Breaking Speed Limits with GaN Power ICs March 21 st 2016 Dan Kinzer, COO/CTO

Similar documents
Unlocking the Power of GaN PSMA Semiconductor Committee Industry Session

GaN Power ICs at 1 MHz+: Topologies, Technologies and Performance

GaN Power IC Enable Next Generation Power

GaN Power ICs: Integration Drives Performance

Designing reliable and high density power solutions with GaN. Created by: Masoud Beheshti Presented by: Paul L Brohlin

Designing High density Power Solutions with GaN Created by: Masoud Beheshti Presented by: Xaver Arbinger

High voltage GaN cascode switches shift power supply design trends. Eric Persson Executive Director, GaN Applications and Marketing

GaN in Practical Applications

The Quest for High Power Density

GaN Transistors for Efficient Power Conversion

Power of GaN. Enabling designers to create smaller, more efficient and higher-performing AC/DC power supplies

Drive and Layout Requirements for Fast Switching High Voltage MOSFETs

GaN Brings About a New Way of Thinking to Power Conversion Stephen Colino Efficient Power Conversion Corporation

Advanced Silicon Devices Applications and Technology Trends

Designing Reliable and High-Density Power Solutions with GaN

GS66516T Top-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

GaAs PowerStages for Very High Frequency Power Supplies. Greg Miller Sr. VP - Engineering Sarda Technologies

GS66508P Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

100V ENHANCEMENT MODE HIGH ELECTRON MOBILITY TRANSISTOR (HEMT) Michele Rossitto. Marketing Director MOSFETs and Power ICs

Monolithic integration of GaN power transistors integrated with gate drivers

GS66508B Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

GS66502B Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

GS66516B Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

Get Your GaN PhD in Less Than 60 Minutes!

GaN is Crushing Silicon. EPC - The Leader in GaN Technology IEEE PELS

GS61008P Bottom-side cooled 100 V E-mode GaN transistor Preliminary Datasheet

Designing a 99% Efficient Totem Pole PFC with GaN. Serkan Dusmez, Systems and applications engineer

GS P Bottom-side cooled 100 V E-mode GaN transistor Preliminary Datasheet. Features. Applications. Description.

GS66506T Top-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

GS66508T Top-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

GS66508T Top-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

GS66508T Top-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

GS66504B Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

VDSS (V) 650. V(TR)DSS (V) 800 RDS(on)eff (mω) max* 180. QRR (nc) typ 52. QG (nc) typ 6.2

Pitch Pack Microsemi full SiC Power Modules

VDSS (V) 650 V(TR)DSS (V) 800. RDS(on)eff (mω) max* 85. QRR (nc) typ 90. QG (nc) typ 10

GS61008T Top-side cooled 100 V E-mode GaN transistor Preliminary Datasheet

VDSS (V) 650 V(TR)DSS (V) 800 RDS(on)eff (mω) max* 180. QRR (nc) typ 47. QG (nc) typ 10

Symbol Parameter Typical

235 W Maximum Power Dissipation (whole module) 470 T J Junction Operating Temperature -40 to 150. Torque strength

VDSS (V) 650 V(TR)DSS (V) 800. RDS(on)eff (mω) max* 130. QRR (nc) typ 54. QG (nc) typ 10

GS61004B 100V enhancement mode GaN transistor Preliminary Datasheet

VDSS (V) 900. V(TR)DSS (V) 1000 RDS(on)eff (mω) max* 205. QRR (nc) typ 49. QG (nc) typ 10

GS61008T Top-side cooled 100 V E-mode GaN transistor Preliminary Datasheet

Design Considerations of Highly-Efficient Active Clamp Flyback Converter Using GaNFast Power ICs

VDSS (V) 650 V(TR)DSS (V) 800 RDS(on)eff (mω) max* 180. QRR (nc) typ 52. QG (nc) typ 6.2 VIN=230VAC; VOUT=390VDC VIN=380VDC; VOUT=240VAC

GS61008P Bottom-side cooled 100 V E-mode GaN transistor Preliminary Datasheet. Features. Applications. Description. Circuit Symbol.

