ENHANCEMENT OF PHASED ARRAY SIZE AND RADIATION PROPERTIES USING STAGGERED ARRAY CONFIGURATIONS

Similar documents
RECTANGULAR SLOT ANTENNA WITH PATCH STUB FOR ULTRA WIDEBAND APPLICATIONS AND PHASED ARRAY SYSTEMS

DESIGN OF WIDEBAND TRIANGLE SLOT ANTENNAS WITH TUNING STUB

High gain W-shaped microstrip patch antenna

A WIDEBAND AND DUAL FREQUENCY THREE- DIMENSIONAL TRANSITION-FED CIRCULAR PATCH ANTENNA FOR INDOOR BASE STATION APPLICA- TION

A Wideband Dual-polarized Modified Bowtie Antenna for 2G/3G/LTE Base-station Applications

Wideband Bow-Tie Slot Antennas with Tapered Tuning Stubs

Proximity fed gap-coupled half E-shaped microstrip antenna array

HYBRID ARRAY ANTENNA FOR BROADBAND MILLIMETER-WAVE APPLICATIONS

Low-Profile Wideband Circularly Polarized Patch Antenna Using Asymmetric Feeding

A NOVEL DUAL-BAND PATCH ANTENNA FOR WLAN COMMUNICATION. E. Wang Information Engineering College of NCUT China

RECTANGULAR SLOT ANTENNA WITH PATCH STUB FOR ULTRA WIDEBAND APPLICATIONS AND PHASED ARRAY SYSTEMS

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

Design of a Wideband Planar Microstrip-Fed Quasi-Yagi Antenna

A Compact Wideband Circularly Polarized L-Slot Antenna Edge-Fed by a Microstrip Feedline for C-Band Applications

TRIPLE-BAND OMNI-DIRECTIONAL ANTENNA FOR WLAN APPLICATION

BROADBAND SERIES-FED DIPOLE PAIR ANTENNA WITH PARASITIC STRIP PAIR DIRECTOR

Broadband and High Efficiency Single-Layer Reflectarray Using Circular Ring Attached Two Sets of Phase-Delay Lines

DUAL-WIDEBAND SQUARE SLOT ANTENNA WITH A U-SHAPED PRINTED TUNING STUB FOR PERSONAL WIRELESS COMMUNICATION SYSTEMS

ANALYSIS OF ELECTRICALLY SMALL SIZE CONICAL ANTENNAS. Y. K. Yu and J. Li Temasek Laboratories National University of Singapore Singapore

Compact Microstrip Magnetic Yagi Antenna and Array with Vertical Polarization Based on Substrate Integrated Waveguide

Broadband and Gain Enhanced Bowtie Antenna with AMC Ground

RCS Reduction of Patch Array Antenna by Complementary Split-Ring Resonators Structure

A Broadband Omnidirectional Antenna Array for Base Station

X. Li, L. Yang, S.-X. Gong, and Y.-J. Yang National Key Laboratory of Antennas and Microwave Technology Xidian University Xi an, Shaanxi, China

A Simple Dual-Wideband Magneto-Electric Dipole Directional Antenna

A Broadband Dual-Polarized Magneto-Electric Dipole Antenna for 2G/3G/LTE/WiMAX Applications

Broadband Dual Polarized Space-Fed Antenna Arrays with High Isolation

A Very Wideband Dipole-Loop Composite Patch Antenna with Simple Feed

DESIGN OF SEVERAL POWER DIVIDERS USING CPW- TO-MICROSTRIP TRANSITION

Broadband Designs of a Triangular Microstrip Antenna with a Capacitive Feed

DUAL-WIDEBAND MONOPOLE LOADED WITH SPLIT RING FOR WLAN APPLICATION

1. Noise reduction on differential transmission lines [Journal paper 2] l (db) -40

Compact Wide-Beam Circularly Polarized Antenna with Stepped Arc-Shaped Arms for CNSS Application

