Adaptive optics two-photon fluorescence microscopy

Similar documents
Critical considerations of pupil alignment to achieve open-loop control of MEMS deformable mirror in non-linear laser scanning fluorescence microscopy

Aberrations and adaptive optics for biomedical microscopes

Adaptive optics in digital micromirror based confocal microscopy P. Pozzi *a, D.Wilding a, O.Soloviev a,b, G.Vdovin a,b, M.

using a deformable mirror

Ron Liu OPTI521-Introductory Optomechanical Engineering December 7, 2009

Nature Methods: doi: /nmeth Supplementary Figure 1

Akinori Mitani and Geoff Weiner BGGN 266 Spring 2013 Non-linear optics final report. Introduction and Background

Specimen-induced aberrations and adaptive optics for microscopy

Dynamic closed-loop system for focus tracking using a spatial light modulator and a deformable membrane mirror

Variable zoom system with aberration correction capability

Nature Methods: doi: /nmeth Supplementary Figure 1. Schematic of 2P-ISIM AO optical setup.

AgilOptics mirrors increase coupling efficiency into a 4 µm diameter fiber by 750%.

Point Spread Function. Confocal Laser Scanning Microscopy. Confocal Aperture. Optical aberrations. Alternative Scanning Microscopy

Shaping light in microscopy:

TRAINING MANUAL. Multiphoton Microscopy LSM 510 META-NLO

attocfm I for Surface Quality Inspection NANOSCOPY APPLICATION NOTE M01 RELATED PRODUCTS G

Martin J. Booth, Delphine Débarre and Alexander Jesacher. Adaptive Optics for

Applications of Adaptive Optics in Fluorescence Microscopy and Ophthalmology

3D light microscopy techniques

Closed loop adaptive optics for microscopy without a wavefront sensor Peter Kner a

Optimal Pupil Design for Confocal Microscopy

Confocal Imaging Through Scattering Media with a Volume Holographic Filter

Development of a new multi-wavelength confocal surface profilometer for in-situ automatic optical inspection (AOI)

Conformal optical system design with a single fixed conic corrector

Practical Flatness Tech Note

POCKET DEFORMABLE MIRROR FOR ADAPTIVE OPTICS APPLICATIONS

Maria Smedh, Centre for Cellular Imaging. Maria Smedh, Centre for Cellular Imaging

In a confocal fluorescence microscope, light from a laser is

Heisenberg) relation applied to space and transverse wavevector

Reflecting optical system to increase signal intensity. in confocal microscopy

Supplementary Information for: Immersion Meta-lenses at Visible Wavelengths for Nanoscale Imaging

Nature Neuroscience: doi: /nn Supplementary Figure 1. Optimized Bessel foci for in vivo volume imaging.

Study of self-interference incoherent digital holography for the application of retinal imaging

Adaptive Scanning Optical Microscope (ASOM) for Large Workspace Micro-robotic Applications

Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy

a) How big will that physical image of the cells be your camera sensor?

Wavefront-sensorless aberration correction of extended objects using a MEMS deformable mirror

Modelling multi-conjugate adaptive optics for spatially variant aberrations in microscopy

Flatness of Dichroic Beamsplitters Affects Focus and Image Quality

High contrast imaging lab

Confocal Microscopy and Related Techniques

2. Adaptive Optical Microscopy using Direct Wavefront Sensing 2.1 Introduction In this chapter we will review adaptive optics (AO) in biological

Open-loop performance of a high dynamic range reflective wavefront sensor

Improving the Collection Efficiency of Raman Scattering

Resolution. Diffraction from apertures limits resolution. Rayleigh criterion θ Rayleigh = 1.22 λ/d 1 peak at 2 nd minimum. θ f D

MODULAR ADAPTIVE OPTICS TESTBED FOR THE NPOI

Imaging Condition Optimization in Multiphoton Microscopy of Three-Dimensional Collagen Fiber Structures

GRINTECH GmbH. product information.

