Australian Journal of Basic and Applied Sciences. Design of a Half Bridge AC AC Series Resonant Converter for Domestic Application

Similar documents
HIGH POWER FACTOR INDUCTION HEATING SYSTEM WITH INTERLEAVED VARIABLE DUTY CYCLE

Single Phase AC Converters for Induction Heating Application

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP ( 132

PERFORMANCE OF INDUCTION HEATING TOPOLOGIES WITH VARIOUS SWITCHING SCHEMES

Development of Embedded Based Power Control Scheme in Class D Inverter for Induction Heating System

High Power Factor Induction Heating System with Interleaved Variable Duty Cycle

A Single Stage ZVS-PWM Inverter for Induction Heating Applications

A Series-Resonant Half-Bridge Inverter for Induction-Iron Appliances

High Frequency Soft Switching Dual Mode Resonant Converter with SW / PDM Control for Improved Efficiency of Domestic IH Applications

Comparison of Simulation and Experimental Results of Class - D Inverter Fed Induction Heater

Hardware Implementation of MOSFET Based High Frequency Inverter for Induction Heating

IMPLEMENTATION OF IGBT SERIES RESONANT INVERTERS USING PULSE DENSITY MODULATION

HIGH FREQUENCY INVERTER FOR MULTI- COIL INDUCTION HEATING

Series and Parallel Resonant Inverter Fed Ferromagnetic Load-A Comparative Analysis

A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor

A Double ZVS-PWM Active-Clamping Forward Converter: Analysis, Design, and Experimentation

Design and Simulation of New Efficient Bridgeless AC- DC CUK Rectifier for PFC Application

Design and Implementation Of Vienna Rectifier For Induction Heating Appliances Using Dspic

ZCS-PWM Converter for Reducing Switching Losses

White Paper. Gate Driver Optocouplers in Induction Cooker. Load Pot. Control. AC Input. Introduction. What is Induction Cooking?

CHOICE OF HIGH FREQUENCY INVERTERS AND SEMICONDUCTOR SWITCHES

Linear Transformer based Sepic Converter with Ripple Free Output for Wide Input Range Applications

CHAPTER 2 A SERIES PARALLEL RESONANT CONVERTER WITH OPEN LOOP CONTROL

Chapter 6 Soft-Switching dc-dc Converters Outlines

Simplified loss analysis and comparison of full-bridge, full-range-zvs DC-DC converters

Five-Level Full-Bridge Zero Voltage and Zero Current Switching DC-DC Converter Topology

Power Factor Corrected Single Stage AC-DC Full Bridge Resonant Converter

THE converter usually employed for single-phase power

High Frequency Soft Switching Of PWM Boost Converter Using Auxiliary Resonant Circuit

Webpage: Volume 3, Issue IV, April 2015 ISSN

Development of a Single-Phase PWM AC Controller

SINGLE-STAGE HIGH-POWER-FACTOR SELF-OSCILLATING ELECTRONIC BALLAST FOR FLUORESCENT LAMPS WITH SOFT START

ELEC387 Power electronics

ANALYSIS OF ZVT DC-DC BUCK-BOOST CONVERTER

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

International Journal of Engineering Science Invention Research & Development; Vol. II Issue VIII February e-issn:

Implementation of Single Stage Three Level Power Factor Correction AC-DC Converter with Phase Shift Modulation

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP(

IN THE high power isolated dc/dc applications, full bridge

Sepic Topology Based High Step-Up Step down Soft Switching Bidirectional DC-DC Converter for Energy Storage Applications

IMPROVED DYNAMIC RESPONSE OF PFC-SEPIC CONVERTER BASED ON INDUCTION HEATER USING FOPID CONTROLLED SYSTEM

Performance Analysis of Control techniques of Full-Bridge Resonant Inverter for Induction Metal Surface Hardening

Design Consideration for High Power Zero Voltage Zero Current Switching Full Bridge Converter with Transformer Isolation and Current Doubler Rectifier

International Journal of Advance Engineering and Research Development

Single switch three-phase ac to dc converter with reduced voltage stress and current total harmonic distortion

Control of buck-boost chopper type AC voltage regulator

A New 98% Soft-Switching Full-Bridge DC-DC Converter based on Secondary-Side LC Resonant Principle for PV Generation Systems

Improved Modification of the Closed-Loop-Controlled AC-AC Resonant Converter for Induction Heating

