PETAL : a multi-pw beam on LMJ facility

Similar documents
Adaptive Optics for. High Peak Power Lasers

Romania and High Power Lasers Towards Extreme Light Infrastructure in Romania

J-KAREN-P Session 1, 10:00 10:

Overview of Project Orion

High Rep-Rate KrF Laser Development and Intense Pulse Interaction Experiments for IFE*

ASE Suppression in a Diode-Pumped Nd:YLF Regenerative Amplifier Using a Volume Bragg Grating

Laser Science and Technology at LLE

Optical Parametrical Chirped Pulse Amplification

Extreme Light Infrastucture (ELI) Science and Technology at the ultra-intense Frontier. Bruno Le Garrec

DCS laser for Thomson scattering diagnostic applications

Directly Chirped Laser Source for Chirped Pulse Amplification

Thin-Disc-Based Driver

Recent Progress on the 10PW laser Project at SIOM

ΘΘIntegrating closedloop adaptive optics into a femtosecond laser chain

The KrF alternative for fast ignition inertial fusion

Power scaling of picosecond thin disc laser for LPP and FEL EUV sources

OMEGA EP: High-Energy Petawatt Capability for the OMEGA Laser Facility

MEC Laser Systems. Bill White LCLS Laser Group Leader April 13, Bill White. MEC Laser Systems. MEC Workshop.

Ultra-stable flashlamp-pumped laser *

STUDIES OF INTERACTION OF PARTIALLY COHERENT LASER RADIATION WITH PLASMA

Laser Induced Damage Threshold of Optical Coatings

Introduction Compact 0.56 PW laser system Scalability to multi-petawatt power Conclusion

Chapter 3. OMEGA Extended Performance (EP) Laser System

High Energy Non - Collinear OPA

A new picosecond Laser pulse generation method.

High Power Thin Disk Lasers. Dr. Adolf Giesen. German Aerospace Center. Institute of Technical Physics. Folie 1. Institute of Technical Physics

Lasers à fibres ns et ps de forte puissance. Francois SALIN EOLITE systems

Industrial mj-class all-fibered front end with spatially coherent top-hat beam output used as seeder for high power laser

VELA PHOTOINJECTOR LASER. E.W. Snedden, Lasers and Diagnostics Group

Progress in ultrafast Cr:ZnSe Lasers. Evgueni Slobodtchikov, Peter Moulton

TIME-PRESERVING MONOCHROMATORS FOR ULTRASHORT EXTREME-ULTRAVIOLET PULSES

High-Conversion-Efficiency Optical Parametric Chirped-Pulse Amplification System Using Spatiotemporally Shaped Pump Pulses

Development of scalable laser technology for EUVL applications

5kW DIODE-PUMPED TEST AMPLIFIER

A Novel Multipass Optical System Oleg Matveev University of Florida, Department of Chemistry, Gainesville, Fl

A CW seeded femtosecond optical parametric amplifier

High-power semiconductor lasers for applications requiring GHz linewidth source

High Average Power, High Repetition Rate Side-Pumped Nd:YVO 4 Slab Laser

Regenerative Amplification in Alexandrite of Pulses from Specialized Oscillators

The Realization of Ultra-Short Laser Sources. with Very High Intensity

Ultrawideband regenerative amplifiers via intracavity acousto-optic programmable gain control

Chapter 14. Tunable Dye Lasers. Presented by. Mokter Mahmud Chowdhury ID no.:

How far are we today from its availability?

Laser systems for science instruments

X-ray generation by femtosecond laser pulses and its application to soft X-ray imaging microscope

How to build an Er:fiber femtosecond laser

FLASH at DESY. FLASH. Free-Electron Laser in Hamburg. The first soft X-ray FEL operating two undulator beamlines simultaneously

A novel tunable diode laser using volume holographic gratings

Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy

Demonstration of exponential growth and saturation at VUV wavelengths at the TESLA Test Facility Free-Electron Laser. P. Castro for the TTF-FEL team

Far field intensity distributions of an OMEGA laser beam were measured with

Survey Report: Laser R&D

Large-Area Interference Lithography Exposure Tool Development

Pulse energy vs. Repetition rate

X-CAN. A coherent amplification network of femtosecond fiber amplifiers

High-Power Femtosecond Lasers

Sub-300 fs, 0.5 mj pulse at 1kHz from Ho:YLF amplifier and Kagome pulse compression

