Research Article Design of a Novel UWB Omnidirectional Antenna Using Particle Swarm Optimization

Similar documents
Research Article Multiband Planar Monopole Antenna for LTE MIMO Systems

Research Article Modified Dual-Band Stacked Circularly Polarized Microstrip Antenna

Research Article A New Kind of Circular Polarization Leaky-Wave Antenna Based on Substrate Integrated Waveguide

Research Article Compact Dual-Band Dipole Antenna with Asymmetric Arms for WLAN Applications

Research Article Miniaturized Circularly Polarized Microstrip RFID Antenna Using Fractal Metamaterial

Research Article A Wide-Bandwidth Monopolar Patch Antenna with Dual-Ring Couplers

Research Article A Design of Wide Band and Wide Beam Cavity-Backed Slot Antenna Array with Slant Polarization

Research Article A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection

Research Article A Miniaturized Triple Band Monopole Antenna for WLAN and WiMAX Applications

Research Article CPW-Fed Wideband Circular Polarized Antenna for UHF RFID Applications

Research Article A Compact CPW-Fed UWB Antenna with Dual Band-Notched Characteristics

Research Article Cross-Slot Antenna with U-Shaped Tuning Stub for Ultra-Wideband Applications

Research Article Novel Design of Microstrip Antenna with Improved Bandwidth

Research Article A High-Isolation Dual-Polarization Substrate-Integrated Fabry-Pérot Cavity Antenna

Research Article Small-Size Meandered Loop Antenna for WLAN Dongle Devices

Research Article Wideband Microstrip 90 Hybrid Coupler Using High Pass Network

Research Article High Efficiency and Broadband Microstrip Leaky-Wave Antenna

Research Article CPW-Fed Slot Antenna for Wideband Applications

Research Article Bandwidth Extension of a Printed Square Monopole Antenna Loaded with Periodic Parallel-Plate Lines

Research Article Suppression of Cross-Polarization of the Microstrip Integrated Balun-Fed Printed Dipole Antenna

Research Article Very Compact and Broadband Active Antenna for VHF Band Applications

Broadband Circular Polarized Antenna Loaded with AMC Structure

Research Article A Parallel-Strip Balun for Wideband Frequency Doubler

Research Article Analysis and Design of Leaky-Wave Antenna with Low SLL Based on Half-Mode SIW Structure

Research Article A MIMO Reversed Antenna Array Design for gsm1800/td-scdma/lte/wi-max/wilan/wifi

Research Article Yagi Array of Microstrip Quarter-Wave Patch Antennas with Microstrip Lines Coupling

Research Article Quad Band Handset Antenna for LTE MIMO and WLAN Application

A Pair Dipole Antenna with Double Tapered Microstrip Balun for Wireless Communications

Research Article A UWB Band-Pass Antenna with Triple-Notched Band Using Common Direction Rectangular Complementary Split-Ring Resonators

Research Article Embedded Spiral Microstrip Implantable Antenna

Research Article Compact Multiantenna

Research Article A Miniaturized Meandered Dipole UHF RFID Tag Antenna for Flexible Application

Research Article Circularly Polarized Microstrip Yagi Array Antenna with Wide Beamwidth and High Front-to-Back Ratio

Research Article Compact Antenna with Frequency Reconfigurability for GPS/LTE/WWAN Mobile Handset Applications

Research Article Triband Omnidirectional Circularly Polarized Dielectric Resonator Antenna with Top-Loaded Alford Loop

Chapter 7 Design of the UWB Fractal Antenna

Research Article Optimization of Gain, Impedance, and Bandwidth of Yagi-Uda Array Using Particle Swarm Optimization

Research Article A Multibeam Antenna Array Based on Printed Rotman Lens

Research Article Ka-Band Slot-Microstrip-Covered and Waveguide-Cavity-Backed Monopulse Antenna Array

Design and Application of Triple-Band Planar Dipole Antennas

Ultra-Wideband Coplanar-Fed Monopoles: A Comparative Study

Research Article Compact and Wideband Parallel-Strip 180 Hybrid Coupler with Arbitrary Power Division Ratios

