S.D.M COLLEGE OF ENGINEERING AND TECHNOLOGY

Similar documents
Lecture 13. Introduction to OFDM

OFDM AS AN ACCESS TECHNIQUE FOR NEXT GENERATION NETWORK

Multi-carrier Modulation and OFDM

Comparative Study of OFDM & MC-CDMA in WiMAX System

Lecture 3: Wireless Physical Layer: Modulation Techniques. Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday

EC 551 Telecommunication System Engineering. Mohamed Khedr

SHIV SHAKTI International Journal of in Multidisciplinary and Academic Research (SSIJMAR) Vol. 3, No. 4, August-September (ISSN )

OFDM Systems For Different Modulation Technique

Page 1. Overview : Wireless Networks Lecture 9: OFDM, WiMAX, LTE

Multiple Access Schemes

Practical issue: Group definition. TSTE17 System Design, CDIO. Quadrature Amplitude Modulation (QAM) Components of a digital communication system

Channel Estimation in Multipath fading Environment using Combined Equalizer and Diversity Techniques

SC - Single carrier systems One carrier carries data stream

Orthogonal Frequency Division Multiplexing & Measurement of its Performance

Key words: OFDM, FDM, BPSK, QPSK.

Orthogonal Frequency Division Multiplexing (OFDM)

Technical Aspects of LTE Part I: OFDM

OFDMA and MIMO Notes

Underwater communication implementation with OFDM

Principles and Experiments of Communications

Mobile & Wireless Networking. Lecture 2: Wireless Transmission (2/2)

Orthogonal frequency division multiplexing (OFDM)

Performance Evaluation of Wireless Communication System Employing DWT-OFDM using Simulink Model

Study of Performance Evaluation of Quasi Orthogonal Space Time Block Code MIMO-OFDM System in Rician Channel for Different Modulation Schemes

Survey on Effective OFDM Technology for 4G

Performance Analysis of OFDM for Different Digital Modulation Schemes using Matlab Simulation

Performance Evaluation of STBC-OFDM System for Wireless Communication

Differential Modulation

Performance analysis of OFDM with QPSK using AWGN and Rayleigh Fading Channel

Chapter 5 OFDM. Office Hours: BKD Tuesday 14:00-16:00 Thursday 9:30-11:30

Part 3. Multiple Access Methods. p. 1 ELEC6040 Mobile Radio Communications, Dept. of E.E.E., HKU

Implementation and Comparative analysis of Orthogonal Frequency Division Multiplexing (OFDM) Signaling Rashmi Choudhary

3G long-term evolution

Outline / Wireless Networks and Applications Lecture 7: Physical Layer OFDM. Frequency-Selective Radio Channel. How Do We Increase Rates?

OFDM for Mobile Data Communications

Fundamentals of OFDM Communication Technology

BER Performance of OFDM-IDMA Comparison to OFDM for Femtocell

A Research Concept on Bit Rate Detection using Carrier offset through Analysis of MC-CDMA SYSTEM

Performance Evaluation of OFDM System with Rayleigh, Rician and AWGN Channels

Decrease Interference Using Adaptive Modulation and Coding

BER Analysis for MC-CDMA

Optimal Number of Pilots for OFDM Systems

An OFDM Transmitter and Receiver using NI USRP with LabVIEW

ANALYSIS OF BER AND SEP OF QPSK SIGNAL FOR MULTIPLE ANENNAS

INTERFERENCE SELF CANCELLATION IN SC-FDMA SYSTEMS -A CAMPARATIVE STUDY

OFDM (Orthogonal Frequency Division Multiplexing) SIMULATION USING MATLAB Neha Pathak MTech Scholar, Shri am Institute of Technology

Analysis of Interference & BER with Simulation Concept for MC-CDMA

OFDM system: Discrete model Spectral efficiency Characteristics. OFDM based multiple access schemes. OFDM sensitivity to synchronization errors