Optical Components for Laser Applications. Günter Toesko - Laserseminar BLZ im Dezember

Supplementary Information. Stochastic Optical Reconstruction Microscopy Imaging of Microtubule Arrays in Intact Arabidopsis thaliana Seedling Roots

Laboratory Experiment of a High-contrast Imaging Coronagraph with. New Step-transmission Filters

A broadband achromatic metalens for focusing and imaging in the visible

Digital Camera Technologies for Scientific Bio-Imaging. Part 2: Sampling and Signal

Adaptive optimisation of illumination beam profiles in fluorescence microscopy

INTRODUCTION TO MICROSCOPY. Urs Ziegler THE PROBLEM

Microscopy. Lecture 2: Optical System of the Microscopy II Herbert Gross. Winter term

Optical Design with Zemax

Introduction to light microscopy

Advanced Lens Design

Rapid Adaptive Optical Recovery of Optimal Resolution over Large Volumes

Zero Focal Shift in High Numerical Aperture Focusing of a Gaussian Laser Beam through Multiple Dielectric Interfaces. Ali Mahmoudi

Adaptive Optics. J Mertz Boston University

PROCEEDINGS OF SPIE. Automated asphere centration testing with AspheroCheck UP

Transferring wavefront measurements to ablation profiles. Michael Mrochen PhD Swiss Federal Institut of Technology, Zurich IROC Zurich

You won t be able to measure the incident power precisely. The readout of the power would be lower than the real incident power.

Microscopic Structures

BEAM HALO OBSERVATION BY CORONAGRAPH

DIMENSIONAL MEASUREMENT OF MICRO LENS ARRAY WITH 3D PROFILOMETRY

Microscopy Training & Overview

Wavefront Correction Technologies

Non-Descanned FLIM Detection in Multiphoton Microscopes

Supplementary Materials

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term

MALA MATEEN. 1. Abstract

16nm with 193nm Immersion Lithography and Double Exposure

Proposed Adaptive Optics system for Vainu Bappu Telescope

PROCEEDINGS OF SPIE. Measurement of low-order aberrations with an autostigmatic microscope

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name:

Powerful DMD-based light sources with a high throughput virtual slit Arsen R. Hajian* a, Ed Gooding a, Thomas Gunn a, Steven Bradbury a

The Design, Fabrication, and Application of Diamond Machined Null Lenses for Testing Generalized Aspheric Surfaces

Exam Preparation Guide Geometrical optics (TN3313)

AY122A - Adaptive Optics Lab

3D light microscopy techniques

Coherent Detection Gradient Descent Adaptive Control Chip

High-speed wavefront control using MEMS micromirrors T. G. Bifano and J. B. Stewart, Boston University [ ] Introduction

Optical Engineering 421/521 Sample Questions for Midterm 1

Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope

Better Imaging with a Schmidt-Czerny-Turner Spectrograph

Dynamic Phase-Shifting Microscopy Tracks Living Cells

Using molded chalcogenide glass technology to reduce cost in a compact wide-angle thermal imaging lens

:... resolution is about 1.4 μm, assumed an excitation wavelength of 633 nm and a numerical aperture of 0.65 at 633 nm.

Imaging Retreat - UMASS Customized real-time confocal and 2-photon imaging

The Nature of Light. Light and Energy

Lens Design I. Lecture 5: Advanced handling I Herbert Gross. Summer term

Adaptive optic correction using microelectromechanical deformable mirrors

Boulevard du Temple Daguerrotype (Paris,1838) a busy street? Nyquist sampling for movement

Payload Configuration, Integration and Testing of the Deformable Mirror Demonstration Mission (DeMi) CubeSat

MULTIPHOTON MICROSCOPY. Matyas Molnar Dirk Pacholsky

Analysis of Hartmann testing techniques for large-sized optics

NIH Public Access Author Manuscript Opt Lett. Author manuscript; available in PMC 2010 August 9.