Research Article A Broadband Single-Feed Circularly Polarized Patch Antenna with Wide Beamwidth

COMPACT TRIPLE-BAND MONOPOLE ANTENNA WITH C-SHAPED AND S-SHAPED MEANDER STRIPS FOR WLAN/WIMAX APPLICATIONS

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

DESIGN OF A NOVEL WIDEBAND LOOP ANTENNA WITH PARASITIC RESONATORS. Microwaves, Xidian University, Xi an, Shaanxi, China

Research Article Harmonic-Rejection Compact Bandpass Filter Using Defected Ground Structure for GPS Application

A Compact Dual Band-Notched Ultrawideband Antenna with λ/4 Stub and Open Slots

A NEW INNOVATIVE ANTENNA CONCEPT FOR BOTH NARROW BAND AND UWB APPLICATIONS. Neuroscience, CIN, University of Tuebingen, Tuebingen, Germany

A Compact Wideband Slot Antenna for Universal UHF RFID Reader

DESIGN OF OMNIDIRECTIONAL HIGH-GAIN AN- TENNA WITH BROADBAND RADIANT LOAD IN C WAVE BAND

A Broadband Omnidirectional Antenna Array for Base Station

Research Article Multiband Printed Asymmetric Dipole Antenna for LTE/WLAN Applications

A CPW-Fed Dual-Band Slot Antenna with Circular Polarization

Research Article Design and Optimization of a Millimetre Wave Compact Folded Magic-T

Offset-fed UWB antenna with multi-slotted ground plane. Sun, YY; Islam, MT; Cheung, SW; Yuk, TI; Azim, R; Misran, N

A Compact Triple Band Antenna for Bluetooth, WLAN and WiMAX Applications

Design of Internal Dual Band Printed Monopole Antenna Based on Peano-type Fractal Geometry for WLAN USB Dongle

Research Article Design of a Compact Quad-Band Slot Antenna for Integrated Mobile Devices

Research Article Design and Analysis of Printed Yagi-Uda Antenna and Two-Element Array for WLAN Applications

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

A COMPACT UWB MONOPOLE ANTENNA WITH WIMAX AND WLAN BAND REJECTIONS

A New UWB Antenna with Band-Notched Characteristic

COMPACT WIDE-SLOT TRI-BAND ANTENNA FOR WLAN/WIMAX APPLICATIONS

New Design of CPW-Fed Rectangular Slot Antenna for Ultra Wideband Applications

Design of a Wideband Planar Microstrip-Fed Quasi-Yagi Antenna

Research Article The Simulation and Experiment of a Non-Cross-Feeding Printed Log-Periodic Antenna

Research Article Study on Horizontally Polarized Omnidirectional Microstrip Antenna

Research Article Design of a Broadband Band-Pass Filter with Notch-Band Using New Models of Coupled Transmission Lines

Broadband and Gain Enhanced Bowtie Antenna with AMC Ground

A Very Wideband Dipole-Loop Composite Patch Antenna with Simple Feed

Design, Simulation and Fabrication of an Optimized Microstrip Antenna with Metamaterial Superstrate Using Particle Swarm Optimization

SELF-COMPLEMENTARY CIRCULAR DISK ANTENNA FOR UWB APPLICATIONS

A NOVEL DUAL-BAND PATCH ANTENNA FOR WLAN COMMUNICATION. E. Wang Information Engineering College of NCUT China

A Compact Dual-Polarized Antenna for Base Station Application

X. Li, L. Yang, S.-X. Gong, and Y.-J. Yang National Key Laboratory of Antennas and Microwave Technology Xidian University Xi an, Shaanxi, China

A Wideband Magneto-Electric Dipole Antenna with Improved Feeding Structure

DESIGN OF A NOVEL MICROSTRIP-FED DUAL-BAND SLOT ANTENNA FOR WLAN APPLICATIONS

TRIPLE-BAND OMNI-DIRECTIONAL ANTENNA FOR WLAN APPLICATION

A Compact Dual-Band Dual-Polarized Antenna for Base Station Application

A dual-band antenna for wireless USB dongle applications

Design of CPW Fed Ultra wideband Fractal Antenna and Backscattering Reduction

International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials Proceedings. Copyright IEEE.