MITIGATING CARRIER FREQUENCY OFFSET USING NULL SUBCARRIERS

Performance of Orthogonal Frequency Division Multiplexing System Based on Mobile Velocity and Subcarrier

Receiver Designs for the Radio Channel

Design and Implementation of OFDM System and Reduction of Inter-Carrier Interference at Different Variance

Simulation Study and Performance Comparison of OFDM System with QPSK and BPSK

Wireless Medium Access Control and CDMA-based Communication Lesson 16 Orthogonal Frequency Division Medium Access (OFDM)

Anju 1, Amit Ahlawat 2

CSCD 433 Network Programming Fall Lecture 5 Physical Layer Continued

Bit Loading and Peak Average Power Reduction Techniques for Adaptive Orthogonal Frequency Division Multiplexing Systems

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

Multi-Carrier Systems

PEAK TO AVERAGE POWER RATIO REDUCTION USING BANDWIDTH EFFICIENCY INCREASING METHOD IN OFDM SYSTEM

Channel Estimation in Wireless OFDM Systems

Orthogonal Frequency Division Multiplexing (OFDM) based Uplink Multiple Access Method over AWGN and Fading Channels

Design and Simulation of COFDM for High Speed Wireless Communication and Performance Analysis

OFDMA PHY for EPoC: a Baseline Proposal. Andrea Garavaglia and Christian Pietsch Qualcomm PAGE 1

Working Party 5B DRAFT NEW RECOMMENDATION ITU-R M.[500KHZ]

Performance Analysis Of Hybrid Optical OFDM System With High Order Dispersion Compensation

Feature (Claims) Preamble. Clause 1. Clause 2. Clause 3. Clause 4. Preamble. Clause 1. Clause 2. Clause 3. Clause 4

Chapter 2 Overview - 1 -

CHAPTER 1 INTRODUCTION

Fading & OFDM Implementation Details EECS 562

ANALYSIS AND STUDY OF MULTI-SYMBOL ENCAPSULATED ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING

EE678-Application Assignment Discrete Wavelet Multitone Modulation

Wireless Physical Layer Concepts: Part III

SPARSE CHANNEL ESTIMATION BY PILOT ALLOCATION IN MIMO-OFDM SYSTEMS

BER ANALYSIS OF BPSK, QPSK & QAM BASED OFDM SYSTEM USING SIMULINK

Introduction to OFDM Systems

MODULATION AND MULTIPLE ACCESS TECHNIQUES

P. 241 Figure 8.1 Multiplexing

Performance Analysis of LTE System in term of SC-FDMA & OFDMA Monika Sehrawat 1, Priyanka Sharma 2 1 M.Tech Scholar, SPGOI Rohtak

Phase Modulator for Higher Order Dispersion Compensation in Optical OFDM System

Introduction to WiMAX Dr. Piraporn Limpaphayom

Lecture 9: Spread Spectrum Modulation Techniques

With a lot of material from Rich Nicholls, CTL/RCL and Kurt Sundstrom, of unknown whereabouts

Bit Error Rate Performance Evaluation of Various Modulation Techniques with Forward Error Correction Coding of WiMAX

Performance Analysis Of OFDM Using QPSK And 16 QAM

ISHIK UNIVERSITY Faculty of Science Department of Information Technology Fall Course Name: Wireless Networks

Advanced 3G & 4G Wireless Communication Prof. Aditya K. Jagannatham Department of Electrical Engineering Indian Institute of Technology, Kanpur

New Cross-layer QoS-based Scheduling Algorithm in LTE System

Page 1. Outline : Wireless Networks Lecture 6: Final Physical Layer. Direct Sequence Spread Spectrum (DSSS) Spread Spectrum

4x4 Time-Domain MIMO encoder with OFDM Scheme in WIMAX Context

UNIFIED DIGITAL AUDIO AND DIGITAL VIDEO BROADCASTING SYSTEM USING ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM) SYSTEM

Optimized BPSK and QAM Techniques for OFDM Systems

T325 Summary T305 T325 B BLOCK 3 4 PART III T325. Session 11 Block III Part 3 Access & Modulation. Dr. Saatchi, Seyed Mohsen.

