. Applications. Ordering Information. Marking Information

1.5MHz 1A, Synchronous Step-Down Regulator. Features. Applications. Fig. 1

100mA REGULATED CHARGE PUMP General Description. Features. Applications

EUP A,30V,500KHz Step-Down Converter DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit

Dual Channel, 1.5MHz 800mA, Synchronous Step-Down Regulator. Features. Applications

FEATURES. Efficiency (%)

Synchronous Buck Converter With Power Good Detector and LDO

WD3119 WD3119. High Efficiency, 40V Step-Up White LED Driver. Descriptions. Features. Applications. Order information 3119 FCYW 3119 YYWW

Dual 1.5MHz, 1A Synchronous Step-Down Regulator

FP kHz 7A High Efficiency Synchronous PWM Boost Converter

VCC GND AIC1821. Protection Circuit for One-Cell Lithium-Ion Battery

ELM614BA 2A, 18V, 500kHz, synchronous step down DC/DC converter

HX1102 HX

RT9296. Synchronous Boost Converter with LDO Controller. General Description. Features. Applications. Ordering Information RT9296(- )

MAX756/MAX V/5V/Adjustable-Output, Step-Up DC-DC Converters. Features

Transcription:

1-Cell, 3-Pin, Step-Up DC/DC Converter FEATURES A Guaranteed Start-Up from less than 0.9 V. High Efficiency. Low Quiescent Current. Less Number of External Components needed. Low Ripple and Low Noise. Fixed Output Voltage:.7V, 3.0V, 3.3V, and 5V. Space Saving Packages: SOT-89 and TO-9. APPLICATIONS Pagers. Cameras. Wireless Microphones. Pocket Organizers. Battery Backup Suppliers. Portable Instruments. DESCRIPTION The AIC1638 is a high efficiency step-up DC/DC converter for applications using 1 to 4 NiMH battery cells. Only three external components are required to deliver a fixed output voltage of.7v, 3.0V, 3.3V, or 5V. The AIC1638 starts up from less than 0.9V input with 1mA load. Pulse Frequency Modulation scheme brings optimized performance for applications with light output loading and low input voltages. The output ripple and noise are lower compared with the circuits operating in PSM mode. The PFM control circuit operating in 100KHz (max.) switching rate results in smaller passive components. The space saving SOT-89 and TO- 9 packages make the AIC1638 an ideal choice of DC/DC converter for space conscious applications, like pagers, electronic cameras, and wireless microphones. TYPICAL APPLICATION CIRCUIT VIN V L1 100µH D1 GS SS1 + C1 µf AIC1638-7 AIC1638-30 AIC1638-33 AIC1638- V + C 47µF GND One Cell Step-Up DC/DC Converter Analog Integrations Corporation 4F, 9 Industry E. 9th Rd, Science-Based Industrial Park, Hsinchu, Taiwan DS-1638-01 0110 TEL: 886-3-5770 FAX: 886-3-577510 www.analog.com.tw 1

ORDERING INFORMATION AIC1638-XXCXXX PIN CONFIGURATION PACKING TYPE TR: TAPE & REEL BG: BAG PACKAGE TYPE X: SOT-89 Z: TO-9 SOT-89 TOP VIEW 1: GND : V 3: 1 3 Example: PUT VOLTAGE 7:.7V 30: 3.0V 33: 3.3V : 5.0V AIC1638-7CXTR.7V Version, in SOT-89 Package & Tape & Reel Packing Type TO-9 TOP VIEW 1: GND : V 3: 1 3 ABSOLUATE MAXIMUM RATINGS Supply Voltage (V pin)..1v pin Voltage..1V pin Switch Current A Operating Temperature Range....-40 C to 85 C Storage Temperature Range -65 C to 1 C Lead Temperature (Soldering 10 Sec.) C TEST CIRCUIT AIC1638 100.5V V F GND Oscillator Test Circuit

