Spectroscopy of Andreev States in superconducting atomic contacts

Similar documents
arxiv: v1 [physics.ins-det] 19 Sep

The Josephson light-emitting diode

Realization of H.O.: Lumped Element Resonator

arxiv: v2 [cond-mat.mes-hall] 27 Sep 2017

Low-temperature STM using the ac-josephson Effect

Josephson Circuits I. JJ RCSJ Model as Circuit Element

The Original SQUID. Arnold H. Silver. Josephson Symposium Applied Superconductivity Conference Portland, OR October 9, 2012

Revealing ballistic edge states in Bismuth nanowires

The superconducting microcalorimeters array for the X IFU instrument on board of Athena Luciano Gottardi

Terahertz Spectroscopy by Josephson Oscillator and Cold-Electron Bolometer

Background. Chapter Introduction to bolometers

Low Phase Noise C band HBT VCO. GaAs Monolithic Microwave IC

Detection Beyond 100µm Photon detectors no longer work ("shallow", i.e. low excitation energy, impurities only go out to equivalent of

10MHz to 1050MHz Integrated RF Oscillator with Buffered Outputs

EVALUATION KIT AVAILABLE 10MHz to 1050MHz Integrated RF Oscillator with Buffered Outputs. Typical Operating Circuit. 10nH 1000pF MAX2620 BIAS SUPPLY

Doppler-Free Spetroscopy of Rubidium

Plastic Packaged Surface Mount Varactor Diodes

3. What s the input power to drive the mechanics and get higher cooperativity? Is there any nonlinear effect?

Voltage-induced Shapiro steps in a superconducting multiterminal structure

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM

SQUID Basics. Dietmar Drung Physikalisch-Technische Bundesanstalt (PTB) Berlin, Germany

Single-electron counting for

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 18.

Parametric Microwave Amplification using a Tunable Superconducting Resonator

EVOLUTION OF THE CRYOGENIC EDDY CURRENT MICROPROBE

arxiv: v1 [physics.ins-det] 6 Jul 2015

Superconducting quantum interference device (SQUID) and its application in science and engineering. A presentation Submitted by

SQUID Amplifiers for Axion Search Experiments

Non-equilibrium quasi-particles in disordered superconductors

rf SQUID Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706

Two Level System Noise (TLS) and RF Readouts. Christopher McKenney. 4 th Microresonator Workshop 29 th July, 2011

S1. Current-induced switching in the magnetic tunnel junction.

Fabrication of High-Speed Resonant Cavity Enhanced Schottky Photodiodes

Overview. Tasks: 1.1. Realization of a direct coherent microwave-to-optical link

Edge-mode superconductivity in a two-dimensional topological insulator

arxiv: v2 [cond-mat.mes-hall] 15 Oct 2010

A 3-Stage Shunt-Feedback Op-Amp having 19.2dB Gain, 54.1dBm OIP3 (2GHz), and 252 OIP3/P DC Ratio

INGAAS FAST PIN (RF) AMPLIFIED PHOTODETECTORS

Quantum frequency standard Priority: Filing: Grant: Publication: Description

Quantum Limited SQUID Amplifiers for Cavity Experiments

A New Multiplexable Superconducting Detector

Novel Josephson Junction Geometries in NbCu bilayers fabricated by Focused Ion Beam Microscope

Nanowires for Quantum Optics

Instruction manual and data sheet ipca h

A continuous-wave Raman silicon laser

Influence of Coupling Strength on Transmission Properties of a rf-squid Transmission Line

A Thirty-Year History of Superconducting Microwave Devices and Fundamental Studies Thereof. Shigetoshi Ohshima Yamagata University

77 GHz VCO for Car Radar Systems T625_VCO2_W Preliminary Data Sheet

Supplementary Materials for

A Low Phase Noise 4.596GHz VCO for Chip-scale Cesium Atomic Clocks Qingyun Ju 1,a, Xinwei Li 1,b, Liang Tang 2,c, Donghai Qiao 2,d

AC Bias Characterization of Low Noise Bolometers for SAFARI Using an Open-Loop Frequency Domain SQUID-based Multiplexer Operating Between 1 and 5 MHz

Laser Diode. Photonic Network By Dr. M H Zaidi

Introduction to Surface Acoustic Wave (SAW) Devices

Case Study: Osc2 Design of a C-Band VCO

AC magnetic measurements etc

Optical Receivers Theory and Operation

A 2.4 GHZ RECEIVER IN SILICON-ON-SAPPHIRE MICHAEL PETERS. B.S., Kansas State University, 2009 A REPORT

SECONDARY ELECTRON DETECTION

R. J. Jones Optical Sciences OPTI 511L Fall 2017

ExperimentswithaunSQUIDbasedintegrated magnetometer.