Wideband Unidirectional Bowtie Antenna with Pattern Improvement

MINIATURIZED MODIFIED DIPOLES ANTENNA FOR WLAN APPLICATIONS

MODIFIED BROADBAND SCHIFFMAN PHASE SHIFTER USING DENTATE MICROSTRIP AND PATTERNED GROUND PLANE

Design of Low-Index Metamaterial Lens Used for Wideband Circular Polarization Antenna

Dual-Band Dual-Polarized Antenna Array for Beam Selection MIMO WLAN

A Broadband Planar Quasi-Yagi Antenna with a Modified Bow-Tie Driver for Multi-Band 3G/4G Applications

MICROSTRIP PHASE INVERTER USING INTERDIGI- TAL STRIP LINES AND DEFECTED GROUND

SIZE REDUCTION AND BANDWIDTH ENHANCEMENT OF A UWB HYBRID DIELECTRIC RESONATOR AN- TENNA FOR SHORT-RANGE WIRELESS COMMUNICA- TIONS

3D radar imaging based on frequency-scanned antenna

Reduction of Mutual Coupling between Cavity-Backed Slot Antenna Elements

Wideband Double-Layered Dielectric-Loaded Dual-Polarized Magneto-Electric Dipole Antenna

COMPACT WIDE-SLOT TRI-BAND ANTENNA FOR WLAN/WIMAX APPLICATIONS

A CORNER-FED SQUARE RING ANTENNA WITH AN L-SHAPED SLOT ON GROUND PLANE FOR GPS APPLICATION

Rotated Quadrilateral Dipole UWB Antenna for Wireless Communication

DESIGN OF A NOVEL MICROSTRIP-FED DUAL-BAND SLOT ANTENNA FOR WLAN APPLICATIONS

Design and Demonstration of 1-bit and 2-bit Transmit-arrays at X-band Frequencies

Compact UWB Planar Antenna with Triple Band EMI Reduction Characteristics for WiMAX/WLAN/X-Band Satellite Downlink Frequency

Design of center-fed printed planar slot arrays

Broadband transition between substrate integrated waveguide and rectangular waveguide based on ridged steps

Cylindrical Conformal Microstrip Yagi Array with Endfire Radiation and Vertical Polarization

A New Dual Band E-shaped Slot Antenna Design for Wireless Applications

Broadband low cross-polarization patch antenna

PLANAR BEAM-FORMING ARRAY FOR BROADBAND COMMUNICATION IN THE 60 GHZ BAND

CYLINDRICAL-RECTANGULAR MICROSTRIP ARRAY WITH HIGH-GAIN OPERATION FOR IEEE J MIMO APPLICATIONS

WIDE SCANNING PHASED ARRAY ANTENNA USING PRINTED DIPOLE ANTENNAS WITH PARASITIC ELEMENT

New Design of CPW-Fed Rectangular Slot Antenna for Ultra Wideband Applications

Electronically Steerable planer Phased Array Antenna

COMPACT PLANAR MICROSTRIP CROSSOVER FOR BEAMFORMING NETWORKS

A WIDEBAND TWIN-DIAMOND-SHAPED CIRCULARLY POLARIZED PATCH ANTENNA WITH GAP-COUPLED FEED

DESIGN OF TRI-BAND PRINTED MONOPOLE ANTENNA FOR WLAN AND WIMAX APPLICATIONS

A Spiral Antenna with Integrated Parallel-Plane Feeding Structure

G. A. Jafarabadi Department of Electronic and Telecommunication Bagher-Aloloom Research Institute Tehran, Iran

MUnk has shown that an array of dipoles closed to a

A Novel Tunable Microstrip Patch Antenna Using Liquid Crystal

SINGLE-FEEDING CIRCULARLY POLARIZED TM 21 - MODE ANNULAR-RING MICROSTRIP ANTENNA FOR MOBILE SATELLITE COMMUNICATION

Circularly Polarized Post-wall Waveguide Slotted Arrays

A Broadband Reflectarray Using Phoenix Unit Cell

Design of Frequency and Polarization Tunable Microstrip Antenna

Slot Antennas For Dual And Wideband Operation In Wireless Communication Systems

COMPACT SLOT ANTENNA WITH EBG FEEDING LINE FOR WLAN APPLICATIONS

A Compact Dual Band-Notched Ultrawideband Antenna with λ/4 Stub and Open Slots

A MINIMIZED WIDEBAND ANTENNA ARRAY WITH DECOUPLING NETWORKS FOR UHF RFID APPLICA- TIONS

DUAL-ANTENNA SYSTEM COMPOSED OF PATCH AR- RAY AND PLANAR YAGI ANTENNA FOR ELIMINA- TION OF BLINDNESS IN CELLULAR MOBILE COMMU- NICATIONS