A CONTROLLED SINGLE-PHASE SERIES RESONANT AC CHOPPER

A NOVEL SOFT-SWITCHING BUCK CONVERTER WITH COUPLED INDUCTOR

ANALYSIS OF SINGLE-STAGE HIGH-FREQUENCY RESONANT AC/AC CONVERTER USING ARTIFICAL NEURAL NETWORKS

BLDC Motor Speed Control and PFC Using Isolated Zeta Converter

A New Closed Loop AC-DC Pseudo boost Based Converter System for CFL

Closed Loop Single Phase Bidirectional AC to AC Buck Boost Converter for Power Quality Improvement

New Conceptual High Efficiency Sinewave PV Power Conditioner with Partially-Tracked Dual Mode Step-up DC-DC Converter

Implementation Of Closed Loop Control Of Ac-Ac

Simulation and Comparision of Back To Back System using Bidirectional Isolated DC-DC Converter with Active Energy Storage

Experimental Studies of Series-Resonant Inverters Using PDM for Induction Hardening Applications

SINGLE PHASE MULTI STRING FIVE LEVEL INVERTER FOR DISTRIBUTED ENERGY SOURCES

A THREE PHASE SHUNT ACTIVE POWER FILTER FOR HARMONICS REDUCTION

A BRUSHLESS DC MOTOR DRIVE WITH POWER FACTOR CORRECTION USING ISOLATED ZETA CONVERTER

Examples Paper 3B3/4 DC-AC Inverters, Resonant Converter Circuits. dc to ac converters

Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology

International Journal of Advanced Scientific Technologies in Engineering and Management Sciences (IJASTEMS-ISSN: X)

Modified SEPIC PFC Converter for Improved Power Factor and Low Harmonic Distortion

A NEW ZVT ZCT PWM DC-DC CONVERTER

SERIES LOAD RESONANT CONVERTOR FOR INDUCTION HEATING APPLICATION

Soft-Switching Two-Switch Resonant Ac-Dc Converter

DUAL BRIDGE LLC RESONANT CONVERTER WITH FREQUENCY ADAPTIVE PHASE-SHIFT MODULATION CONTROL FOR WIDE VOLTAGE GAIN RANGE

Switches And Antiparallel Diodes

DESIGN AND IMPLEMENTATION OF RESONANT CIRCUIT BASED ON HALF-BRIDGE BOOST RECTIFIER WITH OUTPUT VOLTAGE BALANCE CONTROL

Performance Enhancement of a Novel Interleaved Boost Converter by using a Soft-Switching Technique

Single Phase Bridgeless SEPIC Converter with High Power Factor

CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR

A HIGH EFFICIENT IMPROVED SOFT SWITCHED INTERLEAVED BOOST CONVERTER

A Novel Cascaded Multilevel Inverter Using A Single DC Source

ZVT Buck Converter with Synchronous Rectifier

A Novel Concept in Integrating PFC and DC/DC Converters *

Hybrid 5-level inverter fed induction motor drive

Power Factor Correction for Chopper Fed BLDC Motor

Fig.1. A Block Diagram of dc-dc Converter System

PI Controller Based New Soft-Switching Boost Converter With A Coupled Inductor

Australian Journal of Basic and Applied Sciences. Simulation and Analysis of Closed loop Control of Multilevel Inverter fed AC Drives

Analysis and Design of Soft Switched DC-DC Converters for Battery Charging Application

To Study The MATLAB Simulation Of A Single Phase STATCOM And Transmission Line

High Power Density Parallel Resonant Inverter Using Bridgeless Boost Rectifier and Switched Capacitor Cell for Induction Heating

New Unidirectional Hybrid Delta-Switch Rectifier

CHAPTER 2 AN ANALYSIS OF LC COUPLED SOFT SWITCHING TECHNIQUE FOR IBC OPERATED IN LOWER DUTY CYCLE

Design of step-up converter for a constant output in a high power design

Matlab /Simlink based closed Loop Control of Bi-Directional DC - DC Converter

Soft Switched Resonant Converters with Unsymmetrical Control

ZERO VOLTAGE TRANSITION SYNCHRONOUS RECTIFIER BUCK CONVERTER

ISSN Vol.03,Issue.42 November-2014, Pages:

Fundamentals of Power Electronics

The Parallel Loaded Resonant Converter for the Application of DC to DC Energy Conversions

Analysis of Correction of Power Factor by Single Inductor Three-Level Bridgeless Boost Converter