ELECTRICAL CHARACTERISTICS (T A =5 C, I =10mA, Unless otherwise specified) PARAMETER TEST CONDITIONS SYMBOL MIN. TYP. MAX. UNIT Output Voltage AIC1638-7 AIC1638-30 AIC1638-33 AIC1638- V IN =1.8V V IN =1.8V V IN =.0V V IN =3.0V V.633.95 3.18 4.875.0 3.000 3.300 5.000.767 3.075 3.38 5.15 Input Voltage Normal Operation V IN 8 V Start-Up Voltage I =1mA, V IN :0 V V START 0.9 V Min. Hold-on Voltage I =1mA, V IN : 0V V HOLD 0.7 V No-Load Input Current I =0mA I IN 15 µa Supply Current Supply Current AIC1638-7 AIC1638-30 AIC1638-33 AIC1638- EXT at no load, V IN =V x 0.95 Measurement of the IC input current (V pin) AIC1638-7 AIC1638-30 AIC1638-33 AIC1638- V IN =V + 0.5V Measurement of the IC input current (V pin) I DD1 I DD 4 V 90 µa 7 7 7 7 µa Leakage Current V =10V, V IN =V + 0.5V 0.5 µa Switch-On Resistance Oscillator Duty Cycle Max. Oscillator Freq. AIC1638-7 AIC1638-30 AIC1638-33 AIC1638- V IN =V x 0.95, V =V V IN =V x 0.95 Measurement of the pin waveform V IN =V x 0.95 Measurement of the pin waveform R ON 1.3 1. 1.1 DUTY 65 75 85 % 1 F OSC 105 130 KHz Efficiency η 85 % Ω 3

TYPICAL PERFORMANCE CHARACTERISTICS (Refer to Typical Application) Capacitor (C) : 47 µ F (Tantalum Type) Diode (D1) : 1N5819 Schottky Type.8 85.7 Output Voltage (V).6 V IN =1.5V V IN =1.8V V IN =.0V V IN =1.V.5.4 V IN =0.9V.3. 0 0 40 100 10 140 1 1 Fig. 1 AIC1638-7 Load Regulation (L=100µH CD54) Efficiency (%) 75 65 V IN =1.5V V IN =1.8V V V IN =1.V IN =0.9V 55 0 0 40 100 10 140 1 1 Output current (ma) Fig. AIC1638-7 Efficiency (L=100µH CD54) V IN =.0V.8 85 Output Voltage (V).7.6.5.4 VIN=1.V VIN=0.9V V IN=1.5V V IN=1.8V VIN=.0V.3 0 0 40 100 10 140 1 1 00 0 40 Fig. 3 AIC1638-7 Load Regulation (L=47µH CD54) Efficiency (%) 75 65 55 VIN=0.9V VIN=1.V VIN=1.5V VIN=1.8V 0 0 40 100 10 140 1 1 00 0 Output current (ma) Fig. 4 AIC1638-7 Efficiency (L=47µH CD54) VIN=.0V 40 0.9 0.9 Input Voltage (V) 0.7 0.5 0.3 Start up Hold on Input Voltage (V) 0.7 0.5 0.3 Start up Hold on 0.1 0.1 0 4 6 8 10 1 14 16 18 Fig. 5 AIC1638-7 Start-Up & Hold-ON Voltage (L=47µH CD54) 0 4 6 8 10 1 14 16 18 Fig. 6 AIC1638-7 Start-Up & Hold-ON Voltage (L=100µH CD54) 4

TYPICAL PERFORMANCE CHARACTERISTICS (Continued).78 1 Output Voltage V(V).76.74.7..68.66.64 No Load Switching Frequency (khz) 140 10 100 40.6 Fig. 7 AIC1638-7 Output Voltage vs. Temperature 0 Fig. 8 AIC1638-7 Switching Frequency vs. Temperature 8 1.8 1.6 Maximum Duty Cycle (%) 78 76 74 7 68 Turn On Resistance (Ω) 1.4 1. 66 Fig. 9 AIC1638-7 Maximum Duty Cycle vs. Temperature Fig. 10 AIC1638-7 Turn On Resistance vs. Temperature Supply Current I DD1 (µa) 5 48 44 40 36 3 8 4 0 Fig. 11 AIC1638-7 Supply Current vs. Temperature Output voltage V(V) 3.1 3.0.9.8.7.6.5.4.3..1 V IN=0.9V V IN=1.V V IN=1.5V V IN=.0V VIN=1.8V.0 0 10 0 30 40 90 100 110 10 130 140 Fig. 1 AIC1638-30 Load Regulation (L=100µH, CD54) 5