Lecture 7: Centralized MAC protocols. Mythili Vutukuru CS 653 Spring 2014 Jan 27, Monday

Chapter 2 Overview - 1 -

Performance Study of OFDM Over Fading Channels for Wireless Communications

Multiplexing Module W.tra.2

Advanced 3G & 4G Wireless Communication Prof. Aditya K. Jaganathan Department of Electrical Engineering Indian Institute of Technology, Kanpur

Performance Analysis of OFDM System with QPSK for Wireless Communication

Cognitive Radio Transmission Based on Chip-level Space Time Block Coded MC-DS-CDMA over Fast-Fading Channel

Transcription:

VISHVESHWARAIAH TECHNOLOGICAL UNIVERSITY S.D.M COLLEGE OF ENGINEERING AND TECHNOLOGY A seminar report on Orthogonal Frequency Division Multiplexing (OFDM) Submitted by Sandeep Katakol 2SD06CS085 8th semester DEPARTMENT OF COMPUTER SCIENCE ENGINEERING 2009-10 1

VISHVESHWARAIAH TECHNOLOGICAL UNIVERSITY S.D.M COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE ENGINEERING CERTIFICATE Certified that the seminar work entitled Orthogonal Frequency Division Multiplexing (OFDM) is a bonafide work presented by Sandeep Katakol bearing USN NO:2SD06CS085 in a partial fulfillment for the award of degree of Bachelor of Engineering in Computer Science Engineering of the Vishveshwaraiah Technological University, Belgaum during the year 2009-10. The seminar report has been approved as it satisfies the academic requirements with respect to seminar work presented for the Bachelor of Engineering Degree. Staff in charge CSE H.O.D Name: Sandeep Katakol 2

USN: 2SD06CS085 INDEX 1. INTRODUCTION 4 2. MULTIPLEXING 4 2.1 TDMA 5 2.2 CDMA 5 2.3 FDMA 6 3. OFDM 6 4. DATA TRANSMISSION USING MULTIPLE CARRIERS 8 5. GUARD TIME AND CYCLIC EXTENTION 10 6. TRANSMISSION AND RECEPTION 10 7. CHOICE OF OFDM PARAMETERS 11 8. ADVANTAGES 12 9. DISADVANTAGES 14 10. CONCLUSION 14 3

Orthogonal Frequency Division Multiplexing (OFDM) ABSTRACT A number of new technologies are being combined by the telecommunications industry as it prepares for the next generation of mobile services. One of the key changes is the choice of OFDM for the air interface. This paper will describe OFDM and show why it has the ability to improve the spectral efficiency of digital radio links Orthogonal frequency division multiplexing (OFDM) is a special case of multicarrier transmission, where a single datastream is transmitted over a number of lower rate subcarriers. 1. INTRODUCTION In today s world cell phone have become the single greatest tool in day today life. It has become a necessity that business associates should be able to communicate on the go. That s why it has become so important to make choices in choosing which handheld device one should go for. A handheld device is selected according to its features and benefits, like does it provide access to internet and email or does it look slick and more. An important question when designing and standardizing cellular systems is the selection of the multiple access schemes. There are three basic principles in multiple access, FDMA (Frequency Division Multiple Access), TDMA (Time Division Multiple Access), and CDMA (Code Division Multiple Access). All three principles allow multiple users to share the same physical channel Orthogonal frequency division multiplexing (OFDM) is a communications technique that divides a communications channel into a number of equally spaced frequency bands. A subcarrier carrying a portion of the user information is transmitted in each band. Each subcarrier is orthogonal (independent of each other) with every other subcarrier, differentiating OFDM from the commonly used frequency division multiplexing (FDM). 2. MULTIPLEXING Multiplexing is the set of techniques that allows the simultaneous transmission of multiple signals across a single data link. As data and telecommunications use increases, so does traffic. We can accommodate. This increase by continuing to add individual links each time a new channel is needed. In a multiplexed system, n lines share the bandwidth of one link. Figure shows the basic format of a multiplexed system. The lines on the left direct their transmission streams to a multiplexer (MUX), which combines them into a single stream (many-to- one). At the receiving end, that stream is fed into a demultiplexer (DEMUX), which separates the stream back into its component transmissions (one-to-many) and directs them to their corresponding lines. In the figure, the word link refers to the physical path. The word channel refers to the portion of a link that carries a transmission between a given pair of lines. One link can have many (n) channels.[1] 4