DESIGN OF PRINTED YAGI ANTENNA WITH ADDI- TIONAL DRIVEN ELEMENT FOR WLAN APPLICA- TIONS

A 3 20GHz Vivaldi Antenna with Modified Edge

Design of Rotman Lens Antenna at Ku-Band Based on Substrate Integrated Technology

A Compact Dual-Polarized Antenna for Base Station Application

A Simple Ultra-Wideband Magneto-Electric Dipole Antenna With High Gain

SMALL SEMI-CIRCLE-LIKE SLOT ANTENNA FOR ULTRA-WIDEBAND APPLICATIONS

Ultrawideband Elliptical Microstrip Antenna Using Different Taper Lines for Feeding

BHARATHIDASAN ENGINEERING COLLEGE NATTARAMPALLI Frequently Asked Questions (FAQ) Unit 1

Desktop Shaped Broadband Microstrip Patch Antennas for Wireless Communications

A Novel Meander Line Microstrip Log-Periodic Dipole Antenna for Dual-Polarized Radar Systems

Design of Rectangular-Cut Circular Disc UWB Antenna with Band-Notched Characteristics

QUADRI-FOLDED SUBSTRATE INTEGRATED WAVEG- UIDE CAVITY AND ITS MINIATURIZED BANDPASS FILTER APPLICATIONS

A Wideband Magneto-Electric Dipole Antenna with Improved Feeding Structure

WIDE BEAMWIDTH QUADIFILAR HELIX ANTENNA WITH CROSS DIPOLES

CPW- fed Hexagonal Shaped Slot Antenna for UWB Applications

DUAL-BAND LOW PROFILE DIRECTIONAL ANTENNA WITH HIGH IMPEDANCE SURFACE REFLECTOR

GPS Patch Antenna Loaded with Fractal EBG Structure Using Organic Magnetic Substrate

A Printed Vivaldi Antenna with Improved Radiation Patterns by Using Two Pairs of Eye-Shaped Slots for UWB Applications

Broadband Circular Polarized Antenna Loaded with AMC Structure

A K-Band Flat Transmitarray Antenna with a Planar Microstrip Slot-Fed Patch Antenna Feeder

A Compact Broadband Printed Circular Slot Antenna with Stair Shaped Ground Plane

DESIGN AND ANALYSIS OF MICROSTRIP FED SLOT ANTENNA FOR SMALL SATELLITE APPLICATIONS

Special Issue Review. 1. Introduction

DESIGN OF OMNIDIRECTIONAL HIGH-GAIN AN- TENNA WITH BROADBAND RADIANT LOAD IN C WAVE BAND

Transcription:

Progress In Electromagnetics Research C, Vol. 39, 49 6, 213 ENHANCEMENT OF PHASED ARRAY SIZE AND RADIATION PROPERTIES USING STAGGERED ARRAY CONFIGURATIONS Abdelnasser A. Eldek * Department of Computer Engineering, Jackson, MS 39217, USA Jackson State University, Abstract In this paper, two staggered array configurations are presented for enhancing size and radiation properties of wideband phased array systems. The proposed arrays are obtained either by rotating each element 45 or by inserting additional rows in the middle which are shifted by half the distance between elements. These two configurations allow for a smaller distance between array elements (29% less), while the actual distance between elements in the diagonal direction is kept the same. Reducing the distance between elements results in eliminating/reducing the grating lobes in a wider frequency range, which improves the array usable bandwidth. In addition, this proposed array produces better gain and maximum steering angle. 1. INTRODUCTION Modern wireless communication systems often require wideband performance for multi-function and multi-channel operations. One of the most important components of these systems is phased array antenna because of its ability to steer the beam very fast by an appropriate inter-element phase control [1]. Ideally, phased array antenna system needs to be wideband with large scanning angle. Such system has to be composed of wideband radiation elements with stable radiation patterns of acceptable gain, low cross polarization, and high front-to-back ratio. The maximum steering angle is within the 3 db beamwidth of the antenna co-polarized pattern; therefore wide 3 db beamwidth is important characteristic of the array element. Researchers have done a lot of effort to design wideband elements with stable patterns and wide 3 db beamwidth for phased arrays [2 7]. Received 26 February 213, Accepted 9 April 213, Scheduled 11 April 213 * Corresponding author: Abdelnasser A. Eldek (abdelnasser.eldek@jsums.edu).