Department of Electrical Engineering and Computer Science

NIST EUVL Metrology Programs

LCLS-II-HE Instrumentation

Development of high average power fiber lasers for advanced accelerators

Nonlinear Optics (WiSe 2015/16) Lecture 9: December 11, 2015

Continuum White Light Generation. WhiteLase: High Power Ultrabroadband

12/08/2003 H. Schlarb, DESY, Hamburg

Optimization of supercontinuum generation in photonic crystal fibers for pulse compression

Lecture 08. Fundamentals of Lidar Remote Sensing (6)

Photon Diagnostics. FLASH User Workshop 08.

Fiber Lasers for EUV Lithography

Lecture 08. Fundamentals of Lidar Remote Sensing (6)

Case Study: Simplifying Access to High Energy sub-5-fs Pulses

Femtosecond to millisecond transient absorption spectroscopy: two lasers one experiment

Laser Diode Arrays an overview of functionality and operation

On-line spectrometer for FEL radiation at

ALPHA 5/XS 200 TW Ultrafast Ti:Sa Series

Spectroscopy of Ruby Fluorescence Physics Advanced Physics Lab - Summer 2018 Don Heiman, Northeastern University, 1/12/2018

Noncollinear Optical Parametric Amplifiers for Ultra-Intense Lasers

Will contain image distance after raytrace Will contain image height after raytrace

Development of Nano Second Pulsed Lasers Using Polarization Maintaining Fibers

The SIRAD irradiation facility at the INFN - Legnaro National Laboratory

ModBox-FE-125ps-10mJ. Performance Highlights FEATURES APPLICATIONS. Electrical & Optical Pulse Diagrams

Photonic Crystal Fiber Interfacing. In partnership with

Compression grating alignment by far-field monitoring

Importance of spatial quality of intense femtosecond pulses

Outline of the proposed JLAMP VUV/soft X-ray FEL and the challenges for the photon beamlines and optics

PITZ Laser Systems. Light Amplification by Stimulated Emission of Radiation. Cavity. What is a Laser? General introduction: systems, layouts

REAL-TIME DETECTION OF OPTICAL DAMAGE INDUCED BY HIGH-POWER LASER PULSES

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers

Laser-Diode Pumped Nd:Glass Slab Laser for Inertial Fusion Energy

SCS Optical Laser Delivery

Wavelength Stabilization of HPDL Array Fast-Axis Collimation Optic with integrated VHG

Sintec Optronics Technology Pte Ltd is a leading supplier and manufacturer of a wide range of

Solid-State Laser Engineering

Improving efficiency of CO 2

High power VCSEL array pumped Q-switched Nd:YAG lasers

Picosecond laser system based on microchip oscillator

High Power Compact Fiber Chirped Pulse Amplifiers at 1558-nm using Er/Yb LMA Fibers and Chirped Volume Bragg Grating Compressors

ELECTRONICS FOR PULSE PICKERS

Nd:Glass Laser Design for Laser ICF Fission Energy (LIFE)

Designing for Femtosecond Pulses

High Power Dense Spectral Combination Using Commercially Available Lasers and VHGs

Transcription:

PETAL : a multi-pw beam on LMJ facility Retard = 50 fs Retard = 3 ps J.L. MIQUEL Experimental Validation & PETAL Projects Manager CEA,DAM, F-91297 Arpajon, France CEA 10 AVRIL 2012

The PETAL Project PETAL is a part of the opening policy of CEA, and it will be dedicated to the scientific community PETAL is supported by : PETAL is a step toward : The coupling of PETAL was previously planned with the LIL Facility Transferring of PETAL and coupling with LMJ Quads was decided in 2010 Opportunity to study a wider field of physics and prepare efficiently HiPER 2

Implantation in LMJ building PETAL beamline Energy Bank Compression stages (SS2) South CEA 2010 PETAL 1 st LMJ Quadruplets Source North Focusing 3