2.1 TDMA: Time Division Multiplex Access is a type of multiplexing where two or more channels of information are transmitted over the same link by allocating a different time interval for the transmission of each channel. One major disadvantage using TDMA technology is that the users has a predefined time slot. When moving from one cell site to other, if all the time slots in this cell are full the user might be disconnected. Another problem in TDMA is that it is subjected to multipath distortion.[1] 2.2 CDMA CDMA gives the user entire spectrum all of the time. CDMA spread spectrum technology in which it uses unique spreading codes to spread the baseband data before transmission. The receiver then dispreads the wanted signal, which is passed through a narrow band pass filter. The unwanted signals are not dispread and will not be passed through the filter. The codes are a sequence of zeros and ones produced at a much higher rate of that of the baseband data. One major problem in CDMA technology is channel pollution, where signals from too many cell sites are present in the subscriber s phone but none of them is dominant. When this situation arises the quality of the audio degrades[1] 5

2.3 FDMA In frequency-division multiple access (FDMA), the available bandwidth is divided into frequency bands. Each station is allocated a band to send its data. In other words, each band is reserved for a specific station, and it belongs to the station all the time. FDMA specifies a predetermined frequency band for the entire period of communication. This means that stream data (a continuous flow of data that may not be packetized) can easily be used with FDMA. [1] 3. OFDM OFDM represents a different system-design approach. It can be thought of as a combination of modulation and multiple-access schemes that segments a communications channel in such a way that many users can share it. Whereas TDMA segments are according to time and CDMA segments are according to spreading codes, OFDM segments are according to frequency. It is a technique that divides the spectrum into a number of equally spaced tones and carries a portion of a user's information on each tone. A tone can be thought of as a frequency, much in the same way that each key on a piano represents a unique frequency. OFDM can be viewed as a form of frequency division multiplexing (FDM), however, OFDM has an important special property that each tone is orthogonal with every other tone. FDM typically requires there to be frequency guard bands between the frequencies so that they do not 6

interfere with each other. OFDM allows the spectrum of each tone to overlap, and because they areorthogonal, they do not interfere with each other. By allowing the tones to overlap, the overall amount of spectrum required is reduced. OFDM is a modulation technique in that it enables user data to be modulated onto the tones. The information is modulated onto a tone by adjusting the tone's phase, amplitude, or both. In the most basic form, a tone may be present or disabled to indicate a one or zero bit of information, however, either phase shift keying (PSK) or quadrature amplitude modulation (QAM) is typically employed. An OFDM system takes a data stream and splits it into N parallel data streams, each at a rate 1/N of the original rate. Each stream is then mapped to a tone at a unique frequency and combined together using the inverse fast fourier transform (IFFT) to yield the time-domain waveform to be transmitted. For example, if a 100-tone system were used, a single data stream with a rate of 1 megabit per second (Mbps) would be converted into 100 streams of 10 kilobits per second (kbps). By creating slower parallel data streams, the bandwidth of the modulation symbol is effectively decreased by a factor of 100, or, equivalently, the duration of the modulation symbol is increased by a factor of 100. Proper 7