5 Eldek These efforts concentrated on increasing the antenna impedance bandwidth and enhancing its patterns and pattern stability. However, when using these antennas in phased arrays many challenges arise. If the distance between elements is more than half wavelength (at higher operating frequencies), grating lobes appear, which limits the array scanning capability and makes the usable bandwidth of the phased array much less than the bandwidth of the antenna. For example in [5], the antenna bandwidth is more than 1% while the usable bandwidth of the array is 71%. On the other hand, if the adjacent elements, sharing the same substrate, are too close, this increases the coupling due to the traveling waves in the substrate. High coupling may cause scan blindness and anomalies within the desired bandwidth and scan volume [8, 9]. In addition, the small distance with respect to wavelength (at low operating frequencies) results in low gain. To overcome this problem, some researchers used pattern synthesis. They introduced intentional nulls on the element pattern at the locations of the grating lobes to be nullified [1]. In [11, 12], a single asymmetric ridge waveguide is used for linear arrays to achieve close element spacing in the scan plane and avoid grating lobes. These two techniques were applied on narrowband arrays like slotted waveguide and patch antenna arrays. A wideband linear phased array with unequal space was introduced in [13]. The patterns are synthesized so that no grating lobes arise in wideband. Genetic algorithms were used for sub-array amplitude weighting to reduce grating lobes, and presented in [14] for limited scanning only. A tapered balun was designed and introduced for broadband array with closely spaced elements [15]. This design is complex because the radiating elements and the tapered balun are perpendicular to each other (not planar). In this paper, innovative staggered antenna array designs are proposed and studied for enhancing the radiation properties of phased arrays systems, and increasing the usable bandwidth of the array to be close to that of the antenna. The results shown in this paper are obtained from Ansoft High Frequency Structure Simulator (HFSS), which is based on Finite Element [16]. The antenna element used in this array is our wideband Double Rhombus antenna presented in [5, 7] for phased array applications. Prototype of the antenna is shown in Fig. 1(a). 2. PROPOSED ARRAY GEOMETRIES Figure 1(b) shows a regular 2D array of Double Rhombus antennas. The antenna width is 12 mm and its bandwidth is 5.7 18 GHz (13%). The lowest possible element spacing d was found to be 14 mm,

Progress In Electromagnetics Research C, Vol. 39, 213 51 which causes grating lobes to start arising after 1.7 GHz (d > λ /2). It was found that grating lobes became considerable after 12 GHz, which makes the usable bandwidth of the array 5.7 12 GHz (71%). To increase the array bandwidth, d has to be decreased, which requires antenna miniaturization that usually results in bandwidth and gain reduction. Another solution to the element spacing problem is to use a staggered element spacing technique. The technique is useful for achieving tighter element spacing. Fig. 1(c) shows the first proposed staggered configuration (called Staggered Configuration 1), where the individual elements are rotated 45. This would result in an array with the same pattern except that the polarization would be rotated 45 (in the direction of v). In this design, the spacing is still 14 mm but in the diagonal dimension. The horizontal and vertical dimensions would now be about 1 mm (14 / 2). The horizontal and vertical grid is described by the centerlines in the figure. Since the grid spacing is now based on the tighter 1 mm spacing, the array can operate up to higher frequencies (at least 15 GHz) before grating lobes arise. To regain the horizontal polarization (in x direction), the entire array of Configuration 1 can be rotated 45, and furthermore the corner elements can be rearranged to regain the overall rectangular shape as shown in Fig. 1(d), which is called Staggered Configuration 2. Since the grid spacing is now based on the tighter 1 mm spacing in the u-v plane, the array can operate up to higher frequency before grating lobes arise. This design can also be described as if new rows of elements are placed in the middle between the rows of the regular array, but they are shifted by d/2. The couplings between elements in the regular and staggered arrays are shown in Fig. 2. For the regular array, where the distance 14mm 1mm 14mm v u 7mm y y y 1mm 1mm x x d = 14mm x (a) (b) (c) (d) 14mm Figure 1. (a) Radiating element, and 2D array configurations: (b) regular, (c) staggered configuration 1, and (d) staggered configuration 2.