COMPARISON OF SIMULATION AND EXPERIMENTAL RESULTS OF CLASS - D INVERTER FED INDUCTION HEATER

POWER FACTOR CORRECTION OF ELECTRONIC BALLAST FOR FLUORESCENT LAMPS BY BOOST TOPOLOGY

The Execution of New Interleaved Single-Stage of Three-Phase Ac-Dc Converter with Power Factor Correction Using Space Shift Pulse Width Modulation

A Buck-Boost AC-AC Converter Topology Eliminating Commutation Problem with Multiple Mode of Operations

Transcription:

ISSN:1991-8178 Australian Journal of Basic and Applied Sciences Journal home page: www.ajbasweb.com Design of a Half Bridge AC AC Series Resonant Converter for Domestic Application K. Prabu and A.Ruby Meena Department of EEE Government College of Engineering Salem, India A R T I C L E I N F O Article history: Article Received: 12 January 2015 Revised: 1 May 2015 Accepted: 8 May 2015 Keywords: inverter, induction heating, resonant converter, AC-AC converter. A B S T R A C T This paper explains the analysis and design of a new AC AC resonant converter applied to domestic induction heating. The conventional circuit of an induction heating typically have a rectifier controller, and a frequency controlled current or voltage source inverter. It is a known fact that the input rectifier does not have a sinusoidal input current. The working is based on hard switching and only single output frequency. In this case, output voltage is very small so that the current flowing through the inductor is very high. And the inductor current affects the efficiency of the system. In order to overcome the limitations of the conventional circuit, a new AC-AC resonant converter is proposed. The proposed converter is based on the series resonant halfbridge topology, and it used two diodes only. The converter operates with zero-voltage switching conditions in both turn-on and turn-off transitions. As a consequence, the efficiency can be increased, and the number of a switching device is reduced and also multiple output frequency can be obtained. The proposed AC/AC converter topology and their design are investigated by using MATLAB/ Simulink. 2015 AENSI Publisher All rights reserved. To Cite This Article: K. Prabu and A.Ruby Meena, Design of a Half Bridge AC AC Series Resonant Converter for Domestic Application. Aust. J. Basic & Appl. Sci., 9(21): 160-165, 2015 INTRODUCTION Nowadays the Induction heating appliance market is increasing due to its lesser heating time and high efficiency. Domestic induction cook hobs are now becoming a standard option, especially in Asia. The principle of operation is based on the generation of a variable magnetic field by means of a planar inductor below a metallic vessel (Fujita, 2010; Pham, 2011). The input voltage is rectified by the diodes and after that an inverter provides a mediumfrequency current. That current is feed to the inductor. The operating frequency is between 20 khz to100 khz. The most of induction heating process used insulated gate bipolar transistor (IGBT) only, because of their high-frequency range and the high output power range. Nowadays, most designs use the half-bridge series resonant topology because of its simplicity in control and increasing efficiency (Ahmed, 2006). Results are provided. In the past, conventional AC AC topologies have been proposed to simplify the converter and improve the efficiency. In induction heating application MOSFETs (Hector, 2012), IGBTs, or RB-IGBTs, have been proposed. By use of MOSFET or IGBT efficiency has been increased. Fig. 1: Block diagram of induction heating Corresponding Author: K. Prabu, Department of EEE Government College of Engineering Salem, India E-mail: rkprabu5@gmail.com