selection of system parameters, such as the number of tones and tone spacing, can greatly reduce, or even eliminate, ISI, because typical multipath delay spread represents a much smaller proportion of the lengthened symbol time. Viewed another way, the coherence bandwidth of the channel can be much smaller, because the symbol bandwidth has been reduced. The need for complex multi-tap time-domain equalizers can be eliminated as a result. OFDM can also be considered a multiple-access technique, because an individual tone or groups of tones can be assigned to different users. Multiple users share a given bandwidth in this manner, yielding the system called OFDMA. Each user can be assigned a predetermined number of tones when they have information to send, or alternatively, a user can be assigned a variable number of tones based on the amount of information that they have to send. The assignments are controlled by the media access control (MAC) layer, which schedules the resource assignments based on user demand. OFDM can be combined with frequency hopping to create a spread spectrum system, realizing the benefits of frequency diversity and interference averaging previously described for CDMA. In a frequency hopping spread spectrum system, each user's set of tones is changed after each time period (usually corresponding to a modulation symbol). By switching frequencies after each symbol time, the losses due to frequency selective fading are minimized. Although frequency hopping and CDMA are different forms of spread spectrum, they achieve comparable performance in a multipath fading environment and provide similar interference averaging benefits. OFDM therefore provides the best of the benefits of TDMA in that users are orthogonal to one another, and CDMA, as previously mentioned, while avoiding the limitations of each, including the need for TDMA frequency planning and equalization, and multiple access interference in the case of CDMA. 4. DATA TRANSMISSION USING MULTIPLE CARRIERS An OFDM signal consists of a sum of subcarriers that are modulated by using phase shift keying (PSK) or qudrature amplitude modulation (QAM). In the following example, all subcarriers have the phase and amplitude, but in practice the amplitudes and phases may be modulated differently for each subcarrier. Note that each subcarrier has exactly an integer number of cycles in the interval T, and the number of cycles between adjacent subcarries differs by exactly one. This properly accounts for the orthogoality between subcarriers. 8

The orthogonality of different OFDM subcarriers can also be demonstrated in another way.if each OFDM symbol contains subcarriers that are nonzero over a T -seconds interval.then it has which has zeros for all frequencies f that are an integer multiple of 1/T. This effect is shown in figure which shows the overlapping sinc spectra of individual subcarriers. At the maximum of each subcarrier spectrum, all other subcarrier spectra are zero. Because an OFDM receiver calculates the spectrum values at those points that correspond to the maxima of individual subcarrier, it can demodulate each subcarrier free from any interference from the other subcarriers. Basically, below Figure shows that the OFDM spectrum fulfills Nyquist s criterion for an inter symbol interference free pulse shape. Notice that the pulse shape is present in frequency domain and note in the time domain, for which the Nyquist criterion usually is applied. Therefore, instead of intersymbol interference (ISI), it is intercarrier interference (ICI) that avoided by having the maximum of one subcarrier spectrum correspond to zero crossing of all the others 9

5. GUARD TIME AND CYCLIC EXTENTION One of the most important reasons to do OFDM is the efficient way it deals with multipath delay spread. By dividing the input data stream in N subcarriers, the symbol duration is made N times smaller, which also reduces the relative multipath delay spread, relative to symbol time, by the same factor. To eliminate intersymbol interference almost completely, a guard time is introduced for each OFDM symbol. The guard time is chosen larger than the expected delay spread, such that multipath components from one symbol cannot interfere with the next symbol. The guard time could consist of no signal at all. In that case, however, the problem of intercarrier (ICI) would arise. ICI is crosstalk between different subcarriers,which means they are no longer orthogonal. This effect is illustrated in figure in this example, a subcarrier 1 and a delayed subcarrier 2 are shown. When an OFDM receiver tries to demodulate the first subcarrier, it will encounter some interference from the second subcarrier, because within the FFT interval, there is no integer number of cycles difference between subcarrier 1and 2. At the same time, there will be crosstalk from the first to the second subcarrier for the same reason. To eliminate ICI, the OFDM symbol is cyclically extended in the guard time, as shown in figure. This ensures that delayed replicas of the OFDM symbol always have an integer number of cycles within the FFT interval, as long as the delay is smaller than the guard time. As result, multipath signals with delays smaller than the guard time cannot cause ICI. 10

