Multiple Input Multiple Output System with Space Time Block Coding and Orthogonal Frequency Division Multiplexing

Similar documents
Comparison of MIMO OFDM System with BPSK and QPSK Modulation

Performance Study of MIMO-OFDM System in Rayleigh Fading Channel with QO-STB Coding Technique

Hybrid Index Modeling Model for Memo System with Ml Sub Detector

Study of Performance Evaluation of Quasi Orthogonal Space Time Block Code MIMO-OFDM System in Rician Channel for Different Modulation Schemes

ELEC E7210: Communication Theory. Lecture 11: MIMO Systems and Space-time Communications

DESIGN OF STBC ENCODER AND DECODER FOR 2X1 AND 2X2 MIMO SYSTEM

Performance analysis of MISO-OFDM & MIMO-OFDM Systems

Performance Evaluation of STBC-OFDM System for Wireless Communication

Performance Analysis of n Wireless LAN Physical Layer

Implementation of MIMO-OFDM System Based on MATLAB

AWGN Channel Performance Analysis of QO-STB Coded MIMO- OFDM System

SPLIT MLSE ADAPTIVE EQUALIZATION IN SEVERELY FADED RAYLEIGH MIMO CHANNELS

PERFORMANCE ANALYSIS OF MIMO-SPACE TIME BLOCK CODING WITH DIFFERENT MODULATION TECHNIQUES

DESIGN, IMPLEMENTATION AND OPTIMISATION OF 4X4 MIMO-OFDM TRANSMITTER FOR

Study of Turbo Coded OFDM over Fading Channel

Lecture LTE (4G) -Technologies used in 4G and 5G. Spread Spectrum Communications

Performance Comparison of MIMO Systems over AWGN and Rician Channels with Zero Forcing Receivers

SPARSE CHANNEL ESTIMATION BY PILOT ALLOCATION IN MIMO-OFDM SYSTEMS

Performance of Orthogonal Frequency Division Multiplexing System Based on Mobile Velocity and Subcarrier

Multiple Antenna Processing for WiMAX

Comparative Study of OFDM & MC-CDMA in WiMAX System

Lecture 3: Wireless Physical Layer: Modulation Techniques. Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday

2.

Cognitive Radio Transmission Based on Chip-level Space Time Block Coded MC-DS-CDMA over Fast-Fading Channel

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE) Volume 3, Issue 11, November 2014

Improving the Data Rate of OFDM System in Rayleigh Fading Channel Using Spatial Multiplexing with Different Modulation Techniques

WiMAX Summit Testing Requirements for Successful WiMAX Deployments. Fanny Mlinarsky. 28-Feb-07

SNS COLLEGE OF ENGINEERING COIMBATORE DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK

Orthogonal Frequency Division Multiplexing & Measurement of its Performance

1. INTRODUCTION II. SPREADING USING WALSH CODE. International Journal of Advanced Networking & Applications (IJANA) ISSN:

SIDELOBE SUPPRESSION AND PAPR REDUCTION FOR COGNITIVE RADIO MIMO-OFDM SYSTEMS USING CONVEX OPTIMIZATION TECHNIQUE

Performance Evaluation of OFDM System with Rayleigh, Rician and AWGN Channels

Space Time Block Coding - Spatial Modulation for Multiple-Input Multiple-Output OFDM with Index Modulation System

Performance Evaluation of Wireless Communication System Employing DWT-OFDM using Simulink Model

Bit Error Rate Performance Measurement of Wireless MIMO System Based on FPGA

SPACE TIME coding for multiple transmit antennas has attracted

Performance Analysis of OFDM System with QPSK for Wireless Communication

EFFICIENT SMART ANTENNA FOR 4G COMMUNICATIONS

Performance Comparison of MIMO Systems over AWGN and Rician Channels using OSTBC3 with Zero Forcing Receivers

MIMO Systems and Applications

Implementation and Comparative analysis of Orthogonal Frequency Division Multiplexing (OFDM) Signaling Rashmi Choudhary

Keywords MISO, BER, SNR, EGT, SDT, MRT & BPSK.