Transcription:

Adaptive optics two-photon fluorescence microscopy Yaopeng Zhou 1, Thomas Bifano 1 and Charles Lin 2 1. Manufacturing Engineering Department, Boston University 15 Saint Mary's Street, Brookline MA, 02446 2. Wellman Center for Photomedicine, Dermatology 185 Cambridge Street, Boston, MA 02114 Abstract Non-linear imaging is widely used in biological imaging, primarily because of its ability to image through tissue to depth of a few hundred micrometers. Because two photons need to be absorbed to excite a fluorophore in this instrument, the probability of fluorescence emission of a detectable photon scales with the intensity squared of the beam. As a result, aberrations in the beam path that reduce the peak intensity of the focused, scanned laser spot have a significant effect on the instrument performance. Methods for reducing those aberrations should allow higher resolution and detection sensitivity, and deeper tissue imaging. In this paper, I will describe a non-linear imaging microscope that has an adaptive optics (AO) subsystem to compensate for beam path aberrations. The AO system relies on a 140 actuator deformable mirror, controlled using a stochastic gradient descent algorithm with feedback from a fluorescence sensor. The controlled instrument will be used for in vivo imaging of mouse skin, lymph nodes, and skull bone marrow at depths up to 500µm. Key words: adaptive optics and deformable mirror 1. INTRODUCTION Non-linear imaging provides an intrinsic three dimensional view of the imaging target [1]. Since fluorophore excitation increases quadratically (e.g. two-photon excitation) with the value of the illumination light intensity, the excitation has a smaller imaging volume laterally and axially comparing to single photon excitation. The non-linear imaging microscope has been used widely for in vivo fluorescence imaging deep into tissue. The specific application corresponding to this paper is for imaging bone marrow environment to study tumor cell metastasis and stem cells [2]. Optical scattering, absorption and aberrations are the major factors limiting the achievable imaging depth. Optical aberrations distort the light wavefront in the beam path, preventing MEMS Adaptive Optics, edited by Scot S. Olivier, Thomas G. Bifano, Joel A. Kubby, Proc. of SPIE Vol. 6467, 646705, (2007) 0277-786X/07/$18 doi: 10.1117/12.705045 Proc. of SPIE Vol. 6467 646705-1

formation of diffraction limited focal spot. The size of the focal spot during imaging is critical since a high photon density is desired for the non-linear fluorescence excitation. This is particularly attractive for multiple-photon microscopy due to the nonlinear excitation mechanism. For example, for a second harmonic excitation, a small improvement in the focal spot diameter (r) can result in a large improvement in signal intensity (goes up as r 4 ) The sources of aberrations are from both the microscopic objective and imaging targets. The imaging target itself brings intrinsic optical aberration due to inhomogeneous optical index of refraction, and the aberration intends getting larger with a deeper imaging depth. The combination of high numeric aperture objective, objective immersion media, cover glass and imaging target degrades beam quality significantly due to different optical refractive index in each media, e.g., spherical aberration. With increasing the light wavelength from light source, tissue scattering is becoming less significant, but chromatic aberration from microscopic objective is becoming a more significant factor to limit the imaging depth. For example, current commercial microscopic objective at 1300nm does not exist, which is being used in our experiment setup. Several groups have conducted research on wavefront correction related to multiphoton scanning microscopy for (in vitro) imaging [3-6]. Here we are presenting a non-linear fluorescence microscope with AO for (in vivo) imaging with a dynamic correction on wavefront up to 7 th order Zernike polynomial. Conventional AO systems employ a sensor to measure wavefront errors in the image-path of the optical system. These measured wavefront errors can be used as feedback to the wavefront corrector in a closed control loop that compensates for aberrations. However, in the fluorescence microscope the excited photons are not collected in an imaging beam, so conventional wavefront sensing is not practical. This is a fundamental problem for AO control, which requires some measured or modeled wavefront distortion data as a basis for compensation. One alternative is to use a scalar measure of fluorescence intensity itself as the controller feedback signal. In this approach, the controller objective is to maximize fluorescence intensity by controlling the multi-degree-of-freedom deformable mirror. The approach (known as sensorless adaptive optics) is inefficient in comparison to conventional AO, but has proven effective for complex AO applications in which wavefront sensors are impractical [7]. 2. METHODS 2.1 Stochastic Parallel Gradient Descent Algorithm The stochastic parallel gradient descent algorithm maximizes the metric signal by perturbing the mirror shape, then assessing the effect on the desired metric (e.g. fluorescence signal) and using this as the basis for iterative convergence toward an optimal (or locally optimal) shape. First, all actuators (u) in the deformable mirror are perturbed by a unit amount (du) in a direction that is randomly signed for each actuator (+/- i). The fluorescence signal is measured, and stored as the metric value (J+). Then the mirror actuators are perturbed in the opposite direction (-i), and the metric is recorded again (J-). The differences between the positive and negative perturbations provide a gradient in the multidimensional actuator space, and a new state for the deformable mirror is determined by multiplying each actuator s signed perturbation by the global gradient and adding this value to the as an offset to the actuator state. Proc. of SPIE Vol. 6467 646705-2