6. TRANSMISSION AND RECEPTION OFDM modulation divides a broadband channel into many parallel subchannels. This makes it a very efficient scheme for transmission in multipath wireless channels. The use of an FFT/IFFT pair for modulation and demodulation make it computationally efficient as well. 11

The transmitted signals arrive at the receiver after being reflected from many objects. Sometimes the reflected signals add up in phase and sometimes they add up out of phase causing a fade. This causes the received signal strength to fluctuate constantly. Also, different subchannels are distorted differently as shown in Figure. An OFDM receiver has to sense the channel and correct these distortions on each of the subchannels before the transmitted data can be extracted. OFDM is effective in correcting such frequency selective distortions. OFDM has many advantages over other transmission techniques. One such advantage is high spectral efficiency (measured in bits/sec/hz). The Orthogonal part of the name refers to a precise mathematical relationship between the frequencies of the subchannels that make up the OFDM system. Each of the frequencies is an integer multiple of a fundamental frequency. This ensures that even though the subchannels overlap they do not interfere with each other. This results in high spectral efficiency. The use of IFFT and FFT for modulation and demodulation results in computationally efficient OFDM modems.[3] 12

7. CHOICE OF OFDM PARAMETERS The choice of various OFDM parameters is a tradeoff between various, often conflicting requirements. Usually, there are three main requirements to start with: bandwidth, bit rate, and delay spread. The delay spread directly dictates the guard time. As a rule, the guard time should be about two to four times the root-mean-squared delay spread. This value depends on the type of coding and QAM modulation. Higher order QAM (like 64-QAM) is more sensitive to ICI and ISI than QPSK; while heavier coding obviously reduces the sensitivity to such interference. Now the guard time has been set, the symbol duration can be fixed. To minimize the signal-to-noise ratio (SNR) loss caused by guard time, it is desirable to have the symbol duration much larger than the guard time. It cannot be arbitrarily large, however, because a larger symbol duration means more subcarriers with a smaller subcarrier spacing, a larger implementation complexity, and more sensitivity to phase noise and frequency offset, as well as an increased peak-to-average power ratio. Hence, a practical design choice to make the symbol duration at least five times the guard time, which implies a 1dB SNR loss because the guard time. After the symbol duration and guard time are fixed, the number of subcarriers follows directly as the required 3 db bandwidth divided by the subcarrier spacing,which is the inverse of the symbol duration less the guard time. Alternatively, the number of subcarriers may be determined by the required bit rate divided by the bit rate per subcarrier. The bit rate per subcarrier is defined by the modulation type, coding rate, and symbol rate. An additional requirement that can affect the chosen parameters is the demand for an integer number of samples both within the FFT/IFFT interval and in the symbol interval. 8. ADVANTAGES Efficient use of spread spectrum in modulation. It is conveniently implemented using simple FFT and IFFT. Robust against multi-path propagation. Robust again narrow-band interference 13

9. DISADVANTAGES Requires a more linear power amplifier. Sensitive to frequency offset and phase noise Accurate synchronization is required. 10. CONCLUSION This report describes the concept of OFDM with brief description of other multiplexing technologies.it also describes data transmission in OFDM,Guard time,cyclic prefix, Transmission and reception techniques,and some advantages and disadvantages of OFDM. Wireless LAN is a very important application for OFDM and the development of the standard promises to have not only a big market but also application in many different environments. REFERENCES [1] Data Communications and Networking - Behrouz A. Forouzan [2] Concepts of Orthogonal Frequency Domain Modulation (OFDM) By Dave Whipple, Agilent Technologies [3] http://www.mimo.ucla.edu/ The Engineer s introduction to mimo and Mimo-ofdm [4] The principles of OFDM By Louis Litwin and Michael Pugel 14