161 K. Prabu and A.Ruby Meena, 2015 The aim of this paper is to propose a new topology to increase the efficiency while reducing the switching devices for induction heating applications. Proposed topology is based on the series resonant topology, and it used only two rectifier diodes. To allowing a significant current reduction in the switching devices, the effective output voltage is increased. Moreover, the proposed converter can operate with zero voltage switching conditions during switch-on for both switching devices, and also during switch-off transitions for one of them. As a consequence, the power quality is increased while the instrument count is reduced while keeping the same performance as more complex solutions. Conventional topologies: The full-bridge diode rectifier plus a dc-link inverter topology contain two a power switch blocks Q1 (SW1/D1), QS (SWS/DS).And it s divided into a series capacitors CS and C b and lossless capacitor C1 in parallel to the coil R0-L0.The voltage boost block contains boost inductor Lb and power switch Q1, the switching block Q1 shares the operation of both single-phase boost chopper converter and ZVS-PWM high-frequency inverter. This full-bridge diode rectifier plus a dc-link inverter topology produces the THD greater than 5% as specified by IEEE standards IEEE 519-92 and European EN 61000-3-2 standards for allowable harmonic contents of mains. Fig. 2: Full-bridge diode rectifier plus a dc-link inverter. Figure 3 represents the basic circuit configuration of ZVS-PWM Full bridge inverter topology. This topology includes two pairs of four active power switch blocks Q1 (SW1/D1), QS (SWS/DS) for inverter operation. the IH working coil R0-L0 in parallel to snubbing capacitor C1 and a Vienna rectifier for sinusoidal current consumption. The inverter is fired by Sinusoidal PWM pulse. The diode rectifiers and thyristor rectifiers draw current from input AC supply, causing significant current harmonics pollution. The international standards presented in IEEE Std. 519 and IEEE Monitoring Electric Power Quality Std 1159-1995 imposed harmonic restrictions to modern rectifiers, which stimulated a focused research effort on the topic of unity power factor rectifiers. By using a Vienna Rectifier with continuous sinusoidal input current and unidirectional power flow, We obtain the hormonics below 5% and overall efficiency higher than 97%. Moreover, any malfunction in the control circuit does not manifest itself in short circuit of output or PFC front end. Fig. 3: ZVS-PWM Full bridge inverter. Operation theory of induction heating: The concept of induction heating, employed in the application of an IH rice cooker. This concept can be simplified as follows. First, convert the AC coming from the power source to DC using a rectifier. Then, connect this DC to a high- frequency switching circuit to administer high-frequency current to the heating coil. According to Ampere s Law, a high-frequency magnetic field is created around the heated coil. If a conductive object, e.g. the container of a rice cooker is put into the magnetic field, Then induced voltage and an eddy current are created on the skin depth of the container as a result of the skin effect and Faraday s Law. The induced eddy current generates heat energy on the surfaces of the container. Other applications include melting, welding and brazing or metals. Induction cooking hobs and rice cookers. Fig. 4: Operating theory of induction heating.

162 K. Prabu and A.Ruby Meena, 2015 Fig. 5: Proposed AC-AC converter. Proposed converter structure: The proposed topology includes two bidirectional switches SH and SL or TH and TL, and the switches are IGBT, and an anti-parallel Diode DH or DL, respectively. The applied voltage Vac is rectified by two diodes DRH and DRL, but only one switch is activated at a time. This operation increases efficiency concerning conventional topologies. The proposed topology is a series parallel resonant converter. The inductor contains a series resistance Req and inductance Leq, as shown in Figure. This topology uses resonant capacitors Cr and a bus capacitor Cb. Both resonant capacitors have the same value because the symmetry between positive and negative mains voltage. An input inductor Ls is used to reduce the harmonic content to fulfill the electromagnetic compatibility regulations. Principle of operation: The topology presents symmetry between positive and negative AC voltage supply. Its symmetry simplifies analysis and makes possible to redraw the circuit as shown in Figure, Although this topology uses different resonant configurations, parallel and series, and different resonant tanks for each of them, it is possible to use a normalized nomenclature based on series resonance. Fig. 5: Equivalent circuit during the positive mains voltage cycle. State I operated with the high-side switching device S1 triggered on and the low-side switching device S2 triggered-off. The parallel resonant capacitor Ceq obtained from Cr and Cb, and the inductor contain the equivalent resistor(req), and equivalent inductance (Leq). The current flowing through the switch S1 is the same as the current flowing through the load. State I begin when S2 is triggered OFF. Transitions from this state can lead either to state II or state III. The voltage across S2 reaches zero, the transition condition to state II is fulfilled. On the other hand, if S1is switched OFF, the next state is state III. Fig. 6: State1 Operation.

