HIGHER MATHEMATICS. Unit 2 Topic 3.2 Compound Angle Formula

Similar documents
Unit 7 Trigonometric Identities and Equations 7.1 Exploring Equivalent Trig Functions

Trigonometric identities

Math 102 Key Ideas. 1 Chapter 1: Triangle Trigonometry. 1. Consider the following right triangle: c b

Trig review. If θ is measured counterclockwise from the positive x axis and (x,y) is on the unit circle, we define sin and cos so that

( x "1) 2 = 25, x 3 " 2x 2 + 5x "12 " 0, 2sin" =1.

HONORS PRECALCULUS Prove the following identities- ( ) x x x x x x. cos x cos x cos x cos x 1 sin x cos x 1 sin x

While you wait: For a-d: use a calculator to evaluate: Fill in the blank.

2009 A-level Maths Tutor All Rights Reserved

Mathematics Lecture. 3 Chapter. 1 Trigonometric Functions. By Dr. Mohammed Ramidh

TRIGONOMETRIC R ATIOS & IDENTITIES

Math 3 Trigonometry Part 2 Waves & Laws

PREPARED BY: ER. VINEET LOOMBA (B.TECH. IIT ROORKEE)

cos 2 x + sin 2 x = 1 cos(u v) = cos u cos v + sin u sin v sin(u + v) = sin u cos v + cos u sin v

1 Trigonometric Functions

1 Graphs of Sine and Cosine

So you say Bring on the SPAM?

Trigonometry Review Tutorial Shorter Version

# 1,5,9,13,...37 (hw link has all odds)

ASSIGNMENT ON TRIGONOMETRY LEVEL 1 (CBSE/NCERT/STATE BOARDS) Find the degree measure corresponding to the following radian measures :

Chapter 4/5 Part 2- Trig Identities and Equations

WARM UP. 1. Expand the expression (x 2 + 3) Factor the expression x 2 2x Find the roots of 4x 2 x + 1 by graphing.

5.4 Graphs of the Sine & Cosine Functions Objectives

Trigonometric Functions

3.2 Proving Identities

PreCalc: Chapter 6 Test Review

Algebra2/Trig Chapter 10 Packet

Trigonometric Functions

C.3 Review of Trigonometric Functions

D.3. Angles and Degree Measure. Review of Trigonometric Functions

Principles of Mathematics 12: Explained!

= tanθ 3) cos2 θ. = tan θ. = 3cosθ 6) sinθ + cosθcotθ = cscθ. = 3cosθ. = 3cosθ sinθ

Puzzle Corner M/J Technology Review Page 1 INTRODUCTION

MHF4U. Advanced Functions Grade 12 University Mitchell District High School. Unit 4 Radian Measure 5 Video Lessons

Senior Math Circles: Geometry III

7.1 INTRODUCTION TO PERIODIC FUNCTIONS

MATH 1040 CP 15 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Review 10: Mixed Review

the input values of a function. These are the angle values for trig functions

Name Date Class. Identify whether each function is periodic. If the function is periodic, give the period

JUST THE MATHS SLIDES NUMBER 3.5. TRIGONOMETRY 5 (Trigonometric identities & wave-forms) A.J.Hobson

Trigonometric Integrals Section 5.7

Trigonometry LESSON ONE - Degrees and Radians Lesson Notes

Math Section 4.3 Unit Circle Trigonometry

Trig Graphs. What is a Trig graph? This is the graph of a trigonometrical function e.g.

SECTION 1.5: TRIGONOMETRIC FUNCTIONS

Double-Angle, Half-Angle, and Reduction Formulas

Section 5.1 Angles and Radian Measure. Ever Feel Like You re Just Going in Circles?

Trig functions are examples of periodic functions because they repeat. All periodic functions have certain common characteristics.

