Design Project: Sensitive audio detector

Similar documents
Transformer circuit calculations

AC metrology. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Design Project: Audio tone control

Stepper motors. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Conventional transistor overview and special transistors

Bipolar transistor biasing circuits

Millman s theorem. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Millman s theorem. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Exercise 3: EXERCISE OBJECTIVE

Component modeling. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Bipolar transistor biasing circuits

Differential transistor amplifiers

AC reactive circuit calculations

Characteristic Impedance

Switched capacitor circuitry

R 2. Out R 3. Ctrl C 2

Performance-based assessments for AC circuit competencies

Electrical connections

Week 8 AM Modulation and the AM Receiver

Advanced electromagnetism and electromagnetic induction

AC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Lab 4: Analysis of the Stereo Amplifier

JFET amplifiers. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

JFET amplifiers. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Brig Solid State Headphone Amplifier

You Just Brought an Old Radio Home: Now What Do You Do?

Physics 310 Lab 4 Transformers, Diodes, & Power Supplies

Exercise 1: AC Waveform Generator Familiarization

Electronic Instrumentation ENGR-4300 Fall 2002 Project 2: Optical Communications Link

Industrial Electricity. Answer questions and/or record measurements in the spaces provided.

EQUIVALENT EQUIPMENT CIRCUITS

R 1 R 2. (3) Suppose you have two ac signals, which we ll call signals A and B, which have peak-to-peak amplitudes of 30 mv and 600 mv, respectively.

// Parts of a Multimeter

Lab 2: Common Base Common Collector Design Exercise

Introduction to the Op-Amp

3. Diode, Rectifiers, and Power Supplies

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 3157 Electrical Engineering Design II Fall 2013

Meters and Test Equipment

Designing Information Devices and Systems I Spring 2015 Homework 6

Single Ended Linear DC Servo Amplifier

University of North Carolina, Charlotte Department of Electrical and Computer Engineering ECGR 3157 EE Design II Fall 2009

ECE 2274 Pre-Lab for Experiment # 4 Diode Basics and a Rectifier Completed Prior to Coming to Lab

TV Remote. Discover Engineering. Youth Handouts

IPR LA-3 KIT last update 15 march 06

Lab 7 - Inductors and LR Circuits

Code Practice Oscillator (CPO) For kit building instructions turn to Page 3.

No.01 Transistor Tester

Opamp Based Power Amplifier

Verification of competency for ELTR courses

INC 253 Digital and electronics laboratory I

Switches. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Switches. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Wireless Communication

DM-46 Instruction Manual

Vacuum Tube Amplifier

Laboratory #4: Solid-State Switches, Operational Amplifiers Electrical and Computer Engineering EE University of Saskatchewan

Experiment 6: Biasing Circuitry

The Amazing All-Band Receiver

Performance-based assessments for AC circuit competencies

Final Project Stereo Audio Amplifier Final Report

Regulated power sources

EXPERIMENT 4 LIMITER AND CLAMPER CIRCUITS

Rectifying diodes. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Rectifying diodes. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Equivalent Equipment Circuits

Basic AC-DC power supplies

Purpose: 1) to investigate the electrical properties of a diode; and 2) to use a diode to construct an AC to DC converter.

EE 233 Circuit Theory Lab 4: Second-Order Filters

Electronic Circuits I Laboratory 03 Rectifiers

Laboratory Exercise - Seven

How to turn any breadboarded circuit into a valid troubleshooting assessment

EE 233 Circuit Theory Lab 3: First-Order Filters

AC phase. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

OpenAFM. Electronics

Minty Amp assembly instructions

EXPERIMENT 5 : THE DIODE

Physics of Music Projects Final Report

CI-22. BASIC ELECTRONIC EXPERIMENTS with computer interface. Experiments PC1-PC8. Sample Controls Display. Instruction Manual

How to Select the Right Current Probe APPLICATION NOTE

BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS

DIGITAL / ANALOG TRAINER

AC/DC CLAMP METER USER S MANUAL

What is a multimeter?

Laboratory Assignment 5 Amplitude Modulation

Experiment 6: Biasing Circuitry

Ear+ Purist HD. Ear+ HD II High Definition Stereo Headphone Amplifier

Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope.

Users Manual. Class D Audio Power Amplifier. 500W X 2 or 1000W X 1 RMS Power

RTD and thermocouple circuits, with millivolt calculations

The Ins and Outs of Audio Transformers. How to Choose them and How to Use them

29:128 Homework Problems

EE 210: CIRCUITS AND DEVICES

Using the V5.x Integrator

Rowan University Freshman Clinic I Lab Project 2 The Operational Amplifier (Op Amp)

Low Cost, General Purpose High Speed JFET Amplifier AD825

Creating an Audio Integrator

ENGR 120 LAB #2 Electronic Tools and Ohm s Law

Experiment 3. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current.

