Assessment Of Diverse Controllers For A Cylindrical Tank Level Process

Similar documents
Non Linear Tank Level Control using LabVIEW Jagatis Kumaar B 1 Vinoth K 2 Vivek Vijayan C 3 P Aravind 4

CONTROLLER TUNING FOR NONLINEAR HOPPER PROCESS TANK A REAL TIME ANALYSIS

Design of Model Based PID Controller Tuning for Pressure Process

EMPIRICAL MODEL IDENTIFICATION AND PID CONTROLLER TUNING FOR A FLOW PROCESS

MODEL BASED CONTROL FOR INTERACTING AND NON-INTERACTING LEVEL PROCESS USING LABVIEW

Some Tuning Methods of PID Controller For Different Processes

A Comparative Novel Method of Tuning of Controller for Temperature Process

CHBE320 LECTURE XI CONTROLLER DESIGN AND PID CONTOLLER TUNING. Professor Dae Ryook Yang

Comparative Analysis of Controller Tuning Techniques for Dead Time Processes

Modeling and Control of Liquid Level Non-linear Interacting and Non-interacting System

Comparison of Conventional Controller with Model Predictive Controller for CSTR Process

Design of an Intelligent Pressure Control System Based on the Fuzzy Self-tuning PID Controller

Various Controller Design and Tuning Methods for a First Order Plus Dead Time Process

PID TUNING WITH INPUT CONSTRAINT: APPLICATION ON FOOD PROCESSING

Comparative Study of PID Controller tuning methods using ASPEN HYSYS

Different Controller Terms

Relay Feedback based PID Controller for Nonlinear Process

Performance Analysis of Conventional Controllers for Automatic Voltage Regulator (AVR)

6545(Print), ISSN (Online) Volume 4, Issue 1, January- February (2013), IAEME & TECHNOLOGY (IJEET)

Simulation and Analysis of Cascaded PID Controller Design for Boiler Pressure Control System

Find, read or write documentation which describes work of the control loop: Process Control Philosophy. Where the next information can be found:

Auto-tuning of PID Controller for the Cases Given by Forbes Marshall

LAMBDA TUNING TECHNIQUE BASED CONTROLLER DESIGN FOR AN INDUSTRIAL BLENDING PROCESS

Cohen-coon PID Tuning Method; A Better Option to Ziegler Nichols-PID Tuning Method

Review of Tuning Methods of DMC and Performance Evaluation with PID Algorithms on a FOPDT Model

Comparison of PID Controller Tuning Methods with Genetic Algorithm for FOPTD System

Hacettepe University, Ankara, Turkey. 2 Chemical Engineering Department,

TUNING OF PID CONTROLLERS USING PARTICLE SWARM OPTIMIZATION

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 03, 2016 ISSN (online):

Modeling and Analysis of a Real Time Spherical Tank Process for Sewage Treatment Plant

MM7 Practical Issues Using PID Controllers

TUNING OF PID CONTROLLER USING PSO AND ITS PERFORMANCES ON ELECTRO-HYDRAULIC SERVO SYSTEM

Research Article Multi-objective PID Optimization for Speed Control of an Isolated Steam Turbine using Gentic Algorithm

FUZZY ADAPTIVE PI CONTROLLER FOR SINGLE INPUT SINGLE OUTPUT NON-LINEAR SYSTEM

STAND ALONE CONTROLLER FOR LINEAR INTERACTING SYSTEM

PID Tuning Using Genetic Algorithm For DC Motor Positional Control System

Controller Tuning for Disturbance Rejection Associated with Delayed Double Integrating processes, Part IV: PID Plus First-Order Lag Controller

TUNABLE METHOD OF PID CONTROLLER FOR UNSTABLE SYSTEM L.R.SWATHIKA 1, V.VIJAYAN 2 *

Design and Simulation of Gain Scheduled Adaptive Controller using PI Controller for Conical Tank Process

Design and Implementation of PID Controller for Single Capacity Tank

LABVIEW BASED TUNING OF PI CONTROLLERS FOR A REAL TIME NON LINEAR PROCESS

Relay Based Auto Tuner for Calibration of SCR Pump Controller Parameters in Diesel after Treatment Systems

Comparative Study of PID and FOPID Controller Response for Automatic Voltage Regulation