Figure 12-1 (p. 578) Block diagram of a sinusoidal oscillator using an amplifier with a frequencydependent

Quantum Sensors Programme at Cambridge

Dark current Monitor for the European XFEL D. Lipka, W. Kleen, J. Lund-Nielsen, D. Nölle, S. Vilcins, V. Vogel; DESY Hamburg

Hall C Polarimetry at 12 GeV Dave Gaskell Hall C Users Meeting January 14, 2012

3-5μm F-P Tunable Filter Array based on MEMS technology

How Does One Obtain Spectral/Imaging Information! "

Engineering and Measurement of nsquid Circuits

arxiv:cond-mat/ v1 [cond-mat.supr-con] 22 Jun 1998

arxiv: v1 [cond-mat.supr-con] 21 Jan 2011

Gigahertz Ambipolar Frequency Multiplier Based on Cvd Graphene

Department of Electrical Engineering IIT Madras

Integrated into Nanowire Waveguides

X Band Driver Amplifier. GaAs Monolithic Microwave IC

Review of Semiconductor Physics

Electronic-Photonic ICs for Low Cost and Scalable Datacenter Solutions

Hot Topics and Cool Ideas in Scaled CMOS Analog Design

THz Components and Systems

Supporting Information

TF TF Analyzer 2000 Measurement System

GHz Single Ended Rx ( Barney ) March 12, 2006 Jacob Kooi, Chip Sumner, Riley Ceria

Low-Noise Amplifiers

MA4PBL027. HMIC Silicon Beamlead PIN Diode. Features MA4PBLP027. Description. Applications

Journal Club: Quasiparticle Poisoning in Superconducting Devices

Adjustable SQUID-resonator direct coupling in microwave SQUID multiplexer for TES microcalorimeter array

High Frequency Gyrotrons and Their Applications

EXP 9 ESR (Electron Spin Resonance)

USING LASER DIODE INSTABILITIES FOR CHIP- SCALE STABLE FREQUENCY REFERENCES

A DNP-NMR setup for sub-nanoliter samples

Field-Effect Transistor (FET) is one of the two major transistors; FET derives its name from its working mechanism;

arxiv: v1 [physics.ins-det] 9 Apr 2016

ALMA MEMO 399 Millimeter Wave Generation Using a Uni-Traveling-Carrier Photodiode

<NOTICE> <PREAMB> BILLING CODE 3510-DS-P DEPARTMENT OF COMMERCE. International Trade Administration. University of Colorado Boulder, et al.

Fully Integrated Low Phase Noise LC VCO. Desired Characteristics of VCOs

1.9GHz Power Amplifier

DIODE LASER SPECTROSCOPY (160309)

Lecture 16 Microwave Detector and Switching Diodes

UNIT-3. Electronic Measurements & Instrumentation

Optically reconfigurable balanced dipole antenna

Single bunch x-ray pulses on demand from a multi-bunch synchrotron radiation source. Resonant pulse picking and MHz Chopper

DESIGN OF A FABRY-PEROT OPEN RESONATOR AT RADIO FREQUENCIES FOR AN MgB2 TESTING PLATFORM

Transcription:

Spectroscopy of Andreev States in superconducting atomic contacts Landry Bretheau and Ç. Girit H. Pothier OPERATION CONTACT ATOMIQUE Sale temps pour les raies D. Esteve C. Urbina Quantronics Group, CEA-Saclay

ANDREEV BOUND STATES IN 1 CHANNEL WEAK LINK Phase-biased short, single channel L < x L R L R Analogous to Fabry-Perot

ANDREEV BOUND STATES IN 1 CHANNEL WEAK LINK Phase-biased short, single channel L R L < x t = 1 L R Analogous to Fabry-Perot

ANDREEV BOUND STATES IN 1 CHANNEL WEAK LINK Phase-biased short, single channel L R L < x t < 1 L R Analogous to Fabry-Perot

ANDREEV BOUND STATES in a spin degenerate, short reflective single channel (t <1 ) L R E +D 4 -D