GS66516B Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications

TPH3207WS TPH3207WS. GaN Power Low-loss Switch PRODUCT SUMMARY (TYPICAL) Absolute Maximum Ratings (T C =25 C unless otherwise stated)

Introducing egan IC targeting Highly Resonant Wireless Power

GaN Reliability Through Integration and Application Relevant Stress Testing

Driving egan TM Transistors for Maximum Performance

ThinPAK 8x8. New High Voltage SMD-Package. April 2010 Version 1.0

A new era in power electronics with Infineon s CoolGaN

Application Note 0009

Full Bridge LLC ZVS Resonant Converter Based on Gen2 SiC Power MOSFET

GS61004B 100V enhancement mode GaN transistor Preliminary Datasheet

PRELIMINARY. VDSS (V) 600 V(TR)DSS (V) 750 RDS(on)eff (mω) max* 60. QRR (nc) typ 120. QG (nc) typ 22 PRELIMINARY

TPH3202PS TPH3202PS. GaN Power Low-loss Switch PRODUCT SUMMARY (TYPICAL) TO-220 Package. Absolute Maximum Ratings (T C =25 C unless otherwise stated)

High-Power-Density 400VDC-19VDC LLC Solution with GaN HEMTs

VDSS (V) 650 V(TR)DSS (V) 800 RDS(on)eff (mω) max* 130. QRR (nc) typ 54. QG (nc) typ 14 VIN=230VAC; VOUT=390VDC VIN=380VDC; VOUT=240VAC

High Current Voltage Regulator Module (VRM) Uses DirectFET MOSFETs to Achieve Current Densities of 25A/in2 at 1MHz to Power 32-bit Servers

Symbol Parameter Typical

Unleash SiC MOSFETs Extract the Best Performance

AN2239 APPLICATION NOTE

VDSS (V) 650 V(TR)DSS (V) 800 RDS(on)eff (mω) max* 60. QRR (nc) typ 136. QG (nc) typ 28 VIN=230VAC; VOUT=390VDC VIN=380VDC; VOUT=240VAC

Gate Drive Optimisation

Application Note 0011

VDS (V) min 650 VTDS (V) max 800 RDS(on) (mω) max* 130. Qrr (nc) typ 54. * Dynamic R(on)

Latest fast diode technology tailored to soft switching applications

Presentation Content Review of Active Clamp and Reset Technique in Single-Ended Forward Converters Design Material/Tools Design procedure and concern

Demands for High-efficiency Magnetics in GaN Power Electronics

VDS (V) min 600 VTDS (V) max 750 RDS(on) (mω) max* 63. Qrr (nc) typ 136. * Dynamic R(on)

Fig. 1 - Enhancement mode GaN has a circuiut schematic similar to silicon MOSFETs with Gate (G), Drain (D), and Source (S).

Power MOSFET Basics: Understanding Superjunction Technology

Power semiconductors technology outlook

Features. Table 1: Device summary Order code Marking Package Packing STL160N4F7 160N4F7 PowerFLAT TM 5x6 Tape and reel

Designing High-Efficiency ATX Solutions. Practical Design Considerations & Results from a 255 W Reference Design

EPC2107 Enhancement-Mode GaN Power Transistor Half-Bridge with Integrated Synchronous Bootstrap

Making Reliable and High-Density GaN Solutions a Reality

IRLR8503 IRLR8503 PD-93839C. HEXFET MOSFET for DC-DC Converters Absolute Maximum Ratings. Thermal Resistance Parameter

IXRFSM18N50 Z-MOS RF Power MOSFET

HCS65R110FE (Fast Recovery Diode Type) 650V N-Channel Super Junction MOSFET

Vishay Siliconix AN724 Designing A High-Frequency, Self-Resonant Reset Forward DC/DC For Telecom Using Si9118/9 PWM/PSM Controller.