52 Eldek between elements is 14 mm, the average coupling is 23.4 db. For the first staggered array configuration, the distance between elements in the u direction is 7 mm, which is the same distance for the second staggered array in the y direction. In the other directions (v and x), the distance is still 14 mm. The coupling shown in Fig. 2 for the staggered arrays is the one between elements separated by 7 mm. Although the distance is decreased to half, the coupling is still low with an average value of 2 db. Because these two values of coupling are reasonably low, in this study we calculated the radiation patterns by multiplying the array factor by the element patterns. Coupling (db) Regular Array Staggered Array -2-4 6 8 1 12 14 16 Figure 2. Coupling between elements in the (a) regular array and (b) staggered configurations. 3. RESULTS OF STAGGERED CONFIGURATIONS Ansoft HFSS enables you to compute antenna array radiation patterns for designs that have been analyzed as single array elements. Array geometry and excitation can be defined. HFSS models the array radiation pattern by applying an array factor to the single element s patterns. Two array geometry types are supported in HFSS. The regular uniform array geometry defines a finite 2D array of uniformly spaced, equal-amplitude elements. The regular array type may be scanned to a user-specified direction. The regular array geometry type also allows scan specification in terms of differential phase shifts between elements. The second array is custom array, which allows for greater flexibility. It defines an arbitrary array of identical elements distributed in 3D space with individual user-specified complex weights [16].

Progress In Electromagnetics Research C, Vol. 39, 213 53 3.1. Staggered Configuration 1 The radiation patterns of the regular array and Staggered Configuration 1 are calculated using HFSS at different steering angles. All arrays are in the x-y plane and the steering angles are calculated from the z-axis (i.e., θ). First, the radiation patterns are calculated for a 16x16 regular array of Double Rhombus antennas, where the array size (between elements centers) is 15 14 mm = 21 cm in both axes (total area = 21 21 = 441 cm 2 ). Then, two arrays of Staggered Configuration 1 are designed and calculated. The first one has the same number of elements (16 16), which makes its size 15 15 cm 2. The total area of this array is 225 cm 2 which is 49% less than regular array. The second one has the same size of the regular array, making number of elements increases to 22 22 instead of 16 16. The element is rotated 45, then HFSS is used to calculate the patterns in the E and H planes. For this design, the E-plane is v-z and the H-plane is u-z, while in the regular array they are x-z and y-z, respectively. Table 1 and Fig. 3 show the gain of the regular and the 2 arrays of Staggered Configuration 1. The staggered 16 16 produces almost the same gain as the regular array although it is almost half the total area. The 22 22 array provides an average gain improvement of 2.55, 2.43, and 2.4 db in the broadside direction, steering angle, and 45 steering angle, although it has the same size. Table 1. Maximum gain. θ max φ max 6GHz 8GHz 1GHz 12GHz 14GHz16GHz 16x16 regular array 16x16 Staggered Config. 1 22x22 Staggered Config. 1 29.7 29.1 29.9.6 28.7 29.8 29.7 28.1 28.1 29 29.9 26 45 28.3 26.5 26.3 26.8 28.7 27 45 29.3 29.8 29.2.7 45 29.6 28.1 28.1 29.3 29.6 26 45 45 28.4 26.7 26.4 27.1 28.6 26.6 45 31.6 31.4 32.3 33.2 31.6 33 45 32.5.5.5 31.6 32 28.3 45 45.8 29. 28.8 29.5.9 29