Application Article Synthesis of Phased Cylindrical Arc Antenna Arrays

Compact Triple-Band Monopole Antenna with Inverted-L Slots and SRR for WLAN/WiMAX Applications

Small-Size Monopole Antenna with Dual Band-Stop Function for Ultra-Wideband Wireless Communications

A Dual-Polarized MIMO Antenna with EBG for 5.8 GHz WLAN Application

A CPW-FED ULTRA-WIDEBAND PLANAR INVERTED CONE ANTENNA

Research Article UWB Directive Triangular Patch Antenna

NOVEL DESIGN BROADBAND CPW-FED MONOPOLE ANTENNA WITH TRAPEZIUM SHAPED-STUB FOR COMMUNICATION SYSTEM

Design of CPW-Fed Slot Antenna with Rhombus Patch for IoT Applications

Optimal design of a linear antenna array using particle swarm optimization

Application Article Improved Low-Profile Helical Antenna Design for INMARSAT Applications

A CPW-fed Microstrip Fork-shaped Antenna with Dual-band Circular Polarization

Research Article Integrated Filtering Microstrip Duplex Antenna Array with High Isolation

Research Article Theoretical and Experimental Results of Substrate Effects on Microstrip Power Divider Designs

A COMPACT CPW-FED MONOPOLE ANTENNA WITH A U-SHAPED STRIP AND A PAIR OF L-SLITS GROUND FOR WLAN AND WIMAX APPLICATIONS

Research Article Gain Enhancement of Low-Profile, Electrically Small Capacitive Feed Antennas Using Stacked Meander Lines

Design of Rectangular-Cut Circular Disc UWB Antenna with Band-Notched Characteristics

Wideband Double-Layered Dielectric-Loaded Dual-Polarized Magneto-Electric Dipole Antenna

Transcription:

Antennas and Propagation Volume 215, Article ID 33195, 7 pages http://dx.doi.org/1.1155/215/33195 Research Article Design of a Novel UWB Omnidirectional Antenna Using Particle Swarm Optimization Chengyang Yu, Tanghong Xu, and Changun Liu School of Electronics and Information Engineering, Sichuan University, Chengdu 6164, China Correspondence should be addressed to Changun Liu; cliu@ieee.org Received 23 January 215; Revised 11 March 215; Accepted 13 March 215 Academic Editor: Stefano Selleri Copyright 215 Chengyang Yu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A UWB E-plane omnidirectional microwave antenna is designed and fabricated for IEEE 82.11a communication system and microwave magnetron source system as a radiation monitor. A cooptimization method based on particle swarm optimization (PSO) algorithm and FDTD software is presented. The presented PSO algorithm is useful in many industrial microwave applications, such as microwave magnetron design and other techniques with a high power level. The maximum measured relative bandwidth of 65% is achieved for the proposed antenna after a rapid and efficient optimization. Furthermore, the measured antenna polarization purity reaches about 2 db at the communication C band. The PSO algorithm is a powerful candidate for microwave passive component design. 1. Introduction Omnidirectional antennas are widely used in wireless communication systems, especially for high-multipath communication applications based on polarization diversity technique. A typical polarization diversity system is composed of two orthogonally polarized antennas, such as a vertically polarized monopole and a horizontally polarized Alford loop antenna. As an H-plane omnidirectional antenna, monopole has been widely researched. However, in such a situation, E- plane omnidirectional antennas are also needed to investigate. Alford loop antenna, which is suitable at low frequencies with the wire type, was firstly reported in [1]. Several improved antennas based on Alford structure were also investigated to generate E-plane omnidirectional radiation patterns [2 5]. In [3], a dual-frequency Alford structure loop antenna is realized with eight T-dipoles. However, broadband omnidirectional antennas are urgently needed for modern communication systems [6, 7]. In this paper, an ultrawideband (UWB) characteristic is realized on the Alford structure loop antenna with E- plane omnidirectionality. Such an antenna will be used as a radiation monitor at an actual microwave magnetron source system. Particle swarm optimization (PSO) algorithm is introduced to optimize the whole structure. The proposed antenna can be easily realized on a planar substrate while it has a far-field radiation pattern similar to that of a magnetic dipole. In addition, the optimized omnidirectional antenna has a measured impedance bandwidth from 4.6 to 9. GHz (relative bandwidth is about 65%), which covers the entire 5 GHz bandwidth of IEEE 82.11a (5.15 GHz 5.35 GHz and 5.725 5.875 GHz). 2. Antenna Design 2.1. Antenna Structure. The configuration of the proposed UWB omnidirectional antenna is shown in Figure 1.Itmainly consists of three identical pairs of printed half-wave dipole radiators. Each pair includes two dipoles which work together to generate a broadband characteristic. It is the distributed microstrip dipoles and the power combining structure that generate an omnidirectional feature for the antenna. The lengths of the two dipole radiators are 2R 1 θ 1 and 2R 2 θ 2, respectively. Combining with double-sided strip lines, two parts of a dipole radiator are fabricated on the opposite sides of one substrate. So the proposed dipole structure is