NV V GaNFast Power IC. 2. Description. 1. Features. 3. Topologies / Applications. 4. Typical Application Circuits

High-Efficiency Forward Transformer Reset Scheme Utilizes Integrated DC-DC Switcher IC Function

Frequency, where we are today, and where we need to go

VDS (V) min 650 VTDS (V) max 800 RDS(on) (mω) max* 60. Qrr (nc) typ 136. Qg (nc) typ 28. * Dynamic RDS(on)

A Solution to Simplify 60A Multiphase Designs By John Lambert & Chris Bull, International Rectifier, USA

An Experimental Comparison of GaN E- HEMTs versus SiC MOSFETs over Different Operating Temperatures

UF3C120080K4S. 1200V-80mW SiC Cascode DATASHEET. Description. Features. Typical applications CASE D (1) CASE G (4) KS (3) S (2) Rev.

Si, SiC and GaN Power Devices: An Unbiased View on Key Performance Indicators

TPH3205WSB. 650V Cascode GaN FET in TO-247 (source tab)

Boundary Mode Offline LED Driver Using MP4000. Application Note

Incorporating Active-Clamp Technology to Maximize Efficiency in Flyback and Forward Designs

SiC Transistor Basics: FAQs

PCB layout guidelines. From the IGBT team at IR September 2012

STO36N60M6. N-channel 600 V, 85 mω typ., 30 A, MDmesh M6 Power MOSFET in a TO LL HV package. Datasheet. Features. Applications.

Performance Comparison for A4WP Class-3 Wireless Power Compliance between egan FET and MOSFET in a ZVS Class D Amplifier

Transcription:

Breaking Speed Limits with GaN Power ICs March 21 st 2016 Dan Kinzer, COO/CTO dan.kinzer@navitassemi.com 1

Efficiency The Need for Speed Tomorrow? Today 100kHz 1MHz 10MHz Bulky, Heavy Small, Light & Expensive & Lower Cost Switching Frequency 2

What is Slowing Us Down? SILICON LIMIT! MAGNETICS! TOPOLOGY! PACKAGING! CONTROLLER SYNC REC EMI THERMAL SWITCH 100kHz DRIVERS 3

Mobility (cm 2 /Vs) EBR Field (MV/cm) Wide Bandgap (WBG) Devices: Physics Drives Switch Performance WBG GaN material allows high electric fields so high carrier density can be achieved 2,500 3.5 Two dimensional electron gas with AlGaN/GaN heteroepitaxy structure gives very high mobility in the channel and drain drift region 2,000 3.0 2.5 Lateral device structure achieves extremely low Q g and Q OSS and allows integration 1,500 2.0 1,000 1.5 500 Mobility (cm2/v s) EBR Field (MV/cm) 1.0 0.5 0 Si 4H-SiC GaN 0.0 4

Speed Limit? Can Magnetics Rise to the Speed Challenge? Boundaries vary with material, DC/AC current mix, power, etc. Majority of mass production applications run 65kHz 150kHz 5x frequency increase is within today s capability 0.6 T 0.3 T SATURATION LIMITED LOSS MPP SATURATION LIMITED FERRITE Improvements Required CORE LOSS LIMITED 10K 100K 1 M 10 M 100 M Frequency (Hz) 5

Removing speed limits: High Frequency Magnetics GaN Optimized N59 optimized for 2MHz 3F & 4F up to 10MHz 6

Breaking Speed Limits: 650V Navitas emode GaN at 27MHz & 40MHz Class Phi-2 DC/AC converter: Stanford / Navitas demo 50% less loss than RF Si 16x smaller package Air-core inductors Minimal FET loss Negligible gate drive loss Technology V Pack (mm) F SW (MHz) Eff. (%) Power (W) 27.12MHz, φ2 Inverter, V DS of GaN RF Si (ARF521) 500 M174 22x22 27.12 91% 150 20ns/div, 150V/div emode GaN 650 QFN 5x6 27.12 96% 150 40.00 93% 115 7

Speed Limit: Existing GaN Packages Slow, Expensive, Non-Standard Through-hole High inductance, limits switching frequency Cascode (co-pack and/or stacking) Multi-die, additional components Higher cost for dice and assembly Complex stacked co-packaging Z. Liu, et al. CPES review 2-13-2013 PCB-embedded Non-standard, high cost 8