PETAL characteristics versus LMJ PETAL goals Energy : up to 3 kj * Wavelength : 1053 nm (526 nm option) Pulse duration : from 0,5 to 10 ps Intensity on target : ~ 10 20 W/cm² Power contrast : 10-7 at -7 ps Energy contrast : 10-3 LMJ (1 beam) Energy : up to 7.5 kj (x 176 = 1,3 MJ) Wavelength : 351 nm Pulse duration : from 0,3 to 25 ns Intensity on target : ~ 10 15 W/cm² * limited at the beginning to 1 kj due to the damage threshold of the transport mirrors 4

PETAL Project Phase 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 I- Key issues : Front End, Compression stage II Laser development : Front end & Amplifier section III- Compression : Air transport & Compression stages IV- Focusing : Vacuum Transport & Focusing V- Coupling to LMJ LIL LMJ 5

Amplification kj UHI PETAL = kj-uhi «Robust» 3 kj, sub-ps : CPA 3 kj, robust : Nd:glass amplification Amplifier section = LMJ type I t I t I t I t Short pulse oscillator (100 fs) Stretching (qq ns) Amplification in the laser chain(qq kj) Compression (ps) Physical limitations Non-linear effects : filamentation High stretching factor, vacuum, reflective optics Amplification : spectral narrowing Pre-amplification with large Dl : OPCPA, Power amplification : glass mixing Geometric and chromatic aberrations Large size optics, thermal effect in amplifiers : deformable mirror Chromatism corrector Compressor adjustment Damage threshold Large size optics, in vacuum, fs regime Filamentation Damage Threshold 6

Intensity (a.u) Front-End Architecture : OPCPA Technique 1 Input Output Source 0,5 OPCPA amplifier Femtosecond oscillator Laser Pump 14W CW (532nm) Femtosecond Laser 77.76 MHz - 1053 nm 3nJ - 100fs - 16nm Pulse selector Pockels cells Öffner stretcher X 90 000 Collimator 0 1025 1035 1045 1055 1065 1075 wavelength (nm) Optical fiber (PM) collimator LBO 25mm Signal 100 mj - 1053 nm 4.5 ns - 8 nm Single shot BBO 15mm Driver Alimentation + Driver Fiber oscillator Regenerative amplifier Rod amplifier Fiber Oscillator monochromatic Modulator A.O Temporal pulse shaping Collimator Diode pumped amplifier Pockels Cells Spatial beam shaping Flash pumped amplifier KTP Pump 1.2J - 526nm - 4,5ns monochromatic Single shot Pump * E. Hugonnot et al., Appl. Opt. 45 (2006) 7

Front end OPCPA : 100 mj / 8 nm / 4.5 ns @ 1053 nm Offner system Femtosecond Oscillator Pump Laser 14W continuous 532nm Femtosecond Laser 77.76 MHz 1053 nm 3nJ - 100fs - 16nm Pulse Selector Pockels Cell Öffner Stretcher Collimator Optical Fiber (PM) collimator Signal Output 100 150mJ/1053nm/4,5ns/8nm single shot LBO 25mm BBO 15mm Front End output beam (LIL) Driver Power supply + Driver Fibered oscillator monochromatic fibered Source Acousto-optic Modulator Temporal shaping Modulator Collimator Regenerative Amplifier Diode pumped head Pockels Cell Active Beam Shaper Power amplifier Flash Pumped head KTP Pump 1.2J/526nm/4,5ns/monochromatic Single shot Pre-amplifier on table Integrated Pre-amplifier Module (PAM) * E. Hugonnot et al., Appl. Opt. 45 (2006) 8

Amplifier section : Architecture LIL/LMJ CEA 2011 LMJ PETAL : 4 x 2 beams 1 x 1 beam Automatic alignment LMJ architecture : 4 passes Amplifier slabs : Nd:phosphate glasses Beam size : 35 x 37 cm² 1,7 ns # 3 nm # 6,4 kj M1 deformable mirror Chromatism Corrector* Diffractive Fresnel Lens CEA 2007 Amplifiers PEPC * C. Rouyer, Opt. Express 15, 2019-2032 (2007) 9

The Amplifier Section LMJ Laser bay n 2 Amplifier slab during the integration process LMJ PETAL Energy bank 10

Transport, Compression, Focusing Beam from Amplifier Section Focusing Vacuum Transport Compression stages 2 stages compression : 1st stage in air Input : 6.4 kj # 1.7 ns Output : 4.4 kj # 350 ps 2nd stage in vacuum Output : 3.6 kj # 0.5-10 ps Air Transport CEA 2010 11