Pareto Optimal Solution for PID Controller by Multi-Objective GA

Performance Analysis Of Various Anti-Reset Windup Algorithms For A Flow Process Station

Online Tuning of Two Conical Tank Interacting Level Process

Design of PID Controller with Compensator using Direct Synthesis Method for Unstable System

BINARY DISTILLATION COLUMN CONTROL TECHNIQUES: A COMPARATIVE STUDY

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 1.852

New PID Tuning Rule Using ITAE Criteria

UNIT IV CONTROLLER TUNING:

CONTROLLER DESIGN BASED ON MODEL PREDICTIVE CONTROL FOR A NONLINEAR PROCESS

A Rule Based Design Methodology for the Control of Non Self-Regulating Processes

Genetic Algorithm Optimisation of PID Controllers for a Multivariable Process

INTEGRATED PID BASED INTELLIGENT CONTROL FOR THREE TANK SYSTEM

DESIGN AND ANALYSIS OF TUNING TECHNIQUES USING DIFFERENT CONTROLLERS OF A SECOND ORDER PROCESS

DESIGN OF PID CONTROLLERS INTEGRATOR SYSTEM WITH TIME DELAY AND DOUBLE INTEGRATING PROCESSES

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET)

Md. Aftab Alam, Dr. Ramjee Parsad Gupta IJSRE Volume 4 Issue 7 July 2016 Page 5537

COMPARISON OF TUNING METHODS OF PID CONTROLLER USING VARIOUS TUNING TECHNIQUES WITH GENETIC ALGORITHM

Comparison Effectiveness of PID, Self-Tuning and Fuzzy Logic Controller in Heat Exchanger

International Journal of Research in Advent Technology Available Online at:

Comparative Analysis of a PID Controller using Ziegler- Nichols and Auto Turning Method

Control of a Double -Effect Evaporator using Neural Network Model Predictive Controller

Labview Based Gain scheduled PID Controller for a Non Linear Level Process Station

Keywords: Fuzzy Logic, Genetic Algorithm, Non-linear system, PI Controller.

Position Control of DC Motor by Compensating Strategies

Review Paper on Comparison of various PID Controllers Tuning Methodologies for Heat Exchanger Model

ISSN Vol.04,Issue.06, June-2016, Pages:

Application of Proposed Improved Relay Tuning. for Design of Optimum PID Control of SOPTD Model

An Expert System Based PID Controller for Higher Order Process

AN APPROACH TO IMPROVE THE PERFORMANCE OF A POSITION CONTROL DC MOTOR BY USING DIGITAL CONTROL SYSTEM

DYNAMIC SYSTEM ANALYSIS FOR EDUCATIONAL PURPOSES: IDENTIFICATION AND CONTROL OF A THERMAL LOOP

An Implementation for Comparison of Various PID Controllers Tuning Methodologies for Heat Exchanger Model

Non-Integer Order Controller Based Robust Performance Analysis of a Conical Tank System

Optimized Tuning of PI Controller for a Spherical Tank Level System Using New Modified Repetitive Control Strategy

PID Controller Optimization By Soft Computing Techniques-A Review

EFFICIENT CONTROL OF LEVEL IN INTERACTING CONICAL TANKS USING REAL TIME CONCEPTS

Controlling of Temperature Process using IMC-PID and PSO

Indirect Vector Control of Induction Motor Using Pi Speed Controller and Neural Networks

Parameter Estimation based Optimal control for a Bubble Cap Distillation Column

International Journal of Engineering and Techniques - Volume 5 Issue 2, Mar-Apr 2019

Design of Self-Tuning Fuzzy PI controller in LABVIEW for Control of a Real Time Process

CHAPTER 4 AN EFFICIENT ANFIS BASED SELF TUNING OF PI CONTROLLER FOR CURRENT HARMONIC MITIGATION

SCIENCE & TECHNOLOGY

Class 5. Competency Exam Round 1. The Process Designer s Process. Process Control Preliminaries. On/Off Control The Simplest Controller

Spacecraft Pitch PID Controller Tunning using Ziegler Nichols Method

CHAPTER 4 PID CONTROLLER BASED SPEED CONTROL OF THREE PHASE INDUCTION MOTOR

Controller Tuning for Disturbance Rejection Associated with Delayed Double Integrating Process, Part III: PI-PD Controller

Review of PI and PID Controllers

Tuning of PID Controller for Cascade Unstable systems Using Genetic Algorithm P.Vaishnavi, G.Balasubramanian.