Removing Speed Limits: Fast, Low Cost, Industry-Standard QFN Leadframe-based 5X6mm power package outline Low profile, small footprint with HV clearance Kelvin source connection for gate drive return Low inductance power connections (~0.2nH) Low thermal resistance (<2 o C/W) I/O pins enough for drive functions High volume Reliable Low cost 0.85 mm 9

Speed Limit: Complex Drive dmode GaN needs extra FET, extra passives, isolation, complex packaging Early emode GaN requires many added circuits: Isolated Power Supply Regulator Regulator Slow it down to protect gate from spikes! Some even recommend to add a Zener and ferrite bead. Isolated Drive Dead-time Driver Ref: GaN Systems Application note GN001 Rev 2014-10-21 10

Creating the World s First allgan Power ICs Fastest, most efficient GaN Power FETs First & Fastest Integrated GaN Gate Driver World s First allgan Power IC Up to 40MHz switching, 4x higher density & 20% lower system cost 11

Removing Speed Limits: Navitas idrive GaN Power IC Monolithic integration 20X lower drive loss than silicon Driver impedance matched to power device Shorter prop delay than silicon (10ns) Zero inductance turn-off loop Digital input (hysteretic) Rail-rail drive output Layout insensitive 12

Crisp & Efficient Gate Control Eliminates gate overshoot and undershoot Zero inductance on chip insures no turn-off loss Discrete Driver & GaN FET V GS Monolithic GaN IC 20ns/div, 2V/div V GS 13

Removing Speed Limits: Topology Hard-Switched Primary Switch Power Loss: P FET = P COND * k + P DIODE + P T-ON + P T-OFF + P DR + P QRR + P QOSS 14

Removing Speed Limits: Topology Hard-Switched Soft-Switched Primary Switch Power Loss: P FET = P COND * k + P DIODE + P T-ON + P T-OFF + P DR + P QRR + P QOSS k-factor P T-On P Qoss >1 due to increased circulating current, duty cycle loss = 0 (soft-switch) 2-3X (silicon devices can have high Coss charging/discharging losses) 15

Removing Speed Limits: Topology & Switch Hard-Switched Soft-Switched with emode GaN Primary Switch Power Loss: Minimized Reduced P FET = P COND * k + P DIODE + P T-ON + P T-OFF + P DR + P QRR + P QOSS k-factor >1 due to increased circulating current, duty cycle loss P T-On = 0 (soft-switch) P Qoss 10X 2-3X (GaN Coss charging/discharging loss negligible up to 2Mhz) P DRIVER 10X (GaN P DR negligible up to 2Mhz) P QRR = 0 P DIODE P T-OFF 2X (reverse conduction loss reduced by synchronous rectification) = Reduced (limited by I-V crossover loss due to drive loop impedance) 16

Removing Speed Limits: Topology & Switch & Integration Hard-Switched Soft-Switched with GaN Power IC Primary Switch Power Loss: Minimized Minimized P FET = P COND * k + P DIODE + P T-ON + P T-OFF + P DR + P QRR + P QOSS k-factor >1 due to increased circulating current, duty cycle loss P T-On = 0 (soft-switch) P Qoss 10X 2-3X (GaN Coss charging/discharging loss negligible up to 2Mhz) P DRIVER 10X (GaN P DR negligible up to 2Mhz) P QRR = 0 P DIODE P T-OFF 3X 2X (synchronous rectification with improved deadtime control) = 0 Reduced (near-zero drive loop impedance with integration) >10x frequency increase possible with higher efficiencies 17

No Bumps in the Road EMI: Smooth, clean, controlled waveforms 500V Switching 1 MHz ZVS No overshoot / spike No oscillations High Side Sync Rect V DS of Low Side FET S-curve transitions ZVS Turn-on V GS of Low Side FET Zero Loss Turn-off Sync Rectification High frequency ZVS soft switching Zero Loss Turn-off Low Side Sync Rect Small, low cost filter 200ns/div 18