F.TF.A.2: Reciprocal Trigonometric Relationships

Trigonometry, Exam 2 Review, Spring (b) y 4 cos x

Section 8.1 Radians and Arc Length

Trigonometry. David R. Wilkins

Algebra 2/Trigonometry Review Sessions 1 & 2: Trigonometry Mega-Session. The Unit Circle

Figure 1. The unit circle.

Calculus for the Life Sciences

3. Use your unit circle and fill in the exact values of the cosine function for each of the following angles (measured in radians).

4.3. Trigonometric Identities. Introduction. Prerequisites. Learning Outcomes

Exam: Friday 4 th May How to Revise. What to use to revise:

Practice Test 3 (longer than the actual test will be) 1. Solve the following inequalities. Give solutions in interval notation. (Expect 1 or 2.

Fourier transforms and series

Chapter 7 Repetitive Change: Cyclic Functions

Trigonometry Review Page 1 of 14

Math Problem Set 5. Name: Neal Nelson. Show Scored View #1 Points possible: 1. Total attempts: 2

Verifying Trigonometric Identities

MAT01A1. Appendix D: Trigonometry

MATH 1113 Exam 3 Review. Fall 2017

Exercise 1. Consider the following figure. The shaded portion of the circle is called the sector of the circle corresponding to the angle θ.

2. Be able to evaluate a trig function at a particular degree measure. Example: cos. again, just use the unit circle!

Secondary Math Amplitude, Midline, and Period of Waves

Trigonometry. An Overview of Important Topics

P1 Chapter 10 :: Trigonometric Identities & Equations

Year 10 Term 1 Homework

MAT01A1. Appendix D: Trigonometry

PREREQUISITE/PRE-CALCULUS REVIEW

MA 1032 Review for exam III

A Level. A Level Mathematics. Understand and use double angle formulae. AQA, Edexcel, OCR. Name: Total Marks:

Math 1205 Trigonometry Review

Trig/AP Calc A. Created by James Feng. Semester 1 Version fengerprints.weebly.com

S56 (5.1) Logs and Exponentials.notebook October 14, 2016

Pythagorean Identity. Sum and Difference Identities. Double Angle Identities. Law of Sines. Law of Cosines

10.3 Polar Coordinates

«cos. «a b. cos. cos a + cos b = 2cos 2. cos. cos a cos b = 2sin 2. EXAMPLE 1 (by working on the right hand side) Prove the following identity

Section 5.2 Graphs of the Sine and Cosine Functions

Graphing Trig Functions. Objectives: Students will be able to graph sine, cosine and tangent functions and translations of these functions.

Trigonometry: A Brief Conversation

Math 10/11 Honors Section 3.6 Basic Trigonometric Identities

2.4 Translating Sine and Cosine Functions

Chapter 3, Part 1: Intro to the Trigonometric Functions

Section 8.4: The Equations of Sinusoidal Functions

Wheels Diameter / Conversion of Units

Unit 5. Algebra 2. Name:

of the whole circumference.

Unit 3 Unit Circle and Trigonometry + Graphs

May 03, AdvAlg10 3PropertiesOfTrigonometricRatios.notebook. a. sin17 o b. cos 73 o c. sin 65 o d. cos 25 o. sin(a) = cos (90 A) Mar 9 10:08 PM

March 29, AdvAlg10 3PropertiesOfTrigonometricRatios.notebook. a. sin17 o b. cos 73 o c. sin 65 o d. cos 25 o. sin(a) = cos (90 A) Mar 9 10:08 PM

Honors Algebra 2 w/ Trigonometry Chapter 14: Trigonometric Identities & Equations Target Goals

Chapter 6: Periodic Functions

Algebra 2/Trig AIIT.13 AIIT.15 AIIT.16 Reference Angles/Unit Circle Notes. Name: Date: Block:

Chapter 6: Periodic Functions

Chapter 8. Analytic Trigonometry. 8.1 Trigonometric Identities

Transcription:

HIGHER MTHEMTICS Unit 2 Topic 3.2 Compound ngle Formula

REMINDERS y P (y,) Let OP = r & POX = This gives the following sin = y r cos = r P(,y) r y O Now reflect OP in the line y = sin(90 - ) = r = cos tan = y So OP = OP = r & P OY = P OX = 90 - cos(90 - ) = y r = sin

y P(,y) Let OP = r & POX = Now reflect OP in the -ais O r - r P (,-y) So OP = r & P OX = - sin(-) = cos(-) = -y r = -sin r = cos

P (-,y) O y P(,y) Let OP = r & POX = Now reflect OP in the y-ais So OP = r & P OX = 180 - sin(180-) = cos(180-) = -y r = sin - r = -cos

y O r P(,y) Consider: Sin Cos = y r r y = r = yr r y = r r r = y = Tan So Tan = Sin Cos

y P(,y) Consider: O r So Sin 2 + Cos 2 = y 2 2 + r 2 r 2 = y 2 + 2 = r 2 r 2 r 2 = 1 So Sin 2 + Cos 2 = 1

SUMMRY sin(90 - ) = cos sin(-) = -sin sin(180 - ) = sin cos(90 - ) = sin cos(-) = cos cos(180 - )= -cos sin cos = tan sin 2 + cos 2 = 1

Eercises from MI book: Page 153 E 1 ll Qu. Eercises from Heinemann book: Page? E? Qu??

Formulae for cos( + B) and cos( B) O -B Q Let the circle s radius be 1 and Q be the point (, y) cos = r = rcos cos sin = y r y = rsin So Q is (cos, sin) P Consider the point P(, y) cos(-b) = r = rcos(-b) = cosb sin(-b) = y r y = rsin(-b) = -sinb So P is (cosb, -sinb)

P(cosB, -sinb) & Q(cos, sin) Use the distance formula to find PQ PQ 2 = (cos cosb) 2 + (sin + sinb) 2 PQ 2 = cos 2 2coscosB + cos 2 B + sin 2 + 2sinsinB + sin 2 B PQ 2 = cos 2 + sin 2 + sin 2 B + cos 2 B 2coscosB + 2sinsinB PQ 2 = 1 + 1 2coscosB + 2sinsinB PQ 2 = 2 2(coscosB - sinsinb) Q Q +B O -B P P Now rotate ΔPOQ anti-clockwise through angle B Q is (, y) and P is (1, 0) cos(+b) = r = rcos(+b) sin(+b) = y r y = rsin(+b)

P (1, 0) & Q (cos(+b), sin(+b)) Use the distance formula to find P Q P Q 2 = (1 cos(+b)) 2 + (0 sin(+b)) 2 P Q 2 = 1 2cos(+B) + cos 2 (+B) + sin 2 (+B) P Q 2 = 1 2cos(+B) + 1 P Q 2 = 2 2cos(+B) Remember that PQ = P Q so PQ 2 = P Q 2 2 2cos(+B) = 2 2(coscosB - sinsinb) Giving: Cos( + B) = CosCosB - SinSinB We get another epansion by replacing B with -B Cos( + (-B)) = CosCos(-B) SinSin(-B) Giving: Cos( - B) = CosCosB + SinSinB

EXMPLE 1 12 13 cute angles P and Q are such that sinp = 12 13 and cosq = 3 5 Show that cos(p - Q) = 63 65 sinp = 12 13 cosp = 5 13 4 5 3 5 P Q sinq = 4 5 cosq = 3 5 Cos(P - Q) = CosPCosQ + SinPSinQ = 5 3 + 12 4 13 5 13 5 = 15 + 48 65 65 = 63 65 as required

EXMPLE 2 8 17 cute angles X and Y are such that sinx = 8 17 and tany = 3 4 Show that cos(x + Y) = 36 85 sinx = 8 17 cosx = 15 17 3 15 4 5 X Y siny = 3 5 cosy = 4 5 Cos(X + Y) = CosXCosY - SinXSinY = 15 4-8 3 17 5 17 5 = 60-24 85 85 = 36 85 as required