F. Greg Shinskey. "PID Control." Copyright 2000 CRC Press LLC. <

Digital Control of MS-150 Modular Position Servo System

Design and Implementation of Self-Tuning Fuzzy-PID Controller for Process Liquid Level Control

Key words: Internal Model Control (IMC), Proportion Integral Derivative (PID), Q-parameters

Position Control of AC Servomotor Using Internal Model Control Strategy

Extensions and Modifications of Relay Autotuning

TUNING OF CONTROLLERS FOR NON LINEAR PROCESS USING INTELLIGENT TECHNIQUES

EVALUATION ALGORITHM- BASED ON PID CONTROLLER DESIGN FOR THE UNSTABLE SYSTEMS

The PID controller. Summary. Introduction to Control Systems

Transcription:

IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 6 November 2014 ISSN (online): 2349-6010 Assessment Of Diverse Controllers For A Cylindrical Tank Level Process A.Thamemul Ansari K.Sujitha K.Tharani Raja H.Kala Assistant Professor Saranathan College of Engineering, Trichy, Tamilnadu,India S.Abirami Assistant Professor Saranathan College of Engineering, Trichy, Tamilnadu,India Abstract This manuscript deals with the proposal of the controller for a Level process. In this cram the level process is controlled by PID controller using diverse control methods such as IMC, MPC and the result of assorted control algorithms has been compared in terms of time domain specifications like settling time (ts), rise time (tr), maximum overshoot (Mp) and performance indices like ISE, IAE, ITAE, MSE. The conventional PID controller has a shortcoming that, it makes a counteractive exploit only after the error has developed but not in progress whereas MPC endow with a corrective exploit in advance. The intention of this cram is to scrutinize the MPC strategy, analyse and contrast the control upshot with conventional control stratagem in maintaining a water level system. The concert of the conventional controller, IMC and MPC has been compared in which MPC controller gives a enhanced system performance in terms of settling time (ts), rise time (tr), maximum overshoot (Mp) and performance indices akin to ISE, IAE, ITAE, MSE. Keywords: Level process, MATLAB, IMC, MPC, PID control, and FOPDT. I. INTRODUCTION In process industries, the control of liquid level is a basic problem especially in industries like petro-chemical industries, paper mixing process or mixing treatment in the tanks. It is essential for a control systems engineer to understand the problem and to control the level. Level control is very important for mixing reactant products. The quantity of the product of mixture depends on the level of the reactants in the mixing tank. Chemical process industries and food processing industries employs mixing reactant process. Hence, level control is very important in process industries. Nowadays, control system engineers in process industry are using computer aided control system design for modelling, system identification and estimation. In this paper, the controller is designed and simulated in MATLAB environment. In the liquid level control system, the manipulated variables of the liquid level are controlled. In the industrial production process, there are many places where the liquid levels have to be controlled and then manipulate the liquid level to maintain accurately for a given value. The traditional controller methods use a classical PID method and the advanced control strategies include IMC and MPC. In this paper, the tuning is done using Z-N method, modified Z-N method, T-L method, CHR, IMC and MPC and the result have been compared in terms of time domain specification. II. EXPERIMENT DESCRIPTION The process setup consists of a supply water tank fitted with pump for water circulation. The level sensor is fitted on a transparent process tank which is controlled by adjusting water flow to the tank by pneumatic control valve. These units along with necessary piping and fittings are mounted in support housing designed to stand on bench top. The control cubicle houses process indicator or microcontroller, output indicator, power supply for level transmitter, control switches etc., the process parameter is controlled through computer or microprocessor controller by manipulating water flow to the process. The controller used here is direct controller, since it increases in error when the controller output increases All rights reserved by www.ijirst.org 82