TYPICAL PERFORMANCE CHARACTERISTICS (Continued) 85 3.1 3.0 Efficiency (%) 75 65 VIN=1.5V V IN=1.8V V IN=.0V Output Voltage (V).9.8.7.6.5.4 VIN=1.V V IN=1.5V VIN=1.8V VIN=.0V 55 VIN=0.9V V IN=1.V.3 V IN=0.9V 0 0 40 100 10 140 1 1 Fig. 13 AIC1638-30 Efficiency (L=100µH, CD54). 0 0 40 100 10 140 1 1 00 0 Fig. 14 AIC1638-30 Load Regulation (L=47µH CD54) 85 0.9 Start up Efficiency (%) 75 65 V IN=1.8V VIN=.0V Input Voltage (V) 0.7 0.5 0.3 Hold on 55 V IN=1.5V VIN=0.9V VIN=1.V 0 5 75 100 15 1 175 00 Fig. 15 AIC1638-30 Efficiency (L=47µH CD54) 5 0.1 0 4 6 8 10 1 14 16 18 0 Fig. 16 AIC1638-30 Start-up & Hold-on Voltage (L=100µH CD54) 3.06 Input Voltage (V) 0.9 0.7 0.5 0.3 0.1 Start up Hold on Output Voltage Vout (V) 3.04 3.0 3.00.98.96.94.9 No Load 0 4 6 8 10 1 14 16 18 0 Fig. 17 AIC1638-30 Start-up & Hold-on Voltage (L=47µH CD54).90 Fig. 18 AIC1638-30 Output Voltage vs. Temperature 6

TYPICAL PERFORMANCE CHARACTERISTICS (Continued) 1 8 Switching Frequency (khz) 140 10 100 40 0 Maximum Duty Cycle (%) 78 76 74 7 68 0 Fig. 19 AIC1638-30 Switching Frequency vs. Temperature 66 Fig. 0 AIC1638-30 Maximum Duty Cycle vs. Temperature 1.8 5 Turn On Resistance (Ω) 1.6 1.4 1. Fig. 1 AIC1638-30 Turn On Resistance vs. Temperature Supply Current IDD1 (µa) 48 44 40 36 3 8 4 0 Fig. AIC1638-30 Supply Current vs. Temperature Output Voltage (V) 3.4 3.3 3. 3.1 3.0.9.8.7.6.5.4 V IN=1.V VIN=0.9V VIN=1.5V V IN=1.8V V IN=.0V.3 0 5 75 100 15 1 175 00 Fig. 3 AIC1638-33 Load Regulation (L=100µH, CD54) Efficiency (%) 90 85 75 65 55 V IN=0.9V VIN=1.V VIN=1.5V VIN=1.8V V IN=.0V 0 5 75 100 15 1 175 00 Fig. 4 AIC1638-33 Efficiency (L=100µH, CD54) 7

TYPICAL PERFORMANCE CHARACTERISTICS (Continued) 3.4 90 3.3 85 3. Output Voltage (V) 3.1 3.0.9.8.7.6.5 VIN=0.9V VIN=1.5V V IN=1.V V IN=1.8V V IN=.0V Efficiency (%) 75 65 55 45 VIN=0.9V V IN=1.V V IN=1.5V VIN=1.8V V IN=.0V.4 0 5 75 100 15 1 175 00 5 Fig. 5 AIC1638-33 Load Regulation (L=47µH, CD54) 40 0 5 75 100 15 1 175 00 5 Fig. 6 AIC1638-33 Efficiency (L=47µH,CD54) Input Voltage (V) 1.1 0.9 0.7 0.5 0.3 0.1 Start up Hold on 0 4 6 8 10 1 14 16 18 0 Fig. 7 AIC1638-33 Start-up & Hold-on Voltage (L=100µH CD54) Output Voltage Vout (V) 3. 3.45 3.40 3.35 3.30 3.5 3.0 3.15 3.10 3.05 No Load 3.00 Fig. 8 AIC1638-33 Output Voltage vs. Temperature Switching Frequency (khz) 1 140 130 10 110 100 90 Fig. 9 AIC1638-33 Switching Frequency vs. Temperature Maximum Duty Cycle (%) 8 78 76 74 7 68 66 Fig. 30 AIC1638-33 Maximum Duty Cycle vs. Temperature 8