Performance Comparison of MIMO Systems over AWGN and Rayleigh Channels with Zero Forcing Receivers

ISSN: International Journal of Advanced Research in Computer Engineering & Technology (IJARCET) Volume 1, Issue 8, October 2012

Orthogonal Frequency Division Multiplexing (OFDM) based Uplink Multiple Access Method over AWGN and Fading Channels

Efficient Wirelesss Channel Estimation using Alamouti STBC with MIMO and 16-PSK Modulation

Orthogonal Cyclic Prefix for Time Synchronization in MIMO-OFDM

A Smart Grid System Based On Cloud Cognitive Radio Using Beamforming Approach In Wireless Sensor Network

Performance Analysis of MIMO-OFDM based IEEE n using Different Modulation Techniques

ADVANCED WIRELESS TECHNOLOGIES. Aditya K. Jagannatham Indian Institute of Technology Kanpur

On the Spectral Efficiency of MIMO MC-CDMA System

Underwater communication implementation with OFDM

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 2.114

Iterative Detection and Decoding with PIC Algorithm for MIMO-OFDM Systems

Analysis of WiMAX Physical Layer Using Spatial Multiplexing

Decrease Interference Using Adaptive Modulation and Coding

Outline / Wireless Networks and Applications Lecture 7: Physical Layer OFDM. Frequency-Selective Radio Channel. How Do We Increase Rates?

Wireless Communication: Concepts, Techniques, and Models. Hongwei Zhang

Optimized BPSK and QAM Techniques for OFDM Systems

OFDMA and MIMO Notes

Performance Evaluation of MIMO-OFDM Systems under Various Channels

Field Experiments of 2.5 Gbit/s High-Speed Packet Transmission Using MIMO OFDM Broadband Packet Radio Access

Performance Analysis of OFDM for Different Digital Modulation Schemes using Matlab Simulation

Performance Improvement of OFDM System using Raised Cosine Windowing with Variable FFT Sizes

ANALYSIS OF BER AND SEP OF QPSK SIGNAL FOR MULTIPLE ANENNAS

WIRELESS COMMUNICATIONS

JOINT CHANNEL ESTIMATION AND DATA DETECTION FOR ALAMOUTI STBC WITH NO CSI

BER Analysis for MC-CDMA

Optimizing future wireless communication systems

International Journal of Advance Research in Engineering, Science & Technology

Bit Error Rate Performance Evaluation of Various Modulation Techniques with Forward Error Correction Coding of WiMAX

Combination of Space-Time Block Coding with MC-CDMA Technique for MIMO systems with two, three and four transmit antennas

Transmission of MIMO - OFDM signal using Optical Link

Technical Aspects of LTE Part I: OFDM

Low BER performance using Index Modulation in MIMO OFDM

Analysis of Interference & BER with Simulation Concept for MC-CDMA

PERFORMANCE ANALYSIS OF MC-CDMA SYSTEM USING BPSK MODULATION

Doppler Frequency Effect on Network Throughput Using Transmit Diversity

Chapter 7 Multiple Division Techniques for Traffic Channels

UNIFIED DIGITAL AUDIO AND DIGITAL VIDEO BROADCASTING SYSTEM USING ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM) SYSTEM

Design and Analysis of Performance Evaluation for Spatial Modulation

A Novel of Low Complexity Detection in OFDM System by Combining SLM Technique and Clipping and Scaling Method Jayamol Joseph, Subin Suresh

Channel Estimation for Downlink LTE System Based on LAGRANGE Polynomial Interpolation

4x4 Time-Domain MIMO encoder with OFDM Scheme in WIMAX Context

Neha Pathak #1, Neha Bakawale *2 # Department of Electronics and Communication, Patel Group of Institution, Indore

OFDM Systems For Different Modulation Technique

IJESRT. (I2OR), Publication Impact Factor: 3.785

A New Approach to Layered Space-Time Code Design

Channel Estimation of MIMO OFDM System

Improvement of the Throughput-SNR Tradeoff using a 4G Adaptive MCM system

2. LITERATURE REVIEW

PERFORMANCE EVALUATION OF MIMO-OFDM IMPLEMENTATION ON WIRELESS OPEN-ACCESS RESEARCH PLATFORM (WARP)

CHAPTER 4 PERFORMANCE ANALYSIS OF THE ALAMOUTI STBC BASED DS-CDMA SYSTEM

Channel Matrix Pre-Computation For Mimo Ofdm Systems In High Mobility Fading Channels

Mobile & Wireless Networking. Lecture 2: Wireless Transmission (2/2)

Lecture 13. Introduction to OFDM

Part 3. Multiple Access Methods. p. 1 ELEC6040 Mobile Radio Communications, Dept. of E.E.E., HKU

1 Overview of MIMO communications

A Research Concept on Bit Rate Detection using Carrier offset through Analysis of MC-CDMA SYSTEM

Improving Data Transmission Efficiency over Power Line Communication (PLC) System Using OFDM

Transcription:

Journal of Computer Science 8 (4): 449-45, 01 ISSN 1549-66 01 Science Publications Multiple Input Multiple Output System with Space Time Block Coding and Orthogonal Frequency Division Multiplexing 1 Ramesh Kumar, P. and R.M.S. Parvathi 1 Anna University of Technology, Coimbatore, Tamil Nadu, India Senguthar College of Engineering, Anna University of Technology, Tamil Nadu, India Abstract: Problem statement: A large amount of research has been performed to achieve very high data rate networks to support reliable transmission of video, data and speech at high rates to many users. One way to increase the data rate in a wireless system is to use multiple transmit and/or receive antennas (MIMO structure). Indeed, it has been shown that the Shannon capacity of MIMO channel is (if the channel is known to the receiver) grows linearly with the number of transmit antennas and the number of receive antennas. MIMO systems can be implemented using various types of pre coding and modulation technique. All leads to get better signal at the receiver. Approach: Large scale fading due to multipath propagation of wireless signals can be mitigated by deploying multiple antennas both at the transmitter and the receiver. MIMO systems can be implemented using many techniques. Here at the transmitter the signals are coded using space time block codes and then they are modulated using Orthogonal Frequency Division Multiplexing (OFDM). Due to this the received signal can have an improved SNR. Results: The results are obtained for simple STBC-MIMO system, when it implemented for various number pf transmit and receive antennas. The resultant SNR and BER were obtained through simulation. Then the same system was deployed using OFDM technique. The results were compared for simple MIMO-OFDM and coded MIMO-OFDM. Conclusion/Recommendations: The complexity increases for higher data rate because of using both coding and modulation technique. By using proper mapping technique before deployment on the transmit antennas the complexity may be reduced. The OFDM technique can be improved to give high SNR by properly coding it like a CDMA process. Key words: Multiple Input Multiple Output (MIMO), space time coding, multipath fading, Single- Input Single-Output (SISO), Orthogonal Frequency Division Multiplexing (OFDM) INTRODUCTION Wireless is the fastest growing segment of the communications market in the world. It has a wide range of services from satellites that provide low bit rates but global coverage and cellular systems with continental coverage to high bit rate local area networks and personal area networks with a maximum range of a few to a hundred meters. Using a cellular system is by far the most common wireless method to access data or perform voice dialing. In the near future, we will expect seamless global roaming across different wireless networks and ubiquitous access to personalized applications and rich content via a universal and userfriendly interface. Yet, in this climate, researchers still struggle with the fundamental questions about the physical limitations of communicating over wireless channel. These include multipath fading, limited spectrum resources, multiple-access interference and limited battery life of mobile devices (Alamouti, 1998; Abreu and Kohno, 00; Dumard and Zemen, 007; Hammons and Gamal, 000; Kaiser, 005; Liu et al., 00; Tarokh et al., 1998; 1999; Kwon et al., 010; Lan, 010). Consider the use of multiple antenna elements at both the transmitter and the receiver ends to improve a wireless connection. The use of multiple antennas has been a recent significant breakthrough in wireless technologies. It creates a Multi-Input Multi-Output (MIMO) channel in which each path from one transmit antenna to one receive antenna can be viewed as one signaling branch. MIMO systems have two major attractive advantages that conventional Single-Input Single-Output (SISO) systems do not have. These are: Multiplexing gain (or spectral efficiency gain): As supported by information-theoretic studies the channel Corresponding Author: Ramesh Kumar, P., Anna University of Technology, Coimbatore, Tamil Nadu, India 449