SPECIFICATION: Product Product code Type of control Control unit Communication Level transmitter I/P converter Control valve Rotameter Pump Process tank Supply tank Air filter regulator Pressure gauge Overall dimensions Level control trainer 313 313A DDC SCADA Interfacing unit with control module with digital ADC/DAC conversion indicating controller RS232 Type capacitance,two wire,range 0-300 mm,output 4-20Ma Input 4-20Ma,output 3-15 psig Type pneumatic;size:1/4,input:3-15 psig,air to close,characteristics:linear 10-100 LPH Fractional horse power,type centrifugal Transparent,Acrylic,with 0-100% graduated scale SS304 Range 0-2.5 kg\cm2 Range 0-2.5 g\cm2(1no),range0-7 kg\cm2(1no) 440Wx445Dx750H mm Fig 1: Level process setup III. ZEIGLER-NICHOLS METHOD Zeigler-Nichols technique is possibly the largely recognized and the generally used process for tuning of PID controller. It is a trial and error technique. This technique is based on sustained oscillations. Z-N is also known as online (or) continuous cycling (or) ultimate gain tuning method. The design criterion for this method is ¼ decay ratio. Z-N method does not necessitate process model but it forces the process into a condition of marginal stability that may lead to unstable operation. P 0.5K u - PI 0.45k u P u /1.2 - PID 0.6k u P u /2 P u /8 IV. MODIFIED Z-N METHOD Modified Z-N settings is preferred in control loops, where the assess of oscillation afford by ¼ decay ratio and the corresponding large overshoots for set point changes are undesirable. Some overshoot 0.33K u P u /2 P u /3 No overshoot 0.2k u P u /2 P u /3 V. TYREUS-LUYBEN METHOD The Tyreus-Luyben method is a method, which is related to Z-N method but the final controller settings are diverse. Also, this technique only proposes settings for PI and PID. This method is based on ultimate gain and period. PID K u /3.2 2.2P u P u /6.3 All rights reserved by www.ijirst.org 83

VI. C-H-R METHOD The open-loop Z-N method is modified and proposed by Chein - Hrones and Reswich, which is recognized as CHR method. They use a design criterion that quickest response without overshoot or quickest response with 20% overshoots. The tuning procedure is similar to Z-N method. PID(0 % overshoot) 2.4d 0.42d PID(20% overshoot) 2d 0.42d PID(0 % overshoot) m 0.5d PID(20% overshoot) 1.4 m 0.47d VII. MODEL PREDICTIVE CONTROL Many process industries such as chemical plants, refining/petrochemical industries and oil refineries use an advanced method of process control known as Model Predictive Control (MPC). MPC criterion relies on dynamic models of the process and most of the linear empirical model obtained by system identification. MPC predict the future response of a plant. It optimizes the future plant behaviour by computing a sequence of future manipulated variable adjustments. Model Predictive Control focuses on constructing a controller that the control action before a change in the output set point actually occurs. When MPC combined with a traditional feedback operations, it enables a controller to make adjustments that are smoother and closer to optimal control action values. The advantages of MPC are that it ensures reduced maintenance and longer plant life and alarms the possible future problem in the plant. Fig 2: Block Diagram of MPC controller VIII. INTERNAL MODEL CONTROL IMC is another model based controller used in many industries. IMC makes use of a process model to infer the effects of immeasurable disturbance on the process output and eliminate that effect. The IMC controller consists of an inverse of the process model. IMC is a model based control technique. We develop a model-based procedure, where a process model is embedded in the controller by explicitly using process knowledge; by virtue of the process model improved performance can be obtained. Process model mismatch is common. The process model cannot simply be inverted to form the controller. It must be factored so that the resulting controller is stable and realizable. The open loop control strategy will not be able to maintain the output at set point. The closed loop oscillation technique developed by Ziegler and Nichols did not require a model of process. Direct synthesis was based the use of desired closed loop response and a process model to synthesize a control law. IMC + All rights reserved by www.ijirst.org 84