54 Eldek Broadside Direction - Maximum Gain in db 34 32 34 32 o Steering Angle - Maximum Gain in db Reg. 16x16 Array Staggered 16x16 Staggered 22x22 34 32 45 o Steering Angle - Maximum Gain in db Reg. 16x16 Array Staggered 16x16 Staggered 22x22 28 Reg. 16x16 Array Staggered 16x16 Staggered 22x22 26 6 8 1 12 14 16 28 26 6 8 1 12 14 16 28 26 6 8 1 12 14 16 (a) (b) (c) Figure 3. Maximum gain in the (a) broadside direction ( steering angle), (b) steering angle, and (c) 45 steering angle, for the 16 16 regular array, and 16 16 and 22 22 staggered array configuration 1. 16x16 Reg. Array 16x16 Configuration 1 22x22 Configuration 1-6 -2 6-6 -2 6-6 -2 6-9 9-9 9-9 9-12 12-12 12-12 12-15 18 15-15 18 15-15 18 15 Figure 4. Radiation patterns of the regular array and staggered array configuration 1 at 16 GHz and in the broadside. 16x16 Reg. Array 16x16 Configuration 1 22x22 Configuration 1-6 -2 6-6 -2 6-6 -2 6-9 9-9 9-9 9-12 12-12 12-12 12-15 18 15-15 18 15-15 18 15 Figure 5. Radiation patterns of the regular array and staggered array configuration 1 at 16 GHz and steering angle.

Progress In Electromagnetics Research C, Vol. 39, 213 55 16x16 Reg. Array 16x16 Configuratzion 1 2z2x22 Configuration 1-6 -2 6-6 -2 6-6 -2 6-9 9-9 9-9 9-12 12-12 12-12 12-15 18 15-15 18 15-15 18 15 Figure 6. Radiation patterns of the regular array and staggered array configuration 1 at 16 GHz and 45 steering angle. The radiation patterns are calculated at all frequencies, but only those at 16 GHz are shown in Figs. 4 6 to show the effect of the staggered array on the patterns and the maximum steering angle. Both staggered arrays produce nice beam with much less side lobe level. Most of the radiated power is concentrated in the main lobe which may explain the increase in the gain. For a steering angle, both staggered arrays do not produce grating lobes (in the front direction of propagation between 9 and 9), while in the regular array grating lobes start arising at 14 GHz, and become very clear at 16 GHz when θ = 57 (Fig. 5). For a 45 steering angle, both staggered arrays do not produce grating lobes, while in the regular array grating lobes start arising at 14 GHz when θ = 56 and at 16 GHz when θ = 39 (Fig. 6). After 45, the radiation patterns of the regular array is distorted, therefore we have calculated them for the staggered arrays only, at 14 and 16 GHz. At 6 steering angle, as shown in Fig. 7, both staggered arrays produce no grating lobes and provide reasonable gain, however for a steering angle more than 6 the gain starts to reduce significantly and grating lobes start to arise in the direction of propagation (θ 9 ). These results show that the usable bandwidth of these staggered arrays is up to 16 GHz with a 6 maximum steering angle compared to 12 GHz with a 45 maximum steering angle in the regular array. The usable bandwidth for the staggered array is 5.7 16 GHz (95%) compared to 5.7 12 GHz (71%) for the regular array. 3.2. Staggered Configuration 2 The second array configuration is shown in Fig. 8(b). To calculate the radiation patterns of this design, special formulation is required. One