Removing speed limits: MHz Controllers... with more, faster to come PFC (BCM): L6562 (1MHz) NCP1608 (1MHz) UCC28061 (500kHz) DC-DC (LLC): NCP1395 (1.2MHz) FAN7688 (500kHz) (+SR) ICE2HS01G (1MHz) DC-DC (Sync Rectifier): NCP4305 (1MHz) UCC24610 (600kHz) PWM: NCP1252 (500kHz) NCP1565 (1.5MHz) UCC28C44 (1MHz) UCC25705 (4MHz) DSP UCD3138 (2MHz) dspic33xx (5MHz) ADP1055 (1MHz) 19

Speed Limit? Secondary Side SR FETs Get Better with GaN All relevant performance FOMs favor GaN at 60V R DS(ON) X Q G reflects drive losses R DS(ON) X Q OSS reflects turn-off losses with non-resonant rectification R DS(ON) X Q RR reflects stored minority carrier turn-off losses Minimized with deadtime control Silicon FETs are in QFN5X6 packages, GaN is WLCSP 400 350 300 250 200 150 100 50 0 RDS(ON) R DS(ON) X QQG G (mohm-nc) RDS(ON) R DS(ON) X QQOSS oss (mohm-nc) RDS(ON) R DS(ON) X QQRR orr (mohm-nc) Footprint (mm2) ) CSD18540Q5B NTMFS5C628NL EPC2020 Note: Taken from datasheet typicals at 4.5/5V gate drive and capacitance curves 20

Speed test: 150W Boundary Conduction Mode (BCM) Boost PFC 120V AC = 167-230kHz 220V AC = 230-500kHz 265V peaks at 1MHz (L6562 F SW max) Pack R DS(ON) mω Q G nc C OSS (er) pf C OSS (tr) pf R*Q G mω.nc R*C OSS (tr) mω.pf R*C OSS (er) mω.pf Navitas with idrive TM 5x6 160 2.5 30 50 400 8,000 4,800 Si CP Series 8x8 180 32 69 180 5,760 32,400 12,400 Si C7 Series 8x8 115 35 53 579 4,025 66,600 6,100 GaN Benefits >50% n/a >10x >2x >10x >10x >7x >2.5x 100 x 50 x 10mm with 2-layer, 2 oz Cu No heatsinks, no forced air, no glue, potting or heat spreaders 21

Speed Test: Silicon Hits the Soft-Switching Speed Limit 120V AC, Si CP partial hard-switching (~200kHz) Si C OSS is 50x-100x worse than GaN at V DS < 30V High loss due to large stored charge while hard-switching 120V AC, GaN clean ZVS waveforms (~200kHz) Turn-off losses are low due to powerful and parasitic-free drive integration with no overshoot Near loss-less ZVS turn-on transition Minimize deadtime for low reverse conduction loss 22

Efficiency (%) Speed Test: Silicon Hits a Speed Bump and GaN Drives On AC Rectifier (58 C) Navitas 61 C Aux V CC (77 C) Boost Diode (63 C) Si CP 89.2 C Si C7 102.7 C 99 98 220V AC, 150W 220V AC, 150W 180V AC, 150W No heatsink design 97 96 95 94 93 92 Navitas 120V Navitas 220V Si CP 120V Si CP 220V 0 30 60 90 120 150 Output Power (W) GaN runs cool Superjunction silicon FETs Run 30-50 C hotter Cannot deliver the power Exhibit highly lossy resonant behavior 23

The Road Ahead TOPOLOGY LLC TOPOLOGY PFC (BCM) TOPOLOGY ACF TOPOLOGY TOTEM POLE TOPOLOGY SYNC REC INTEGRATION BIAS SUPPLIES INTEGRATION SENSING CIRCUITS INTEGRATION PROTECTION CIRCUITS INTEGRATION dv/dt CONTROL INTEGRATION LOW-SIDE DRIVE

Questions? GaN LIMIT