IX. MINIMUM ERROR INTEGRAL CRITERIA Tuning for ¼ decay ratio often leads to oscillatory responses and also this criterion consider only two points of closed loop response. The controller can also be design based on performance index. Some of the performance indexes are: (1) Integral of the absolute value of the error(iae): IAE= (2) Integral of the square value of the error(ise): ISE= (3) Integral of the time weighted absolute value of the error(itae): ITAE= (4) Integral of the time weighted square value of the error(itse): ITSE= X. RESULT The simulated block diagrams were implemented in MATLAB environment using different conventional control algorithm and model based control technique. Different control methods have a different retort for a unit step input. For auxiliary scrutiny, the retort of diverse controller is taken into consideration. From the response curve, it has been verified that amongst diverse controllers, MPC controller has a better performance in terms of settling time, rise time, peak overshoot, peak time and MPC also has better performance indices. Table - 1 Performance of Various Controllers TUNING CONTROLLER PEAK OVERSHOOT PEAK TIME RISE TIME SETTLING TIME Zeigler-Nichols 1.15 77 42.51 360 Modified ZN(Some overshoot) 0.5 140 74 720 No overshoot 0.5 160 90 1240 TL 0.059 200 131 980 CHR(Load Rejection) 0% 0.479 80 55.5 384 20% 0.735 81 50 350 CHR(Set Point Tracking) 0% 0.042 215 150 1380 20% 0.07 65 63 560 Cohen-Coon 0.85 65 47.75 354 IMC - - - 190 MPC - - - 135 Table - 2 Error Performance Criteria for Various Controller CONTROLLER METHOD ISE IAE MSE Ziegler-Nichols 305.4085 257.3462 0.9757 Modified ZN(Some overshoot) 296.3378 237.5796 1.0451 No overshoot 272.0205 272.1714 1.0451 TL 280.9931 280.3197 0.7356 CHR(Load Rejection) 0% 285.9747 270.0000 0.8401 20% 249.3440 294.2629 0.9807 CHR(Set Point Tracking) 0% 280.5777 281.4813 0.7218 20% 275.1120 258.5871 0.8642 Cohen-Coon 302.7569 247.0703 1.0058 IMC 304.8537 301.7100 0.6168 All rights reserved by www.ijirst.org 85

RESPONSE OF DIFFERENT CONTROLLERS 2.5 2 1.5 1 0.5 0 0 200 400 600 800 1000 1200 1400 1600 ZN-PID Modified ZN -Some overshoot Modified ZN-No overshoot TL-PID CHR(Load Rejection)-0% CHR(Load Rejection)-20% IMC-PID CHR(Set Point Tracking)-0% CHR(Set Point Tracking)-20% Cohen-Coon MPC -0.5 Fig 3: Response of the level process XI. CONCLUSION We have designed diverse controllers which include traditional controller strategies and advanced controller strategies for cylindrical tank level process and the results are compared in terms of peak time, rise time, settling time and peak overshoot and also in terms of performance indices. From the result and discussions it has been proven that MPC which is an advanced control technique has minimum settling time, no peak overshoot and no rise time than traditional controller strategies. Further enhancement could be implemented in real time by which the level of the tank is controlled at a desired set point. REFERENCE [1] System Identification and Comparison of Ziegler-Nichols and Genetic Algorithm for Moisture Process. H. Kala, S. Abirami, S.M. Giriraj Kumar. [2] Wikipedia, PID controller, http://en.wikipedia.org/wiki/pid_controller. [3] J. B. Ziegler and N. B. Nichols, Optimum settings for automatic controllers, ASME Transactions, v64, pp. 759-768, 1942. [4] James B. Rawlings, Tutorial Overview of Model Predictive Control, IEEE Control System Magazine, June 2000. [5] Wikipedia, Model predictive control, http://en.wikipedia.org/wiki/model_predictive_control. [6] Ziegler, J.G., N. B. Nicholas, 1942. Optimum setting for automatic controller, Transaction ASME, 64:759-768. [7] Kala. H, Abirami. S, Muthumari. S, Venkatesh. S, 2012. Model Identification and Comparison Of Different Controllers for Humidity Process, International Conference on Electrical Sciences. [8] D. Mercy, S. M. Giriraj kumar Tuning of controllers for nonlinear process using Intelligent techniques, IJAREEIE Vol. 2, Issue 9, September 2013. [9] Morari, M. and J. Lee, Model Predictive Control: Past, Present and Future", Comp. Chem. Eng., 21, 667-682, 1999. [10] G. Stephanopoulos, Chemical Process Control: An Introduction to Theory and Practice, Prentice Hall, Upper Saddle River, NJ, USA, 1984. [11] Dr. V. Balaji, Study of Model Predictive Control using NI Lab VIEW, International Journal of Engineering Research & Technology, Volume 3,Issue 2, july- December (2012),pp.257-266. [12] Aidan o Dwyer, Hand book of PI and PID controller tuning rules, 3rd edition All rights reserved by www.ijirst.org 86