56 Eldek -6 θ = 6 o -2 16x16 6-6 -2 6 θ = 6 o -9 θ = 65 o 9-9 θ = 65 o 9 θ = 68 o θ = 68 o 14 GHz 16 GHz -6-2 θ = 6 o 22x22 6-6 -2 6 θ = 6 o -9 θ = 65 o 9-9 θ = 65 o 9 θ = 7 o θ = 7 o 14 GHz 16 GHz Figure 7. Radiation patterns for 16 16 and 22 22 staggered configuration 1 at 14 and 16 GHz for steering angles more than 45. 14mm 7mm 7mm y y 1mm y x d = 14mm x 14mm x (a) (b) (c) 14mm Figure 8. 2D Array configurations: (a) Regular, (b) Staggered Array Configuration 2, and (c) Modified Staggered Array Configuration 2 for radiation pattern calculation. solution for this array is to consider it composed of two arrays: NxN array, and (N 1) (N 1) array, where the second array has an offset of d/2 in both axes, and N is the number of element per row/column in the regular array. Another solution is to add imaginary elements in the middle as shown in Fig. 8(c). The elements represented with white circles have V excitation, while the red circles have 1 V. This will make it equivalent to the Staggered Configuration 2, and allow us to use HFSS to calculate the radiation patterns using custom array

Progress In Electromagnetics Research C, Vol. 39, 213 57 Table 2. Maximum gain. θ max φ max 6GHz 8GHz 1GHz 12GHz 14GHz 16GHz 16x16 regular array 31x31 Staggered Config. 2 29.7 29.1 29.9.6 28.7 29.8 29.7 28.1 28.1 29. 29.9 26 45 28.3 26.5 26.3 26.8 28.7 27 32 31.7 32.8 33.5 32.1 33.2 32.2.8.8 31.9 32.6 28.8 45.1 29.3 28.9 29.5 31.9 29.9 Broadside Direction - Maximum Gain in db 34 32 34 32 o Steering Angle - Maximum Gain in db Reg. 16x16 Array Staggered 31x31 34 32 45 o Steering Angle - Maximum Gain in db Reg. 16x16 Array Staggered 31x31 28 Reg. 16x16 Array Staggered 31x31 26 6 8 1 12 14 16 28 26 6 8 1 12 14 16 28 26 6 8 1 12 14 16 (a) (b) (c) Figure 9. Maximum gain in the (a) broadside direction ( steering angle), (b) steering angle, and (c) 45 steering angle, for the 16 16 regular array, and 31 31 Staggered Array Configuration 2. definition. To compare this array with 16 16 regular array, it has to be 31 31 with a 7 mm distance between elements to have the same size of the regular array. Matlab code was developed to define amplitudes and phases of all elements, and save them in a data file to be loaded in HFSS. The 31 31 array is compared to the regular 16 16 array of the same size in different steering angles. Table 2 and Fig. 9 show the gain of the regular and the Staggered Configuration 2. The staggered 31 31 provides an average gain improvement of 2.92, 2.72, and 2.57 db in the broadside direction, steering angle, and 45 steering angle, without any increase in the total size. The radiation patterns are calculated at all frequencies, but only those at 16 GHz are shown in Fig. 1 at different steering angles from

58 Eldek -6-2 6-6 -2 6-6 -2 6-9 9-9 9-9 9-12 12-12 12-12 12-15 18 15-15 18 15-15 18 15 Figure 1. Radiation patterns of the staggered array configuration 2 at 16 GHz and different steering angles. -6-2 6 θ = 6 o -9 θ = 65 o 9 θ = 68 o -6-2 6 θ = 6 o -9θ = 65 o 9 θ = 68 o -12 12-12 12-15 18 15-15 18 14 GHz 16 GHz 15 Figure 11. Radiation patterns for the 31 31 staggered configuration 2 at 14 and 16 GHz for steering angles of 6 and more. to 45. No grating lobes arise in the front direction. The back lobes will be eliminated by a ground plane. As mentioned before that after 45 the radiation patterns of the regular array is distorted, therefore we have calculated them only for this staggered array at 14 and 16 GHz. As shown in Fig. 11, acceptable pattern and gain are produced by this array at 6. After that, the gain starts to reduce significantly and some grating lobes start to arise in the direction of propagation ( θ 9 ). These results show that the usable bandwidth of this staggered array is similar to Configuration 1, and much better than the regular array. 4. CONCLUSIONS Two staggered array configurations are proposed to solve the problem of grating lobes at higher operating frequencies of wideband phased array. The staggered array with the same number of elements as the