2 Antennas and Propagation W R 1 =R 2 +b θ 2 R 2 R g R 1 b W 2 θ 1 W 1 (a) R=R 1 +a Z (b) R a Top plane F4B Bottom plane X Inner conductor Y Figure 1: The structure of the microwave antenna: (a) top plane, (b) bottom plane, and (c) side view. (c) Table 1: Range setup of optimized parameters. Parameters W 1 W 2 W θ 1 θ 2 a b R 2 R 1 R R g Optimization range.1 mm 4 mm π/18 π/3.1 mm 2 mm.1 mm 6 mm 8 mm 14 mm R 2 +b R 1 +a 6mm Restricted condition R 2 <R 1 <R Constant equivalent to the conventional dipole. In order to form an omnidirectional radiation, according to the theory of antenna array, the excitation phase of each dipole pair should be equal. The three dipole pairs are directly fed by microstrips, while the common ground plane of microstrips is a circular patch with a constant radius R g.thecenteroftheringstructure is soldered with an SMA connector. It is obvious that all the dipole pairs are fed with not only an equal excitation phase, but also an equal excitation amplitude. 2.2. Antenna Optimization and Fitness Function. Based on the proposed structure, the final goal of our work is to obtain a planar antenna with omnidirectional radiation and low return loss over WLAN operation in the 5 GHz bands. However, due to the narrow impedance bandwidth of conventional dipole, massive optimizations on radiators and connection structures among them are needed. In order to improve optimization accuracy and velocity, a cooptimization method based on PSO and FDTD simulator is introduced in this paper. The PSO algorithm and cooptimization processes will be detailed later. The omnidirectional antenna is realized on a F4B substrate with a dielectric constant of 2.65 and thickness of 1 mm. The specific optimized parameters of the proposed antenna, as shown in Figure 1, arelistedintable 1. Parameters a and b are selected to match the restricted condition among kindsofradiusesoftheantennastructure. According to design targets of the proposed antenna, especially used on the entire 5 GHz bandwidth of IEEE 82.11a, the fitness function can be defined as Fitness =.5 BW +A+B, (1) where BW indicates the desired antenna impedance bandwidth expressed in terms of upper frequency f U and lower frequency f L. The upper and lower frequencies are the boundary points of antenna bandwidth with db(s 11 ) < 1 db. A and B represent the weight factor of reflection