capacity of a multiple-antenna system is considerably higher than that of a single-antenna system. In particular, it is widely understood that channel capacity increases asymptotically linearly with the minimum number of transmit and receive antennas when channel knowledge is available at the receiver. Therefore, the degree of freedom for communications is increased. As a result, the transmission rate increases linearly without an increase in the total transmission power or channel bandwidth. Diversity gain: If the antennas at both ends have no, or very low, correlation, the signaling branches between different transmit-receive antenna pairs in a MIMO system can be assumed to be statistically independent. These independent branches create diversity gain. By transmitting the same data (in the same, or different, representations) over multiple independent branches, fading can be effectively mitigated and hence, link reliability significantly improved. MIMO systems also provide other types of gains such as array gain and interference suppression gain. Consequently, multiple antennas are expected to play an important role in advanced wireless systems, for example, G and beyond. The problem discussed in our research is how to develop fundamental transmission strategies adapted to a point-to-point wireless link with flat fading channels to utilize the promises of multiple antennas jointly or individually. This topic has, in fact, received much attention in the past few years. As the core idea is complementing the traditional time dimension with the space dimension inherently brought by multiple antennas, MIMO-related transmission strategies are often referred to as Space-Time (ST) techniques. There is ST coding and modulation schemes that do not require channel knowledge, i.e., Channel State Information (CSI), at the transmitter. Both cases in which CSI is available (coherent) and unavailable (noncoherent) at the receiver, respectively, are considered J. Computer Sci., 8 (4): 449-45, 01 and sent through the Tx antennas simultaneously into the wireless channel. The signal which is received might be a different version of the transmitted signal as a result of the multi path fading and interferences undergone by the signal while passing through the channel. Hence the function of the receiver is to first demap, demodulate and decode the received signal and then form a decision of what signal was transmitted. At the receiver: r = Hs + n r- (nr x 1), s-(nt x 1), n-(nr x 1) ~ iid h 0, N) H, (nr x nt) memory less, complex channel matrix Assume the receiver have the appropriate knowledge of the channel known as Channel State Information (CSI). This can be accomplished by sending pilot waves on time to time basis. The bit sequence transmitted can be considered as: x = [x,x,...,x ] (i) (i) (i) (i) 0 1 M 1 This can be processed and received with channel knowledge by using the expressions: (i) (i) (i) (i) (i) (i) (i) xɶ = x 0,x 1,...,x M 1 = [x ɶ 0,x ɶ 1,...,x ɶ N 1 ] K time (i) π φ q = q, (q = 0...N 1) N (i ) (i ) (i ) (i) (i) (i) jφq (i) jφq (i) j(n 1) φq y = x 0,x1 e,...,x e..., x N 1 e ɶ ɶ ɶ ɶ OFDM basics: The block diagram of OFDM system studied in this study is shown in Fig.. A serial-toparallel buffer segments the information bit sequence into parallel output stream and then modulator blocks map them into complex numbers which determines the constellation points of each sub carrier. The number of bits assigned to each sub carrier is variable based on the variability of signal to noise ratio across the frequency range. Optimization of this bit assignment will be detailed in further. The OFDM modulation can be efficiently implemented in discrete time using an inverse FFT (IFFT) to act as a modulator and an FFT to act as a demodulator. Fundamentals of MIMO systems: Basic system design: Consider the system shown in Fig. 1 which employs multiple antennas on both the transmitter and the receiver side. Raw bit stream of digital data enters into the transmitter where it is passed through a simplified block that includes functions like coding which adds redundancy to the binary data in order to combat the detrimental effects of the channel, modulation which maps the binary stream into complex modulation symbols and mapping which includes assigning weights to different transmit antennas or spatial processing and beam forming or preceding. This signal is then up-converted to some higher frequency Fig. 1: MIMO wireless transmission system 450

Fig. : OFDM system block diagram A cyclic prefix which is set to the excess delay of the radio channel is also added to each of the resulting signals to reduce the effect of ISI and inter-sub carrier interference. The sample streams are then converted from parallel-to-serial for final transmission. By using the OFDM technique the space time coded signals were modulated using different carrier frequencies. J. Computer Sci., 8 (4): 449-45, 01 interference each carrier signals are separated by proper cyclic prefix. These symbols are transmitted simultaneously from antennas one and two, respectively. At the second time slot, signals S*(n) and S*(n+1) are transmitted simultaneously from antennas one and two, respectively. The transmission matrix can be given as: ( ) ( + ) ( ) ( ) S n S n 1 S = S* n + 1 S* n The channel matrix can be given as: h1 h H = h1* h* The Received signals can be obtained as: Y (n) = h1s (n) +hs (n+1) +v (n) Y (n+1) = h1s*(n+1) - hs*(n) +v (n+1) where, v (n) and v (n+1) are noise components added in the channel. The transmission model is: Y = HS+V MATERIALS AND METHODS The matrix form of V is: It is known that Space-Time Block Coding (STBC) has emerged as an efficient means of achieving near v( n) V optimal transmitter diversity gain. And also existing = v* ( n 1) + implementations are sensitive to delay spreads and therefore, are limited to flat fading environments, such After coding and modulating mapping can be done as indoor wireless networks. Orthogonal Frequency for various combinations as follows. Division Multiplexing (OFDM) with a sufficiently long The coding and modulations were performed for cyclic prefix can convert frequency-selective fading various combination of input and output antennas. After channels into multiple flat fading sub channels. coding and modulation mapping has to be performed This study aims in providing solutions to the before the signal was fed into the transmitting antenna. problems like probability of bit error rate and Different kinds of combinations are given below. improving the SNR level. The present methodology is By increasing the number of antenna at the modified in order to achieve the needed efficiency. The transmitter side the capacity of the system can be number of antennas has been increased to obtain better increased linearly. The signal constellations for various performance. combinations are discussed here: Consider a wireless communication system with two antennas at the base station and two antennas at the x1 x remote. At each time slot, signals S (n) and S (n+1) are Realcontellation, r = 1X = transmitted simultaneously from the transmit antennas. x x1 At the first time slot two bits arrive at the encoder and select two complex symbols S (n) and S (n+1). At x1 x x x 4 the first time slot two bits arrive at the encoder and x x1 x 4 x select two complex symbols S (n) and S (n+1)..after Realcontellation 4 4, r = 1X = x this coding each time slot signals are modulated using x 4 x1 x OFDM technique.in order to reduce the inter carrier x 4 x x x1 451