200Amp AC Clamp Meter + NCV Model MA250

Lab 3-mod: Diode Circuits

Transcription:

Design Project: Sensitive audio detector This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/, or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA. The terms and conditions of this license allow for free copying, distribution, and/or modification of all licensed works by the general public. Your project is to build a sensitive audio detector: a device useful for detecting low-level electrical signals and expressing them in the form of sound. Here is a sample schematic diagram for you to follow: High-quality 8 Ω impedance closed-cup audio headphones step-down transformer 1N4001 diodes 1 kω Test probes 100 kω audio-taper potentiometer 1 kω I recommend you follow this design closely, to ensure your detector will function in a safe manner. The headphones should be of the passive type, meaning no built-in amplifier or sound controls just a plain set of 8 Ω closed-cup headphones. If you wish to make any design changes, please consult your instructor. Deadlines (set by instructor): Components purchased: Working prototype: Finished system: Full documentation: 1

Question 1 The choice of step-down transformers to use in a project such as this is not arbitrary. We must consider several factors when choosing a particular transformer: Turns ratio Winding voltage rating(s) Isolation (safety) voltage rating Expense (transformers can be expensive!) A turns ratio between 20:1 and 10:1 seems to work good for a project such as this. I recommend a transformer with a highest high-voltage winding rating and winding-to-winding isolation possible, to provide maximum resistance between the circuit under test (primary) and your headphones (secondary). This is a safety feature to ensure that you will not receive an electric shock if the detector is accidently connected to a source of lethal voltage. I also recommend using a recycled transformer (i.e. salvaged from some junk equipment) rather than purchasing a new one. Identify some commonly available transformers that fit these criteria. file 01495 Answer 1 Simple 120-volt to 6-volt step-down transformers of the type used in the power supply stage of consumer electronic devices such as clock radios work well. I ve even used the high-voltage transformer from an old microwave oven (120 volt primary, 2000 volt secondary) backwards as a step-down transformer, with very good results (not to mention superb safety isolation). Of course, plain 1000:8 ohm audio matching transformers will function adequately as far as signal detection is concerned. However, these transformers typically do not provide the same level of winding-towinding isolation that a power transformer will, and so I do not recommend them for permanent construction (only for proof-of-concept circuits). NOTE: be sure to observe all appropriate safety precautions if salvaging transformers from old equipment, especially high-voltage devices such as microwave ovens! If unsure of anything, consult your instructor before proceeding with the disassembly of a device. Many pieces of electronic equipment contain high-voltage capacitors which may store lethal charges long after the device has been powered. All capacitors must be discharged in a reasonable manner prior to touching conductors in old equipment! Notes 1 Make sure your students do some actual research in arriving at their suggested transformer sources simply repeating what they read in the answer is not acceptable. It may seem odd to suggest the use of line-frequency power transformers for this purpose, where the (audio) signal frequency range may far exceed 60 Hz. However, we are not aiming for high fidelity with this device, only maximum sensitivity and maximum safety. Incidentally, I have found that AC line power transformers when operated at voltages far below their winding ratings do a decent job of audio signal reproduction because the magnetic field flux in the core is so incredibly low compared to what would be there transforming 50 Hz or 60 Hz line power. The fidelity of an audio signal intercepted from a radio circuit with this detector, for example, is quite satisfactory for diagnostic purposes. 2

Question 2 The series resistances and parallel-connected diodes in this circuit act as a voltage clipping network. Why do you suppose it would be important to limit, or clip, the signal voltage before it reaches the rest of the circuitry? The detector will function adequately without the diodes or resistors in place, so why are they there? file 01496 Answer 2 Notes 2 The clipping network protects your hearing in case of accidently connection to a large signal source. Your students may not yet be familiar with the operation of semiconductor diodes. For now, just explain that diodes only conduct current in one direction, and even then they do not begin to conduct until the voltage drop across them is approximately 0.7 volts (for silicon diodes). 3

Question 3 Can this detector be used to indicate the presence of direct current (DC), or only AC within the audio frequency range? How about AC signals beyond the audio frequency range? file 01497 Answer 3 This detector is useful for detecting the presence of signals over an extremely wide frequency range (and down to zero DC), although the detector admittedly provides much more information about the nature of the signal if its frequency lies within the audio range. To use this detector for DC signals and for signals above the audio range may require some creativity, but it most certainly can be done! Notes 3 Have your students share their successes with signal detection above and below the audio frequency range. What technique(s) yielded the best (most sensitive) results? 4

Question 4 With the headphones connected to the input of your audio detector circuit, what is the lowest current level of signal you can hear, as measured with a sensitive milliammeter connected in series between your detector and a signal source? Hz FUNCTION GENERATOR 1 10 100 1k 10k 100k 1M headphones coarse fine DC output Sensitivity plug V A V OFF A A COM Compare this against the lowest amount of audible signal current for the headphones directly. Which component of the detector circuit is responsible for this increased sensitivity? file 01494 Answer 4 Notes 4 The transformer. But, can you explain why? This is a very practical way for students to experience the significance of impedance matching using transformers. 5

Question 5 Suppose I wish to listen to the hum of ripple voltage from an AC-to-DC power supply using this detector. Ripple voltage, in case you don t know, is a small AC voltage superimposed on a large DC voltage. If I simply connect my detector directly to the power supply s terminals, I hear a LOUD click. If I turn the volume control down until the click is tolerable, the hum is too faint to hear. If I turn the volume control up far enough to hear the hum, then the click is far too loud for comfort. How can I set up the detector so that it only detects the AC portion (the ripple voltage) of the power supply s output, and not the DC portion? file 01498 Answer 5 This is actually quite simple to do, and it involves connecting a specific type of component in series with the detector s test leads. I won t directly tell you what this component is, but I ll give you a hint: you will be doing that same thing that is done inside an oscilloscope when you set the coupling switch from the DC position to the AC position. Follow-up question: modify the schematic diagram to include an AC/DC coupling switch, so the detector s coupling may be switched from one mode to the other just like an oscilloscope. Notes 5 It would be very helpful to have an AC-DC power supply with substantial ripple voltage available for students to do this exercise. 6