A Zernike polynomial function of one of a complete set of functions is defined and orthogonal over the unit circle [8]. A set of Zernike polynomials can used to represent the mirror surface shape, which is matched to pupil plane in the microscope setup. In stead of perturbing each actuator in the stochastic parallel gradient descent algorithm, we can change DM shape accordingly by perturbing a set of Zernike coefficients simultaneously. Zernike polynomials have been widely used as a set of orthogonal wave functions to characterize wavefront aberration in an optical setup. Some radial symmetric terms (e.g. defocus and spherical) are well matching the wavefront aberrations in any microscopy caused by index mismatching in the imaging. A proper set of Zernike polynomial coefficients can be chosen to improve the loop efficiency based on the known information of the optics. The MEMS DM used in this work is produced by Boston University and Boston Micromachines Corporation. The DM includes 140 actuators and has 4.4mm clear aperture and good. In a previous paper, we have demonstrated that the first 7 th order Zernike polynomial shape can be produced by this DM in open loop fashion [9]. Figure 1 shows Optical microphotograph of the MEMS DM and a drawing of the device concept. Post attachment Mirror Electrostatic actuator Substrate Figure 1. Optical microphotograph (left) and cross sectional schematic (right) of the BMC MEMS DM. The clear aperture of the mirror is 4.4mm. It is supported on an array of 12 x 12 electrostatic actuators on a 400µm square pitch. The four corner actuators are not used. Each actuator is connected to the continuous mirror membrane by a single post attachment. Actuators can pull the mirror toward the substrate by up to 4µm in response to an applied voltage. Each actuator is controlled independently. Gradient descent AO has inherent advantages when applied to biomedical microscopy. First, it uses as a control feedback the specific signal that is to be optimized. The goal for this AO system is to improve the fluorescence excitation in deep tissue. Using the light intensity itself as feedback signal for AO is a straightforward approach to that goal. Second, it decreases the complexity of the instrument setup by eliminating the need for reimaging and wavefront sensing, thereby improving the optical throughput and reducing cost. 2.2 Optical Setup A schematic of the non-linear imaging microscope with AO is shown on figure 2. The setup occupies about a 0.5 m by 0.5 m area on an optical table. The apparatus includes five main components: light delivery, raster scanning, light detection and wavefront correction. Proc. of SPIE Vol. 6467 646705-3

