USRP Implementation of PTS Technique for PAPR Reduction in OFDM Using LABVIEW

Similar documents
PERFORMANCE ANALYSIS OF PARTIAL RANSMIT SEQUENCE USING FOR PAPR REDUCTION IN OFDM SYSTEMS

Peak-to-Average Power Ratio (PAPR)

IJMIE Volume 2, Issue 4 ISSN:

A COMPARISON OF DIFFERENT PAPR REDUCTION TECHNIQUES IN OFDM USING VARIOUS MODULATIONS

PAPR Reduction techniques in OFDM System Using Clipping & Filtering and Selective Mapping Methods

OFDM Systems and PAPR Reduction Along With Channel Estimation

An Overview of PAPR Reduction Techniques In Concerned with OFDM

Keywords: MC-CDMA, PAPR, Partial Transmit Sequence, Complementary Cumulative Distribution Function.

Computational Complexity Reduction of OFDM Signals by PTS with Various PAPR Conventional Methods

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

REDUCING PAPR OF OFDM BASED WIRELESS SYSTEMS USING COMPANDING WITH CONVOLUTIONAL CODES

Iterative Clipping and Filtering Technique for PAPR Reduction in OFDM System without Encoding

Algorithm to Improve the Performance of OFDM based WLAN Systems

DCT BASED PARTIAL TRANSMIT SEQUENCE TECHNIQUE FOR PAPR REDUCTION IN OFDM TRANSMISSION

II. OFDM SYSTEM MODEL

OFDM AS AN ACCESS TECHNIQUE FOR NEXT GENERATION NETWORK

An Overview of PAPR Reduction Techniques in OFDM Systems

ORTHOGONAL frequency division multiplexing (OFDM)

Riemann Sequence based SLM with nonlinear effects of HPA

COMPARATIVE ANALYSIS OF CLIPPING, SLM AND TWO PIECEWISE COMPANDING TECHNIQUES FOR PAPR REDUCTION IN OFDM SYSTEM

COMPARISON OF SLM & PTS TECHNIQUES FOR REDUCING PAPR IN OFDM

PAPR Reduction in 4G Cellular Network: A SLM-based IFDMA Uplink System

Combination of Modified Clipping Technique and Selective Mapping for PAPR Reduction

Low Complexity Partial SLM Technique for PAPR Reduction in OFDM Transmitters

An Improved SLM Technique Using Discrete Cosine Transform in OFDM. S. Lih., An Improved SLM Technique Using Discrete Cosine Transform in OFDM System.

PAPR Reduction Performance for LTE OFDM Systems with Different Techniques

CHAPTER 1 INTRODUCTION

Image Transmission over OFDM System with Minimum Peak to Average Power Ratio (PAPR)

Performance analysis of OFDM with QPSK using AWGN and Rayleigh Fading Channel

A New PAPR Reduction in OFDM Systems Using SLM and Orthogonal Eigenvector Matrix

Hybrid PTS-Clipping Scheme for PAPR Reduction in MIMO-OFDM Systems

Comparison of ML and SC for ICI reduction in OFDM system

Reducing Intercarrier Interference in OFDM Systems by Partial Transmit Sequence and Selected Mapping

Performance Assessment of PAPR in OFDM System using Single Carrier - FDMA

A Research Concept on Bit Rate Detection using Carrier offset through Analysis of MC-CDMA SYSTEM

A Novel of Low Complexity Detection in OFDM System by Combining SLM Technique and Clipping and Scaling Method Jayamol Joseph, Subin Suresh

Clipping and Filtering Technique for reducing PAPR In OFDM

Partial Transmit Sequence (PTS)-PAPR Reduction Technique in OFDM Systems with Reduced Complexity. II. PAPR problem in OFDM system

UNIFIED DIGITAL AUDIO AND DIGITAL VIDEO BROADCASTING SYSTEM USING ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM) SYSTEM

Lekhraj Udaigiriya and Sudhir Kumar Sharma

Practical issue: Group definition. TSTE17 System Design, CDIO. Quadrature Amplitude Modulation (QAM) Components of a digital communication system

A Comparative Approach between Clipping and Probabilistic Technique for Reducing PAPR of OFDM System

International Journal of Engineering, Business and Enterprise Applications (IJEBEA)

2. PAPR IN OFDM: Let X=[XR0R,X1,XR2R,..XRMR] is data coming out of S/P. OFDM is represented in time domain by

An Improved Clipping And Filtering Methods With Discrete Cosine Transform (DCT) For Peak-To-Average Power Ratio (PAPR) Reduction