Compression Sub-aperture compression scheme* 4 J/cm² and 40 x 40 cm² beam 400 x 1800 mm² gratings 4 sub-aperture compressors with beam phasing 500 fs 3,6 kj Specific diagnostics 350 ps 4,4 kj 1,7 ns 6,4 kj Cylindrical mirror Segmented mirror Grating developments * N Blanchot, Opt. Express (2010) 12

Compression wavefront correction Feedback of Phase 1 : Wavefront deformation due to grating modification under vacuum : 4 compressors = Corrugated surface Pre-correction in air by segmented and cylindrical mirrors R Y R Y R Y R Y R X R X R X R X Tilt of segments of segmented mirror R X R Y R Y R Y R Y 2 cylindrical mirrors or 1 toroidal mirror Rx = Ry = Tr2 Tr1 Front d énergie Front d onde Tr = Tr1 + Tr2 No impact on compressor performances Tr = 0 13

Segmented and toroidal Mirrors Mirror segment : 1 translation 2 rotations Capacitive sensor Mirrors support : 1 translation 2 rotations PZT connected to capacitive sensor Segment Segment adjustment axis Course sensibility δz +/- 10 µm 1 nm θx +/- 40 µrad 0.05 µrad θy +/- 40 µrad 0.05 µrad toroidal mirror 14

Compression stages Compression box CEA 2012 Room for the 1st compression stage CEA 2012 Room for the compression diagnostics CEA 2013 CEA 2013 15

Transport and focusing of the compressed beam Box for the parabola Reservation for the 2w option Focusing by off-axis parabola 7,8 m focal length, 90 deviation Multi-beam option Exploration for target : +/- 50 mm Focal spot ~ 50 µm Pointing mirror Vacuum transport Off-axis parabola Alignment mirror 16

PETAL diagnostics DTF TEI TDC RECO SORF CEA 2010 Integrated Equipment Equipment being integrated Equipment being designed TDA REA TDI Légende : TDI : Table de Diagnostics d Injection TDA : Table de Diagnostics d Amplification TDC : Table de Diagnostics sortie Compresseur DTF : Diagnostic de Tache Focale TEI : Tiroir Etalon d Injection REA : Radiomètre Etalon d Amplification RECO : Radiomètre Etalon de Compression SORF : Système Optique de Réduction de Faisceau 17

Diagnostics SORF and TDA Leaky mirror, beam reduction, diagnostics SORF Salle E110 Bâti MDA MDA VOSA SORF Banc de réglage SORF sur la LIL MT1 CCD Energy distribution O.F. Temporal SORF CCD Wave front O.F Spectrum O.F Energy MDA VOSA Salle E110 18

Compressor Diagnostics TDC Salle TDC (ISO8) Salle ISO8 à SS2 Compression : Far field Near field Spectral width Spectral phase 10 measurements for compressors alignment and compressed beam characterization : Synchronization & Phase adjustment : Characterization : spectral Interferometry Short time contrast PETAL/LMJ synchronization Long time contrast Wavefront Energy 19

The damage threshold problem Sub-ps and ns damages Silice 351nm, 3ns, 30 J/cm² Silice 1053nm, 400 fs, 3 J/cm² ns sub-ps Norton SPIE 6403 (2007) Absorption on precursor default (scratch, SSD, inclusion, structural default) Plasma, pressure, shock wave, damage Complex, multi-physic problem Multi-photonic absorption, tunnel effect ionization, relaxation, N e > N Cr (10 20 à 10 22 e - /cm 3 ) Dielectric breakdown = damage 20

Y Axis Great efforts have been made on gratings* 2600 06-0676 Tests sur échantillons 2400 2200 2000 1800 1600 1400 1200 SiO 2 HfO 2 SiO 2 HfO 2 100 200 300 400 500 X Axis 3.000 2.813 2.625 2.438 2.250 2.063 1.875 1.688 1.500 1.313 1.125 0.9375 0.7500 0.5625 0.3750 0.1875 0 Modélisation des structures - The effect of E field has been demonstrated (2006-2011 - 7 publications) -PETAL gratings have been optimized : threshold > 4J/cm² - Work in progress with new structures (2 patents) Fabrication industrielle pleine taille Métrologie LMO, physique de l endommagement fs * J. Néauport, Opt. Express 15 (2007) 21