EXMPLE 3 Use the formula for cos( + B) to simplify cos(360 + y) cos( + B) = coscosb - sinsinb cos(360 + y) = cos360 o cosy - sin360 o siny cos(360 + y) = (1)cosy - (0)siny cos(360 + y) = cosy EXMPLE 4 Using the fact that 105 = 60 + 45 Show that the EXCT VLUE of cos105 o is 2-6 4

cos( + B) = coscosb - sinsinb cos(105) = cos(60 + 45) = cos60cos45 - sin60sin45 1 1 = - 3 1 2 2 2 2 = 1-2 2 = 1-3 2 2 = = 3 2 2 2 2 (1-3) 2 2 2 2 2-6 4 s required 1 60º 2 2 3 45º 1 30º 45º 1 Trying to get 2-6 4

Eercises from MI book: Page 154 E 2 ll Qu. Eercises from Heinemann book: Page? E? Qu??

Formulae for sin( + B) and sin( B) Remember that sinx = cos(90 X) So sin( + B) = cos(90 ( + B)) = cos(90 - B) = cos((90 ) - B) = cos(90 )cosb + sin(90-)sinb = sincosb + cossinb Giving: Sin( + B) = SinCosB + CosSinB Now what happens when we replace B with -B Sin( + (-B)) = SinCos(-B) + CosSin(-B) Giving: Sin( - B) = SinCosB - CosSinB

EXMPLE 5 cute angles X and Y are such that sinx = 1 5 and tany = 3 Find the eact value of sin(x - Y) 1 3 5 X 2 10 Y 1 sinx = 1 5 cosx = 2 5 siny = 3 10 cosy = 1 10 sin(x - Y) = sinxcosy - cosxsiny = 1 1-2 3 5 10 5 10 = 1-6 50 50 = -5 = -5 = -1 50 5 2 2

EXMPLE 6 For the diagram, epress sin(bc) as a fraction. C sina = 4 5 sinb = 12 13 cosa = 3 5 cosb = 5 13 sinbc = sin(a + b) D 4 12 3 5 a obo 13 B sin(a + b) = sinacosb + cosasinb = 4 5 + 5 13 = 20 + 65 = 56 65 36 65 3 5 12 13

Eercises from MI book: Page 156 E 3 ll Qu. Eercises from Heinemann book: Page? E? Qu??

Few More Formulae. sin( + B) = sincosb + cossinb sin( + ) = sincos + cossin sin2 = 2sincos Replace B with So sin2 = 2sincos Cos( + B) = coscosb - sinsinb cos( + ) = coscos - sinsin cos2 = cos 2 sin 2 Replace B with Remember that cos 2 + sin 2 = 1 So & cos 2 = 1 - sin 2 sin 2 = 1 - cos 2

Hence: cos2 = cos 2 sin 2 = cos 2 (1 - cos 2 ) = 2cos 2 1 nd: So cos2 = 2cos 2 1 cos2 = cos 2 sin 2 = 1 - sin 2 sin 2 = 1 2sin 2 So cos2 = 1 2sin 2 These also give: So cos 2 = ½(1 + cos2) So sin 2 = ½(1 - cos2)

SUMMRY Cos( + B) = CosCosB - SinSinB Cos( - B) = CosCosB + SinSinB Sin( + B) = SinCosB + CosSinB Sin( - B) = SinCosB - CosSinB sin2 = 2sincos cos2 = cos 2 sin 2 cos2 = 2cos 2 1 cos2 = 1 2sin 2 cos 2 = ½(1 + cos2) sin 2 = ½(1 - cos2)