J. Computer Sci., 8 (4): 449-45, 01 Complex constellation, M t, r = 1: x1 x x = * * x x1 Complex constellation, M t, r = ¾: x x1 x * * x x x1 x = * * * * x x x1 x1 + x x * * * * x x x x + x1 x1 Fig. 4: STBC system with layered architecture RESULTS MIMO system implemented using STBC with OFDM has many advantages. The BER reduces with increasing the diversity order and the SNR and BER were compared for various combinations of transmitter antennas and receive antennas. Figure shows the results for basic diversity system and with OFDM system. Figure 4 shows the comparison for layered architecture for MIMO system for various number of transmit antennas and receive antennas, Fig. 5 is the output for various combination of antennas for different mapping, Fig. 6 shows the comparison of coded MIMO with uncoded MIMO. Fig. 5: STBC system implemented with OFDM Fig. : Basic STBC system for various modulations Fig. 6: STBC system implemented with OFDM 45

J. Computer Sci., 8 (4): 449-45, 01 DISCUSSION The results show that there is an improved performance in the SNR when comparing the coded MIMO-OFDM with the un coded MIMO-OFDM system. By using different mapping technique the capacity can be increased and SNR can be improved. Even though the complexity increases in implementing the system the connectivity increases. CONCLUTION Using the coded multiple antennas in both transmitter and receiver the bit error rate reduces and SNR increases. The capacity of the system also increases linearly with the increase number of antenna in both the transmitter and receiver. REFERENCES Alamouti, S.M., 1998. A simple transmit diversity technique for wireless communications. IEEE J. Select. Areas Commun., 16: 1451-1458. DOI: 10.1109/49.7045 Abreu, D.G.T.F. and R. Kohno, 00. Orthogonal decoding of space-time block codes in fast fading. Proceeding of the IEEE International Symposium on Information Theory, Jun. 9-Jul. 4, IEEE Xplore Press, Japan, pp: 155-155. DOI: 10.1109/ISIT.00.18169 Dumard, C. and T. Zemen, 007. Sphere decoder for a MIMO multi-user MC-CDMA uplink in timevarying channels. Proceedings of the IEEE International Conference on Communications, Jun. 4-8, IEEE Xplore Press, Glasgow, pp: 580-585. DOI: 10.1109/ICC.007.47 Hammons, Jr., A.R. and H.E. Gamal, 000. On the theory of space-time codes for PSK modulation. IEEE Trans. Inform. Theory, 46: 54-54. DOI: 10.1109/18.85816 Kaiser, T., 005. Smart Antennas: State of the Art. 1st Edn., Hindawi Publishing Corporation, New York, USA., ISBN: 10: 9775945097, pp: 876. Liu, Y., M.P. Fitz and O.Y. Takeshita, 00. A rank criterion for QAM space-time codes. IEEE Trans. Inform. Theory, 48: 06-079. DOI: 10.1109/TIT.00.805074 Tarokh, V., A. Naguib, N. Seshadri and A.R. Calderbank, 1999. Space-time codes for high data rate wireless communication: performance criteria in the presence of channel estimation errors, mobility and multiple paths. IEEE Trans. Commun., 47: 199-07. DOI: 10.1109/6.7515 Tarokh, V., N. Seshadri and A.R. Calderbank, 1998. Space-time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Trans. Inform. Theory, 44: 744-765. DOI: 10.1109/18.661517 Kwon, S., Y. Tani, H. Okubo and T. Shimomura, 010. Fixed-Star Tracking Attitude Control of Spacecraft Using Single-Gimbal Control Moment Gyros. Am. J. Eng. Applied Sci., : 49-55. DOI: 10.844/ajeassp.010.49.55 Lan, T.S., 010. Fuzzy Deduction Material Removal Rate Optimization for Computer Numerical Control Turning. Am. J. Applied Sci., 7: 106-101. DOI: 10.844/ajassp.010.106.101 45