Progress In Electromagnetics Research C, Vol. 39, 213 59 regular array (49% less in size) provides the advantages of side lobe reduction, grating lobe elimination/reduction, steering angle increase, and usable bandwidth enhancement from 71% to 95%. The staggered arrays (22 22 and 31 31) with the same size of the regular array provide the same advantages beside a 2.55 and 2.73 db average gain enhancement. The maximum steering angle is improved to 6 at 16 GHz, instead of 45 at 12 GHz. ACKNOWLEDGMENT The author would like thank the Air Force Research Laboratory (AFRL) Minority Leaders Program (MLP), and Clarkson Aerospace Corp for funding this research through contract number FA865-5-D- 1912. REFERENCES 1. Parker, D. and D. C. Zimmermann, Phased arrays Part I: Theory and architectures, IEEE Trans. Antennas Propagat., Vol. 5, No. 3, 678 687, Mar. 22. 2. Eldek, A. A., Pattern stability optimization for wideband microstrip antennas for phased arrays and power combiners, Microwave Opt. Tech. Lett., Vol. 48, No. 8, 1492 1494, Aug. 26. 3. Eldek, A. A., Design of double dipole antenna with enhanced usable bandwidth for wideband phased array applications, Progress In Electromagnetics Research, Vol. 59, 1 15, 26. 4. Eldek, A. A. and G. Zheng, A microstrip-fed quasi-rhombus shape double dipole antenna for wideband phased array applications, Microwave Opt. Tech. Lett., Vol. 48, No. 12, 2461 2464, Dec. 26. 5. Eldek, A. A., Ultra wideband double rhombus antenna with stable radiation patterns for phased array applications, IEEE Trans. Antennas Propagat., Vol. 55, No. 1, 84 91, Jan. 27. 6. Eldek, A. A., Wideband 18 degree phase shifter using microstrip-cpw-microstrip transition, Progress In Electromagnetic Research, Vol. B, Vol. 2, 177 187, 28. 7. Eldek, A. A., A double rhombus antenna fed by 18 degree phase shifter for ultra wideband phased array applications, IEEE Trans. Antennas Propagat., Vol. 56, No. 6, 1566 1572, Jun. 28. 8. Chio, T. H. and D. H. Schaubert, Parameter study and design of wideband widescan dual-polarized tapered slot antenna arrays, IEEE Trans. Antennas Propagat., Vol. 48, 879-886, Jun. 2.

6 Eldek 9. Guo, Y. X., K. M. Luk, and K. F. Lee, L-probe fed thicksubstrate patch antenna mounted on a finite ground plane, IEEE Trans. Antennas Propagat., Vol. 51, 1955 1963, Aug. 23. 1. Shafai, L., Scan gain enhancement in phased arrays by element pattern synthesis, IEE Seventh International Conference on Antennas and Propagation (ICAP 91), Vol. 2, 914 917, 1991. 11. Shnitkin, H., J. Green, and P. J. Bertalan, Asymmetric ridge waveguide radiating element for a scanned planar array, IEEE Antennas and Propagation Society International Symposium, Vol. 1, 55 58, 1988. 12. Green, J., H. Shnitkin, and P. J. Bertalan, Asymmetric ridge waveguide radiating element for a scanned planar array, IEEE Trans. Antennas Propagat., Vol. 38, No. 8, 1161 1165, 199. 13. Song, C. and Q. Wu, A wide-band phased array antennas with unequal space, 5th Global Symposium on Millimeter Waves (GSMM), 393 96, May 212. 14. Wang, H., D.-G. Fang, and Y. L. Chow, Grating lobe reduction in a phased array of limited scanning, IEEE Trans. Antennas Propagt., Vol. 56, No. 6, 1581 1586, 28. 15. Xia, T., S. Yang, and Z. Nie, Design of a tapered balun for broadband arrays with closely spaced elements, IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1291 1294, 29. 16. Ansoft Corporation, HFSS: High Frequency Structure Simulator Based on the Finite Element Method, version 14, Ansoft Corp., Canonsburg, PA, 212.