Probabilité But mirrors cannot sustain more than 2-2.4 J/cm² (4 J/cm² specified) : new technologies are needed 1 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 Probabilité d'endommagement Echantillon DKTOB54 - polaristion S et P - 45 fluence calculée avec 90% de l'énergie 0 1,5 1,7 1,9 2,1 2,3 2,5 2,7 2,9 3,1 3,3 3,5 Fluence moyenne (J/cm²) Pola P Pola S Maximum energy available : Test on Mirror : 2.4 J/cm² @ 500 fs Correspond to E beam = 3.4 kj Beam modulation => E max ~ 1 kj Perhaps more : spectral smoothing Monochromatic Study of damages morphology : Broad spectrum (16 nm) Several damage processes can be observed depending on material properties and/or irradiation conditions : Thermal effects Mechanical effects Ripples, surface plasmons Plasma burn 22

Ways of improvment Materials : Test of high index materials (other than HfO 2 ) Test of mixtures Use of mixtures (IBS) Coating processes : e-beam + IAD IBS Impact of process on wave front Effect of coating process parameters (IAD) Design of layers : Multi-materials coating (nb>2) Adjustment of layers thickness Combination multi-materials + layers thickness 11.7.2013 PAGE 23 23

Dammage threshold of materials and mixtures Case of simple materials for laser coatings 500 fs, 1on1, 1030 nm Case of mixtures Low index High index 24

Physics with PETAL 1 : Standard HED Physics Generation of intense electron, ion and X-ray beams Electrons up to 150 MeV (Temperature 7-10 MeV) Protons up to 120 MeV (Temperature 6-14 MeV) Study of their propagation in Warm Dense Matter Stopping power Extreme WDM states by short-pulse Isochoric heating Laboratory Astrophysics Experiments Opacity, hydrodynamics similarity, Fast ignition experiments 25

Physics with PETAL 2 : Extreme Physics Acceleration and High Energy Physics Electron acceleration to 100 GeV- 1 TeV Channel-guided acceleration by laser wakefield in low density plasma -> K. Nakajima talk A. Puckov Extreme power laser Cascaded Compression Conversion (C3) scheme, up to EW : Coupling of CPA, OPCPA & Backward Raman (or Brillouin) Amplification CPA OPCPA BRA -> T. Kuehl talk 26

Schedule for LMJ first experiments SCF M1 Polarisers Ali.1w PEPC Amplifier PAM First Experiments J J 2011 A S O N D 2012 J F M A M J J A S O N D 2013 J F M A M J J A S O N D 2014 J F M A M J J A S O N D Align t 1B AS Assembly Align t 4B AS Ali. CC Shots 1w Assembly Ali. 4B TCF Shots 3w Command-Control Tests 27

Schedule for PETAL on LMJ LMJ Align Commissioning PETAL First LMJ experiments 2014 2015 2016 2017 2018 Last alignment Commissioning First experiments (Restricted access) LMJ increasing capabilities (beams number, energy, shots number, plasma diagnostics, targets, ) Full access (call for proposals beginning in 2015) PETAL Equatorial plan 1st LMJ QUAD 80 to 90 CEA 2011 Experiments with PETAL will begin in 2016 LMJ/PETAL, as LIL, will be open to the scientific community 28

Thank you for your attention Commissariat à l énergie atomique et aux énergies alternatives Centre DAM Île de France Bruyères-le-Châtel 91297 Arpajon Cedex T. +33 - (0)1 69 26 62 16 F. +33 - (0)1 69 26 70 03 Direction des applications militaires Direction des armes nucléaires Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019

PETAL Plasma Diagnostics PETAL+ project : Funded by ANR and managed by the University of Bordeaux Two diagnostics + inserters Availability : 2016 Charged particles diagnostic : Proton spectroscopy & Imaging (proton-radiography) 100 kev-200 MeV Electron spectroscopy 100 kev 150 MeV Hard X-ray spectrometer 7 100 kev (2 transmission crystals). Shielding : high energy X-ray and particles (magnets) 30