TYPICAL PERFORMANCE CHARACTERISTICS (Continued) Turn On Resistance (O) 1.8 1.6 1.4 1. Fig. 31 AIC1638-33 Turn On Resistance vs. Temperature Supply Current IDD1 (µa) 56 5 48 44 40 36 3 8 4 Fig. 3 AIC1638-33 Supply Current vs. Temperature 5.5 5.0 100 90 Output Voltage (V) 4.5 4.0 3.5 3.0.5.0 V IN=.0V VIN=1.5V V IN=1.V V IN=0.9V V IN=3.0V Efficiency (%) 40 30 VIN=0.9V VIN=1.V VIN=1.5V V IN=.0V V IN=3.0V 1.5 0 100 1 00 300 3 400 Fig. 33 AIC1638- Load Regulation ( L=100µH CD54) 0 0 100 1 00 300 3 400 Fig. 34 AIC1638- Efficiency (L=100µH CD54) Output Voltage (V) 5.5 5.0 4.5 4.0 3.5 3.0.5.0 VIN=0.9V V IN=1.V V IN=1.5V VIN=.0V V IN=3.0V 1.5 0 100 1 00 300 3 400 Fig. 35 AIC1638- Load Regulation (L=47µH CD54) Efficiency (%) 90 85 75 VIN=3.0V 65 VIN=.0V 55 V IN=0.9V V IN=1.5V VIN=1.V 45 0 100 1 00 300 3 400 Fig. 36 AIC1638- Efficiency (L=47µH CD54) 9

TYPICAL PERFORMANCE CHARACTERISTICS (Continued) 1.8 5.3 1.6 5. Input Voltage (V) 1.4 1. Start up Hold on Output Voltage Vout (V) 5.1 5.0 4.9 4.8 4.7 4.6 No Load 4.5 0 4 6 8 10 1 14 16 18 0 Fig. 37 AIC1638- Start-up & Hold-on Voltage (L=100µH CD) 4.4 Fig. 38 AIC1638- Output Voltage vs. Temperature Switching Frequency (khz) 1 140 130 10 110 100 90 Fig. 39 AIC1638- Switching Frequency vs. Temperature Maximum Duty Cycle (%) 8 78 76 74 7 68 66 64 Fig. 40 AIC1638- Maximum Duty Cycle vs. Temperature 1.6 1.4 100 90 Turn On Resistance (O) 1. Fig. 41 AIC1638- Turn On Resistance vs. Temperature Supply Current I DD1 (µa) 40 30 0 10 Fig. 4 AIC1638- Supply Current vs. Temperature 10

TYPICAL PERFORMANCE CHARACTERISTICS (Continued) V V 0mv/div mv/div VIN 100mA 0.5V/div Load Step ma/div Fig. 43 Load Transient Response Fig. 44 Line Transient Response (L 1 =100µH, C =47µF, V IN =V) (L 1 =100µH, C =47µF) BLOCK DIAGRAM V 1.5V REF. 1M - + GND Enable OSC, 100KHz PIN DESCRIPTIONS PIN1 : GND - Ground. Must be low impedance; solder directly to ground plane. PIN : V - IC supply pin. Connect V to the converter output. PIN3 : Internal drain of N-MOSFET switch. 11

APPLICATION INFORMATIONS GENERAL DESCRIPTION AIC1638 PFM (pulse frequency modulation) converter ICs combine a switch mode converter, N-channel power MOSFET, precision voltage reference, and voltage detector in a single monolithic device. They offer both extreme low quiescent current, high efficiency, and very low gate threshold voltage to ensure start-up with low battery voltage ( V typ.). Designed to maximize battery life in portable products, and minimize switching losses by only switching as needed service the load. PFM converters transfer a discrete amount of energy per cycle and regulate the output voltage by modulating switching frequency with the constant turn-on time. Switching frequency depends on load, input voltage, and inductor value, and it can range up to 100KHz. The on-resistance is typically 1 to 1.5 Ω to minimize switch losses. each cycle. Depending on circuit, PFM converter can operate in either discontinuous mode or continuous conduction mode. Continuous conduction mode means that the inductor current does not ramp to zero during each cycle. V IN I IN I D I + EXT Isw Ico AIC1638 V EXT V When the output voltage drops, the error comparator enables 100KHz oscillator that turns on the MOSFET around 7.5us and.5µs off time. Turning on the MOSFET allows inductor current to ramp up, storing energy in a magnetic field. When MOSFET turns off that force inductor current through diode to the output capacitor and load. As the stored energy is depleted, the current ramp down until the diode turns off. At this point, inductor may ring due to residual energy and stray capacitance. The output capacitor stores charge when current flowing through the diode is high, and release it when current is low, thereby maintaining a steady voltage across the load. I IN I V I D T DIS Charge Co. Discharge Co. I PK I As the load increases, the output capacitor discharges faster and the error comparator initiates cycles sooner, increasing the switching frequency. The maximum duty cycle ensure adequate time for energy transfer to output during the second half Discontinuous Conduction Mode t 1