Antennas and Propagation 3 Determine the solution space according to antenna variable ranges For each particle Randomly initialize particle with velocity V i and position X i (1 i M) Utilize VBA to invoke FDTD software and the file containing antenna variables Calculate the fitness function eq. (1) with simulated S parameters Update position with eq. (6) If fitness of the particle > fitness of G best, G best = X i (T) If fitness of the particle > fitness of P i, P i = X i (T) Update velocity with eq. (3) Number of iterations T=T+1 T<maximum iteration No Yes Final antenna variables = G best Figure 2: Flow chart of the proposed antenna cooptimization method. coefficient to optimize on the antenna at 5.2 GHz and 5.8 GHz, respectively. These factors can be expressed by BW = f U f L 1 GHz, f U >6GHz, f L <5GHz, others, A= 1, db (S 11 ) f=5.2 GHz 1dB, db (S 11 ) f=5.2 GHz > 1dB, B= 1, db (S 11 ) f=5.8 GHz 1dB, db (S 11 ) f=5.8 GHz > 1dB. (2) 2.3. PSO Algorithm and Cooptimization with FDTD Software. As an evolutionary computation technique based on the movement and intelligence of particle swarm, PSO is presented by Kennedy et al. [8]. Each particle in the swarm represents a possible solution to the specific optimization event. There are M particles to search an N dimensions solution space, respectively. So the velocity, position, and the personal best position are expressed by M Nmatrixes. The position of particle i at a fixed iteration T is usually expressed as a vector X i (T) = [X i,1 (T), X i,2 (T),...,X i,n (T)], wherei satisfies 1 i M. This particle adusts its position with velocity V i (T) = [V i,1 (T), V i,2 (T),...,V i,n (T)] through the solution space. According to the fitness function calculation, the personal best particle and global best particle are involved in P i =[P i,1,p i,2,...,p i,n ] and G best =[G 1,G 2,...,G N ].

4 Antennas and Propagation Figure 3: The fabricated UWB omnidirectional microwave antenna (top view and bottom view). Clerc and Kennedy have introduced a constriction factor [9], K, which is used to constrain and control velocities for PSO. In [1], Eberhart and Shi concluded that the PSO using a constriction factor K is the best approach while limiting the maximum velocity V max to the dynamic range of variable X max on each dimension compared with performance using an inertia weight. The velocity function of PSO used in this paper is V i, (T+1) =K [V i, (T) +φ 1 rand () (P i, (T) X i, (T)) +φ 2 rand () (G (T) X i, (T))], where the constriction factor K is computed as K= 2 2 φ φ2 4φ φ=φ 1 +φ 2 >4. We tested different groups of the cognitive and social component values of the PSO (φ 1 and φ 2 )withgriewank functionandspherefunction.thestandardvaluesettings in [1] (φ 1 = φ 2 = 2.5) andthosein[11] (φ 1 = 2.8 and φ 2 = 1.3) result in a better optimization accuracy and a better convergence rate, respectively. In this paper, aiming at a compromise on performances, improved cognitive and social component values are used for the PSO. Cognitive and social rates vary from 2.8 to 2.5 and from 1.3 to 2.5, synchronously. The variation is linear to iteration times. Tested results show that the proposed settings of (φ 1 =2.8 2.5 and φ 2 =1.3 2.5) result in the best performance on optimization accuracy and a good convergence rate for PSO. Reflecting boundary condition [12] isusedtolimitthe particle velocity and position when it hits the boundary in one of the dimensions. The particle velocity and position beyond the boundary can be expressed by (3) (4) V i, (T+1) = m V i, (T), (5) X i, (T+1) =X i, (T) +V i, (T+1), (6) Reflection coefficients 1 2 3 3 4 5 6 7 8 9 Measured Simulated Frequency (GHz) Figure 4: Simulated and measured results of reflection coefficient. where m is determined by the distance d from particle position to the boundary: m = X max X max d X min X min d, d X max d>x max X min X min. The steps of cooptimization with the proposed PSO and FDTD software (CST) are described in Figure 2. Step 1. Determine the antenna variables and ranges to be optimized. Randomly initialize M particles with velocity V i and position X i in the solution space. Step 2. Write the variables into a.txt file at fixed position. Invoke the file and CST software automatically by using VBA (a macro language of Visual Basic). Use the simulated Sparameters to calculate the fitness of each particle according to (1). Record the personal particles and global best particle according to the fitness function value. (7)