ANDREEV BOUND STATES in a spin degenerate, short reflective single channel (t <1 ) L R E() Andreev spectrum E +D +E A +D 2D 1t 2 4 -D -E A -D E A D t 2 1 sin 2 I( ) 1 E Furusaki, Tsukada C.W.J. Beenakker (1991)

SUPERCONDUCTING ATOMIC CONTACTS V S S I 1 atom contact = few conduction channels (Al: 3) Tunable t,..., t 1 N measurable Stable

MICROFABRICATED BREAK-JUNCTIONS 2 µm Aluminium suspended bridge metallic film pushing rods insulating layer countersupport Flexible substrate Pushing rod Elastic substrate

I (na) I(V) OF A ONE-ATOM-CONTACT I (µa) 6 V / (D/e) -4-2 2 4 3 1-3 -1-4 4 V (µv) -6-8 -4 4 8 V (µv)

I (na) DETERMINATION OF CHANNELS TRANSMISSIONS 6 V / (D/e) -4-2 2 4 3.47.24.5 {.47,.24,.5} -3-6 -8-4 4 8 V (µv) I(V) characteristic t 1,..., t N Scheer et al. PRL 1997

BIASING A CONTACT PHASE BIASING TO DEFINE ANDREEV STATES Tuning of E( ) B : spectroscopy VOLTAGE BIASING TO DETERMINE TRANSMISSIONS I ( V ) measurement t,..., t 1 N V

I (µa) A SUPERCONDUCTING REVERSIBLE SWITCH I I Tuning of E( ) : spectroscopy I b B B SHORT I ( V ) measurement t,..., t 1 N 1 SHORT V I b OPEN -1-4 4 V (µv) OPEN

ATOMIC SQUID I R b I V b 2 5 µm

PROBING ANDREEV BOUND STATES GROUND STATE Already probed through supercurrent measurement in superconducting atomic contacts Della Rocca et al. PRL (27)

Related but Pillet et al. Nature Physics (21) PROBING ANDREEV BOUND STATES EXCITED STATE? +D E +E A Microwave irradiation 2 -D -E A

frequency (GHz) ORDERS OF MAGNITUDE FOR ALUMINUM +D E +E A h 2 E ( ) 2 A Shine microwaves? -D -E A 1 8 t=.5 6 4 t=.9 2 2 t=.99

frequency (GHz) ORDERS OF MAGNITUDE FOR ALUMINUM +D E +E A h 2 E ( ) 2 A Shine microwaves? -D -E A 1 8 6 t=.5 Wide band microwave spectroscopy in a Cryogenic system HARD 4 t=.9 Relatively easy up to 2 GHz 2 2 t=.99 - only large transmissions - only around

JOSEPHSON JUNCTION AS BOTH RF CURRENT GENERATOR AND DETECTOR on-chip RF generator DC Voltage biased Josephson junction r AC Josephson effect V b I JJ I I d dt JJ sin 2eV JJ At first order : JJ 2e V h JJ I I JJ JJ sin(2 t)

JOSEPHSON JUNCTION AS BOTH RF CURRENT GENERATOR AND DETECTOR DC Voltage biased Josephson junction on-chip RF generator and detector r AC Josephson effect E Environment V b I JJ At first order : JJ I I d dt JJ sin 2eV 2e V h JJ JJ JJ Cooper pair V JJ I I JJ JJ sin(2 t) DC current peak if photon absorbed by environment

THE JOSEPHSON JUNCTION SPECTROMETER Photon JJ absorbed by the environment JJ 2e V h JJ 2 DC current peak I JJ (na) 1-1 -2Δ/e 2Δ/e -2-2 2 V JJ (µv)

THE JOSEPHSON JUNCTION SPECTROMETER Photon JJ absorbed by the environment V b r JJ 2e V Z(ω) h JJ I JJ (na) 2 1-1 -2Δ/e DC current peak 2Δ/e -2 Spectrometer Environment -2 2 V JJ (µv) - On-chip irradiation - DC Tunable microwave emitter / DC response - Frequency range up to 4D = 2GHz - JJ is also detector

SPECTROSCOPY OF THE ANDREEV 2 LEVEL SYSTEM JJ r V b V JJ +D E +E A h 2 E ( ) JJ 2 A -D -E A fermionic modes

L {t i } CIRCUIT C I I JJ V JJ L L~few nh C~3pF U b Atomic SQUID Spectrometry Junction V b

L {t i } CIRCUIT C I I JJ V JJ L L~few nh C~3pF U b Atomic SQUID Spectrometry Junction V b DC caracterisation of atomic contact {t i } Atomic SQUID I U b