V EXT [1+ ( V VIN) 1 fsw = TON (V V) x VIN V ( )] V V I IN I PK 1 V VIN TON V V I V where Vsw = switch drop and proportion to output current. I INDUCTOR SELECTION I D I V t Continuous Conduction Mode At the boundary between continuous and discontinuous mode, output current (I OB ) is determined by VIN 1 VIN IOB = TON V L ( 1 x) where V D is the diode drop, x = (R ON +Rs)Ton/L. R ON = Switch turn on resistance, Rs= Inductor DC resistance T ON = Switch ON time In the discontinuous mode, the switching frequency (Fsw) is (L)(V Fsw = V VIN)(I T ON IN ) (1 + x) In the continuous mode, the switching frequency is To operate as an efficient energy transfer element, the inductor must fulfill three requirements. First, the inductance must be low enough for the inductor to store adequate energy under the worst case condition of minimum input voltage and switch ON time. Second, the inductance must also be high enough so maximum current rating of AIC1638 and inductor are not exceed at the other worst case condition of maximum input voltage and ON time. Lastly, the inductor must have sufficiently low DC resistance so excessive power is not lost as heat in the windings. But unfortunately this is inversely related to physical size. Minimum and Maximum input voltage, output voltage and output current must be established before and inductor can be selected. In discontinuous mode operation, at the end of the switch ON time, peak current and energy in the inductor build according to IPK V L Vin Ron + Rs = 1 exp( Ton) Ron + Rs L IN ( T ) ON 1 x VIN TON (Simple losses equation), L where x=(r ON +R S )T ON /L 13

1 EL = L Ipk Power required from the inductor per cycle must be equal or greater than PL/F = (V + V D VI N )(I 1 )( F in order for the converter to regulate the output. When loading is over I OB, PFM converter operates in continuous mode. Inductor peak current can be derived from ) I PK V = V IN V VIN V V L T Valley current (Iv) is V Iv = T ON V VIN V 1 x ON x I x 1 x I + V IN V L Table 1 Indicates resistance and height for each coil. Inductance Power Inductor Type ( mh ) Coilcraft SMT Type (www.coilcraft.com) Sumida SMT Type CD54 Hold SMT Type PM54 DS18 DO3316 Resistance ( W ) Rated Current (A) 0.10 0.7 47 0.18 0.5 100 0.38 0.3 8.7 47 0.14 1.8 47 5 0.7 100 0. 0.5 47 5 0.7 100 0. 0.5 Hold SMT Type PM75 33 0.11 1. 5.0 Height (mm).9 5. 4.5 4.5 CAPACITOR SELECTION A poor choice for a output capacitor can result in poor efficiency and high output ripple. Ordinary aluminum electrolyzers, while inexpensive may have unacceptably poor ESR and ESL. There are low ESR aluminum capacitors for switch mode DC-DC converters which work much better than general propose unit. Tantalum capacitors provide still better performance at more expensive. OS-CON capacitors have extremely low ESR in a small size. If capacitance is reduced, output ripple will increase. Most of the input supply is supplied by the input bypass capacitor, the capacitor voltage rating should be at least 1.5 times greater than a maximum input voltage. DIODE SELECTION Speed, forward drop, and leakage current are the three main considerations in selecting a rectifier diode. Best performance is obtained with Schottky rectifier diode, such as 1N5819. Motorola makes MBR0530 in surface mount. For lower output power a 1N4148 can be used although efficiency and start-up voltage will suffer substantially. 14

COMPONENT POWER DISSIPATION Operating in discontinuous mode, power loss in the winding resistance of inductor can be approximate equal to PD L = T 3 L ON V + V V D ( Rs ) ( P) where P =V I ; Rs=Inductor DC R; V D = Diode drop. The power dissipated in a switch loss is PDsw = 3 T L ON V + V V D IN ( RON ) ( P) V The power dissipated in rectifier diode is PD D V = V D (P ) PHYSICAL DIMENSION SOT-89 (unit: mm) D D1 A C SYMBOL MIN MAX A 1.40 1. B 0.36 8 C 0.35 4 H E D 4.40 4. D1 1.6 1.83 L e e1 B E.9. e 1. (TYP.) e1 3.00 (TYP.) H 3.94 4.5 L 9 1.0 SOT-89 MARKING Part No. AIC1638-7 AIC1638-30 AIC1638-33 AIC1638- Marking AN7 AN30 AN33 AN 15

TO-9 (unit: mm) A L C E SYMBOL MIN MAX A 4.3 5.33 C 0.38 (TYP.) D e1 D 4.40 5.0 E 3.17 4.0 e1 1.7 (TYP.) L 1.7-16