I MEMS DM I Micmscopic Filter [ Light Detection 0 bje ctive Figure 2. Adaptive optics two-photon fluorescence microscopy includes five main components: light delivery, raster scanning, light detection and wavefront correction. Light is delivered from a solid state mode-locked Ti-sapphire laser and an OPO with combined tuning range from 700nm to 1500nm. The entrance pupil size is defined by the clear aperture of MEMS DM. The entrance pupil is relayed by lens pairs to the horizontal scanner, the vertical scanner and the microscopic objective. The two scanning mirrors work in a raster fashion, and creates 5x5 degree scanning field on the biological sample to form a two dimension image. A dichroic filter is used to reflect the infrared light. The redirected infrared light is focused on the biological sample through a high NA microscopic objective. The (blue-shifted) fluorescence light passes through the dichroic filter and is detected by a photomultiplier tube. 3. Experiment and Result To investigate the performance of AO setup, we used an artificial sample in the initial tryout. In this approach, we intentionally created a defocus by move the imaging target axially with certain amount of distance. The imaging target was a piece of paper with fluorescence marker. The image in Figure 3 with AO on shows a much stronger fluorescence excitation signal by correcting the defocus compared to the image with AO off. Proc. of SPIE Vol. 6467 646705-4

Defocus Correction AOon AOoff Figure 3. Left: fluorescence image of paper fiber with AO on; Right: fluorescence image of paper fiber with AO off. In Figure 4, the Zernike coefficient plot from final mirror shape shows a significant defocus term, that matches the designed aberration source. It is essentially proving the Zernike polynomial based gradient decent AO is effective on correcting wavefront aberration. 1.8 1.4 1.2 8.8 8.8 8.8 8.4 0.8 ID 2 4 8 8 ID 12 0.4 02 82 l2b23b348 Figure 4. Left: DM shape for defocus correction; Right: final: Zernike polynomial of DM shape. Have demonstrated the effect of AO on an artificial sample, we moved to our main target. In this preliminary experiment, bone imaging of mouse skull was taken at 180µm into the bone. The illumination light was at 1300nm wavelength and a 0.9 NA, 30x, water immersion objective was used to image the mouse skull. All the fluorescence images were generated from second harmonic signal. Clearly, bone cavity image in Figure 5 with AO on shows improved intensity and resolution. Proc. of SPIE Vol. 6467 646705-5

Figure 5. Left: Bone cavity image in mouse skull with AO off; Right: cavity image in mouse skull with AO on. 4. CONCLUSION In this work, we demonstrated stochastic parallel gradient descent AO is effective to correct aberration in the bone structure. Zernike basis is useful to characterize aberration source and can be used to improve AO efficiency. In the future work, bone imaging aberration will be characterized and bone marrow fluorescence imaging with AO will be tested. Proc. of SPIE Vol. 6467 646705-6

[1] Denk W, Strickler J, Webb W (1990). "Two-photon laser scanning fluorescence microscopy". Science 248 (4951): 73-6. [2] Sipkins DA, Wei X, Wu JW, Runnels JM, Côté D, Means TK, Luster AD, Scadden DT, Lin CP., In vivo imaging of specialized bone marrow endothelial microdomains for tumor engraftment, Nature Jun 2005; 435:969-73. [3] M. A. A. NEIL, etc., Adaptive aberration correction in a two-photon microscope, Journal of Microscopy, Vol. 200, Pt 2, November 2000, pp. 105±108. [4] O. Albert, etc., Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy, OPTICS LETTERS, Vol. 25, No. 1, January 1, 2000. [5] L. SHERMAN, etc., Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror, Journal of Microscopy, Vol. 206, Pt 1 April 2002, pp. 65 71. [6] P. N. Marsh, etc., Practical implementation of adaptive optics in multiphoton microscopy, OPTICS EXPRESS 1123, Vol. 11, No. 10, 19 May 2003. [7] M. A. Vorontsov and V. P. Sivokon, Stochastic parallel-gradient-descent technique for highresolution wave-front phase-distortion correction, Journal of optical society of America, A, Vol. 15, No. 10 (October 1998). [8] American National Standards Institute, Inc., American National Standard for Ophthalmics Methods for Reporting Optical aberrations of Eyes, ANSI Z80.28 (2004). [9] Y. Zhou and T. Bifano, Characterization of contour shapes achievable with a MEMS deformable mirror, Proceedings of the SPIE, Volume 6113, pp. 123-130 (2006). Proc. of SPIE Vol. 6467 646705-7