EXMPLE 7 17 8 15 Given that 0 < < 90 and that sin = sin2 and cos2 8 17, obtain eact values for When finding cos2 you can choose any of the 3 formulae that you want cos = 15 17 sin2 = 2sincos = 2 8 17 = 240 289 15 17 cos2 = 2cos 2-1 = 2 15 2-1 17 2 = 2 225-1 289 = 450-289 = 161 289 289 289

EXMPLE 8 4 1 15 Given that 0 < < 90 and that tanx =, obtain eact values for sin2x, cos2x and hence sin4x X 1 15 When finding cos2 you can choose any of the 3 formulae that you want sinx = 1 4 cosx = 15 4 sin2x = 2sinXcosX = 2 1 4 = 2 15 16 = 15 8 15 4 cos2x = 2cos 2 X - 1 = 2 15 2-1 4 2 = 2 15-1 16 = 30-16 16 16 = 14 = 7 16 8

sin4x = 2sin2Xcos2X = 2 15 7 8 8 = 14 15 64 = 7 15 32

Eercises from MI book: Page 158 E 4/B ll Qu. Eercises from Heinemann book: Page? E? Qu??

Solving Trig Equations EXMPLE 9 2sin 2 = 1 sin 2 = ½ sin = ½ sin = ± 1 2 = 45, Solve the equation 2sin 2 = 1, 0<<2 S T C 2 45 180 45, 180 + 45, 360 45 = 45, 135, 225, 315 = π 3π 5π 7π 4 4 4 4 1 1

EXMPLE 10 Solve the equation 4cos 2 = 3, 0 < < 2 4cos 2 = 3 cos 2 = ¾ cos = ¾ cos = ±3 2 = 30, S T C 180 30, 180 + 30, 360 30 = 30, 150, 210, 330 = π 5π 7π 11π 6 6 6 6 1 60º 2 3 30º

EXMPLE 11 Solve the equation sin2 - cos = 0, 0 2 sin2 - cos = 0 2sincos - cos = 0 cos(2sin 1) = 0 cos = 0 2sin 1 = 0 S T C 1 60º 2 3 30º sin = ½ = 90, 270, = 30, 180 30 = 30, 90, 150, 270 = π π 5π 3π 6 2 6 2

EXMPLE 12 Solve the equation cos2 + 7cos + 4 = 0, 0 2 cos2 + 7cos + 4 = 0 2cos 2-1 + 7cos + 4 = 0 2cos 2 + 7cos + 3 = 0 (2cos + 1)(cos + 3) = 0 cos = -½ cos = -3 Not possible S T C = 180-60, = 120, 240 = 2π 4π 3 3 180 + 60 1 60º 2 3 30º

EXMPLE 13 3cos2 + sin - 1 = 0 3(1-2sin 2 ) + sin - 1 = 0-6sin 2 + sin + 2 = 0 -(6sin 2 - sin - 2) = 0 (3sin + 2)(2sin - 1) = 0 sin = - 2 3 = 180 + 41.81, 360 41.81 Solve the equation 3cos2 + sin - 1 = 0, 0 360 S T C sin = ½ = 30, 180 30 = 30, 150, 221.81, 318.59 1 60º 2 3 30º

EXMPLE 14 3sin(2 + 10) = 2 2 sin(2 + 10) = 3 2 + 10 = 41.81, Solve the equation 3sin(2 + 10) = 2, 0 180 180 41.81 2 + 10 = 41.81, 138.19, 401.81, 498.19 2 = 31.81, 128.19, 391.81, 488.19 = 15.9, 64.1, 195.9, 244.1 = 15.9, 64.1 S T C

EXMPLE 15 Solve the equation coscos50 sinsin50 = 0.45, 0 180 coscos50 sinsin50 = 0.45 cos( + 50) = 0.45 + 50 = 63.26, 360 63.26 + 50 = 63.26, 296.74 = 13.26, 246.74 S T C

Eercises from MI book: Page 161 E 5 ll Qu. Eercises from Heinemann book: Page? E? Qu??