L {t i } CIRCUIT C I I JJ V JJ L L~few nh C~3pF U b Atomic SQUID Spectrometry Junction V b RF excitation of Andreev 2LS C JJ =2eV JJ /h V b

L {t i } CIRCUIT C I I JJ V JJ L r b L~few nh C~3pF U b V b Atomic SQUID Spectrometry Junction RF excitation of Andreev 2LS + measurement of I C JJ, V JJ r b r b I JJ V b V JJ

5 µm SAMPLE C 1µm 1µm

JUNCTION IV 1 AC formed 2 1 I JJ (na) -1-2 -2 2 V JJ (µv)

JUNCTION IV 1 AC formed 6 5 4 I JJ (na) 3 2 1 5 1 V JJ (µv) 15 2

JUNCTION IV 1 AC formed 6 5 4 I JJ (na) 3 2 1 5 1 V JJ (µv) 15 2

AC1 JUNCTION d IJJ (,V ) JJ d MAP 2 D/e 18 16 14 V JJ (µv) 12 1 8 6 4 2 p 15GHz 28µV 2

AC1 JUNCTION AC2 d IJJ (,V ) JJ d MAP 2 D/e 18 16 14 V JJ (µv) 12 1 8 6 4 2 2

AC1 JUNCTION AC2 d IJJ (,V ) JJ d MAP AC3 2 D/e 18 16 14 V JJ (µv) 12 1 8 6 4 2 2 2

AC1 JUNCTION AC2 d IJJ (,V ) JJ d MAP AC3 AC4 2 D/e 18 16 14 V JJ (µv) 12 1 8 6 4 2 2 2 2

AC1 JUNCTION d IJJ (,V ) JJ d MAP 2 D/e 18 16 14 V JJ (µv) 12 1 8 6 4 2 2

AC1 JUNCTION d IJJ (,V ) JJ d MAP 2 D/e {.72} 18 16 14 Compatible with MAR V JJ (µv) 12 1 8 6 4 2 2

AC3 JUNCTION d IJJ (,V ) JJ d MAP 2 D/e 18 16 14 V JJ (µv) 12 1 8 6 4 2 2

AC3 JUNCTION d IJJ (,V ) JJ d MAP 2 D/e 18 16 {.78} Compatible with MAR 14 V JJ (µv) 12 1 8 6 4 2 2

AC3 JUNCTION d IJJ (,V ) JJ d MAP 2 D/e 18 16 14 V JJ (µv) 12 1 8 6 4 2 2

AC3 JUNCTION d IJJ (,V ) JJ d MAP 2 D/e {.99,.66} 18 16 14 Compatible with MAR V JJ (µv) 12 1 8 6 4 2 2

AC1 JUNCTION d IJJ (,V ) JJ d MAP 2 D/e {.72} 18 16 14 Compatible with MAR V JJ (µv) 12 1 8 6 4 2 2

JJ AC1 V 15µV HORIZONTAL CUT 5 I JJ (pa) dijj/d (pa/rad) 2-5

JJ AC1 V 15µV HORIZONTAL CUT 5 I JJ (pa) 1 5 dijj/d (pa/rad) 2-5

JJ AC1 V 15µV 57GHz JJ ANDREEV PEAKS ~1 pa I JJ (pa) 1 5.8*2 2

JJ AC1 V 15µV 57GHz JJ ANDREEV PEAKS ~1 pa I JJ (pa) 1 5.8*2 DE A = 7GHz Lifetime > 14ps 2

JJ AC1 V 15µV 57GHz JJ ANDREEV PEAKS G = I/2e= 4MHz ~1 pa I JJ (pa) 1 5.8*2 DE A = 7GHz Lifetime > 14ps 2

JJ AC1 V 15µV 57GHz JJ ANDREEV PEAKS G = I/2e= 4MHz limiting process ~1 pa I JJ (pa) 1 5.8*2 DE A = 7GHz Lifetime > 14ps 2

CONCLUSIONS We understand: Position of Andreev resonances We don t understand: The other resonances : plasma resonances of the atomic SQUID The shape of the Andreev peaks To do: Decrease I JJ to get rid of parasitic resonances and its harmonics to be continued

TOWARDS ANDREEV QUBITS E() +D +E A 2 -D -E A Use even states Zazunov, Shumeiko,Bratus, Lantz and Wendin, PRL (23) Use quasiparticle (spin ½) states Chtchelkatchev and Nazarov, PRL (23)