Antennas and Propagation 5 1 2 3 3 2 1 3 27 24 33 21 3 6 9 12 15 18 33 1 2 3 3 4 27 4 3 2 24 1 21 18 f = 4.8 f = 4.8 3 15 6 9 12 (a) At 4.8 GHz 1 2 3 3 2 1 3 27 24 33 21 18 3 15 6 9 12 1 2 3 4 4 3 2 1 3 27 24 33 21 18 3 15 6 9 12 f = 5.2 f = 5.2 (b) At 5.2 GHz 1 2 3 3 2 1 3 27 24 33 21 3 6 9 12 33 1 2 3 3 4 27 4 3 2 24 1 15 21 18 18 f = 5.8 f = 5.8 3 15 6 9 12 Measured E Measured Ex Simulated E Simulated Ex Measured H Measured Hx Simulated H Simulated Hx (c) At 5.8 GHz Figure 5: Continued.

6 Antennas and Propagation 1 2 3 3 2 1 27 3 24 33 21 3 6 9 12 33 1 2 3 3 4 27 4 3 2 24 1 15 21 18 18 f = 6.5 f = 6.5 3 15 6 12 9 Measured E Measured Ex Simulated E Simulated Ex Measured H Measured Hx Simulated H Simulated Hx (d) At 6.5 GHz Figure 5: Simulated and measured microwave radiation patterns at (a) 4.8 GHz, (b) 5.2 GHz, (c) 5.8 GHz, and (d) 6.5 GHz. Step 3. Update the velocity and position of each particle according to (3) and (6). Step 4. Calculate the fitness of each particle again. Update the personal particles. Step 5. Read the personal best particle. If its corresponding fitnessfunctionvalueisbetterthanthatofglobalbestparticle, update the record of the global best particle. Step 6. Repeat Steps 3, 4,and5, until the maximum iteration number is reached. 3. Fabrication and Measurements The omnidirectional antenna mentioned above is optimized with the proposed optimization method based on PSO and FDTD software. The operation frequency of this antenna is the entire 5 GHz wideband of IEEE 82.11a, especially for frequency bands of 5.2 GHz and 5.8 GHz. For obtaining a fine UWB characteristic, 2 particles and 15 iteration times are employed. The final optimized geometric parameters are a =.88 mm, b = 3.9 mm, R 2 = 9.65 mm, θ 1 =.3, θ 2 =.74, W =.3 mm, W 1 = 2.39 mm, and W 2 = 1.75 mm. Figure 3 shows the fabricated UWB omnidirectional antenna. The diameter of this antenna is 36 mm. The reflection coefficient was measured using an Agilent N523A vector network analyzer. As shown in Figure 4, the simulated results matched well with the measured results. This indicates that the cooptimization method based on PSO and FDTD software is effective for antenna design. Furthermore, the improved Alford structure antenna, without any additional matching circuits, definitely has an UWB characteristic from 4.6 GHz to 9. GHz. The radiation patterns of the proposed antenna are measured and simulated at 4.8 GHz, 5.2 GHz, 5.8 GHz, and 6.5 GHz. Figure 5 shows the comparison of simulated and measured patterns which include the coplanar polarization (E and H) and cross polarization (Ex and Hx) of the antenna. It is obvious that the proposed antenna has an excellent omnidirectional radiation in the entire 5 GHz band of IEEE 82.11a. The measured polarization purity in the E-plane reaches about 2 db. The data differences between measured and simulated polarization purity parameters are mainly caused by the noise background of power receiver in the antenna measurement system. However, 2 db polarization purity is good enough to be an E-plane omnidirectional antenna of polarization diversity system. The simulated and measured antenna gains are shown in Figure 6. The maximum measured antenna gains are 1.3 and 1. dbi at 5.2 and 5.8 GHz, respectively. 4. Conclusion A novel UWB E-plane omnidirectional antenna has been proposed for polarization diversity of IEEE 82.11a communication system and some industrial applications. Power combining construction with three microstrip dipoles is investigated to form the omnidirectional radiation feature. The PSO algorithm is a powerful candidate for the design and optimization on the proposed UWB antenna. The measured results show that the antenna has a relative bandwidth of 65% (4.6 to 9. GHz). The good measured omnidirectional radiation feature in the 5 GHz band enables the antenna to operate at IEEE 82.11a system and monitor the radiation level in microwave magnetron source effectively. Furthermore, it is experimentally demonstrated that the proposed