163 K. Prabu and A.Ruby Meena, 2015 Fig. 7: State 2 Operation. State II is characterized by the conduction of switch S1 and S2, although only S1 is triggered ON. This state starts when the voltage across S2 reaches zero. This state finishes when SH is triggered OFF, and the next state is state III. The main benefits results in the lower switch-off current achieved when S1 is triggered OFF because both devices supply the load current. In addition, S1 achieves ZVS conditions during both switch-on and switch-off transitions, reducing the switching loss consequently. State III is start conduction when the switch S2 on and S1 in off. One resonant capacitor sets the equivalent resonant circuit in parallel with the series connection of the Cs capacitor and the parallel connection of the inductor and the other one resonant capacitance. Note that when Cs is zero (α = 0), the equivalent resonant circuit is a series RLC circuit composed of the inductor Pot system and one resonant capacitor. This state started when S1is triggered OFF and S2 is triggered ON to achieving ZVS switch-on conditions. This state finishes when S2 is OFF, and the next state is state-i. Fig. 8: State 3 Operation. Simulation result: Principle of operation presented in the previous section and operating modes can be described as shown in Figure, achieve ZVS switch-on conditions. The operation contains three states described earlier: I, II, and III. It makes possible to achieve ZVS conditions for the high- side switch in state II. The low-side switch does not have ZVS turn-off. However, turn-off current is always lower than in the high-side switch. Nowadays, the induction heating appliances power is limited by mains maximum current and voltage. Simulation parameters are Cr = 470 nf, and the inductor is modeled by Leq = 65 μh and 6.5 Ω for the series equivalent resistor at switching frequency. To obtain a high power factor and a proper power control the dc- link capacitor has been selected to below range, as it is shown in this section, And it can be neglected in this analysis. The control strategies considered to control the output power is the square wave (SW) control, based on changing the switching frequency (SF) of the switching devices (Chien-ming, 2008). A. SW control: In Square Wave control method to control the switching frequency to obtained the required output power. To switch-on ZVS, the switching frequency is higher than the resonant frequency, and when the switching frequency is increased the output power is decreased. As is shown in Figure, the frequency range starts at 22kHz, which is the resonant frequency determined by Leq and Cr, which ensures power ZVS switching-on conditions and can be increased to decrease the output. However, if the switching frequency reaches

164 K. Prabu and A.Ruby Meena, 2015 30kHz, switching-off losses increase because ZVS switching-off conditions are not achieved. As a result, the suitable switching frequency range and, therefore, the output power range is reduced. To overcome this limitation, the asymmetric duty cycle (ADC) control strategy is proposed. Fig. 9: SW control. B. Asymmetrical duty cycle control: In ADC control the output power is controlled by changing the switching device duty cycle. This control strategy delivers different output powers by changing the percent of conducting angle (θ) in which the high-side switch SH is activated D(SH ). The variation of conducting angle is restricted to the achievement of soft-switching conditions for SH, ZVS for switching-off, and by the achievement of ZVS in the switching- on commutation for both devices (anti-parallel diode conduction at the beginning). To obtain the switch-on ZVS conditions, the duty cycle must be higher than 30%. To obtain a proper safety margin and to control the total amount of losses per switching device,so, the upper boundary is kept to 60%. Figure shows the power output variation achieved and the switching losses. One of the key design aspects when designing the proposed converter to operate with the ADC control is the voltage that the switching devices must withstand. Fig. 10: ADC control. Here figure shows the output voltage waveform of an AC-a converter circuitry. Input voltage of 230v is applied. Output of the simulation is taken across the load. High-frequency level is obtained when it is compared with the input frequency.

165 K. Prabu and A.Ruby Meena, 2015 Fig. 11: Output voltage with high-frequency. Conclusion: This paper presents a half bridge AC-AC converter topology applied for induction heating application. The design and analysis have been performed to obtain the operation mode that describes the proposed converter. The zero- voltage switching operation can be obtained for both turn-on and turn-off commutations. And the output voltage is doubled compared to the conventional topology, and also reducing the current flow through the switching devices. As a consequence, the power converter power qualities improved in the whole operating range. A 3-kW prototype has been designed and simulated to validate the analytical and results. The simulation measurements show a power quality improvement compared to the conventional topology and validate the feasibility of the proposed converter. REFERENCES Ahmed, N.A. and M. Nakaoka, 2006. boosthalf-bridge edge resonant soft switching PWM highfrequency inverter for consumer induction heating appliances, IEEE Proc. Electr. Power appl, 153(6): 932 938. Ahmed, N.A., M. Nakaoka, 2006. half-bridge edge resonant soft switching pm high-frequency inverter for consumer induction heating appliances, IEEE Proc. Electr. Power appl, 153(6): 932 938. Chien-ming, W., 2008. A novel single-stage high-power-factor electronic ballast with asymmetrical half-bridge topology, IEEE Trans. Ind. Electron, 55(2): 969 972. Fujita, H., K. Ozaki, 2010. heating system using multiple inverter units applicable under mutual magnetic coupling conditions, IEEE Trans. Power electron, 26(7): 2009 2017. Hector, Auto media, 2012. high-efficiency AC- AC power electronic converter for heating appliances, IEEE Proc. Electr. Power appl., 27(8). Pham, H., N. Uchida, 2011. phase angle control of high-frequency resonant currents in multiple inverter systems for zone control induction heating, IEEE Trans. Power electron, 26(11): 3357 3366.