Antennas and Propagation 7 Gain (dbi) 1.5 1..5. 4.5 5. 5.5 6. 6.5 7. 7.5 8. 8.5 9. Simulated Measured Frequency (GHz) Figure 6: Simulated and measured results of the microwave antenna gain. patterns, The Scientific World Journal, vol.214,articleid 39162, 5 pages, 214. [7] M.N.Iqbal,Hamood-Ur-Rahman,andS.F.Jilani, Anultrawideband monopole fractal antenna with coplanar waveguide feed, Antennas and Propagation, vol. 214, Article ID 51913, 7 pages, 214. [8] J. F. Kennedy, R. Eberhart, and Y. Shi, Swarm Intelligence, Elsevier Science, 21. [9] M. Clerc and J. Kennedy, The particle swarm-explosion, stability, and convergence in a multidimensional complex space, IEEE Transactions on Evolutionary Computation, vol.6,no.1, pp.58 73,22. [1] R. C. Eberhart and Y. Shi, Comparing inertia weights and constriction factors in particle swarm optimization, in Proceedings of the 2 Congress on Evolutionary Computation, vol.1,pp. 84 88, July 2. [11] A. Carlisle and G. Dozier, An off-the-shelf PSO, in Proceedings of the Workshop on Particle Swarm Optimization, Indianapolis, Ind, USA, 21. [12] J. Robinson and Y. Rahmat-Samii, Particle swarm optimization in electromagnetics, IEEE Transactions on Antennas and Propagation,vol.52,no.2,pp.397 47,24. E-plane omnidirectional antenna is suitable for realizing polarization diversity technique associated with an H-plane omnidirectional antenna. Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper. Acknowledgments This work was supported in part by the 973 Program 213CB32892, NSFC 97151, and NCET-12-383. References [1] A. Alford and A. G. Kandoian, Ultra-high frequency loop antenna, AIEE Transactions, vol. 59, no. 12,pp. 843 848, 194. [2] A. J. Fenn, Arrays of horizontally polarized loop-fed slotted cylinder antennas, IEEE Transactions on Antennas and Propagation, vol. 33, no. 4, pp. 375 382, 1985. [3] C.-H. Ahn, S.-W. Oh, and K. Chang, A dual-frequency omnidirectional antenna for polarization diversity of MIMO and wireless communication applications, IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 966 969, 29. [4] C.-C. Lin, L.-C. Kuo, and H.-R. Chuang, A horizontally polarized omnidirectional printed antenna for WLAN applications, IEEE Transactions on Antennas and Propagation,vol.54,no.11, pp. 3551 3556, 26. [5] H.-R. Chuang and L.-C. Kuo, 3-D FDTD design analysis of a 2.4-GHz polarization-diversity printed dipole antenna with integrated balun and polarization-switching circuit for WLAN and wireless communication applications, IEEE Transactions on Microwave Theory and Techniques,vol.51,no.2,pp.374 381, 23. [6] T. Sedghi, M. Jalali, and T. Aribi, Fabrication of CPW-fed fractal antenna for UWB applications with omni-directional

Rotating Machinery Engineering Volume 214 The Scientific World Journal Volume 214 Distributed Sensor Networks Sensors Volume 214 Volume 214 Volume 214 Control Science and Engineering Advances in Civil Engineering Volume 214 Volume 214 Submit your manuscripts at Electrical and Computer Engineering Robotics Volume 214 Volume 214 VLSI Design Advances in OptoElectronics Navigation and Observation Volume 214 Chemical Engineering Volume 214 Volume 214 Active and Passive Electronic Components Antennas and Propagation Aerospace Engineering Volume 214 Volume 214 Volume 214 Modelling & Simulation in Engineering Volume 214 Volume 214 Shock and Vibration Volume 214 Advances in Acoustics and Vibration Volume 214