Chapter 0 Outline. NCCU Wireless Comm. Lab

SHIV SHAKTI International Journal of in Multidisciplinary and Academic Research (SSIJMAR) Vol. 3, No. 4, August-September (ISSN )

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 5, Oct-Nov, 2013 ISSN:

An OFDM Transmitter and Receiver using NI USRP with LabVIEW

PAPR Reduction in an OFDM system using Recursive Clipping and Filtering Technique

Simplified Levenberg-Marquardt Algorithm based PAPR Reduction for OFDM System with Neural Network

This chapter describes the objective of research work which is covered in the first

PAPR reduction performance analysis of Optimized Matrix based Phase Sequences in OFDM systems

A Low Computational Complexity Algorithm for PTS based PAPR Reduction Scheme in OFDM Systems

International Journal of Research and Review E-ISSN: ; P-ISSN:

SINCE orthogonal frequency division multiplexing

Interleaved PC-OFDM to reduce the peak-to-average power ratio

PAPR Reduction Techniques with Hybrid SLM Partial Transmit Sequence Algorithm for OFDM System

SCFDMA PERFORMANCE ANALYSIS FOR PAPR REDUCTION WITH DIFFERENT SUBCARRIER MAPPING USING SLM TECHNIQUE AND MODIFIED SLM TECHNIQUE

THE COMBINATION OF CLIPPING AND FILTERING WITH SELECTIVE MAPPING METHODS FOR PEAK TO AVERAGE POWER RATIO REDUCTION IN OFDM

OFDM Systems For Different Modulation Technique

Linear Precoding Schemes for PAPR Reduction in Mobile WiMAX OFDMA System

University of Bristol - Explore Bristol Research. Link to publication record in Explore Bristol Research PDF-document.

Performance Analysis of OFDM System with QPSK for Wireless Communication

MC CDMA PAPR Reduction Using Discrete Logarithmic Method

USE OF CLIPPING AND LINEAR PHASE FIR FILTERING TO REDUCE PAPR IN OFDM SYSTEM

Peak-to-Average power reduction in OFCDM system to enhance the spectral efficiency

Optimized BPSK and QAM Techniques for OFDM Systems

Peak to Average Power Ratio Reduction of Orthogonal Frequency Division Multiplexing System with a Significant Low Complexity

Peak to Average Power Ratio Reduction in FBMC Systems by PN-sequences

Reduction of PAPR of OFDM Using Exponential Companding Technique with Network Coding

Power Reduction in OFDM systems using Tone Reservation with Customized Convex Optimization

Experimenting with Orthogonal Frequency-Division Multiplexing OFDM Modulation

ORTHOGONAL frequency division multiplexing (OFDM)

PERFORMANCE ENHANCEMENT OF OFDM SIGNALS USING SELECTED MAPPING TECHNIQUE AND OVERVIEW OF DIFFERENT PAPR REDUCTION SCHEMES

PEAK TO AVERAGE POWER RATIO REDUCTION USING BANDWIDTH EFFICIENCY INCREASING METHOD IN OFDM SYSTEM

PERFORMANCE IMPROVEMENT FOR PAPR REDUCTION IN LTE DOWNLINK SYSTEM WITH ELLIPTIC FILTERING

PAPR Reduction of OFDM Using a New Phase Sequence in SLM Technique

Analysis of Selective Mapping PAPR Reduction Technique in OFDM System

Orthogonal Frequency Division Multiplexing (OFDM) based Uplink Multiple Access Method over AWGN and Fading Channels

Receiver Designs for the Radio Channel

PAPR Reduction Method for OFDM based Massive MIMO Systems

Systematic Comparison of Different PAPR Reduction Methods in OFDM Systems

Simulative Investigations for Robust Frequency Estimation Technique in OFDM System

PAPR REDUCTION USING ITERATIVE COMPANDING TRANSFORMS TECHNIQUE ON TURBO CODE BASED MIMO OFDM SYSTEM FOR BETTER PERFORMANCE

Solving Peak Power Problems in Orthogonal Frequency Division Multiplexing

Performance Evaluation of Wireless Communication System Employing DWT-OFDM using Simulink Model

Multiple-Input Multiple-Output OFDM with Index Modulation Using Frequency Offset

A New Adaptive Channel Estimation for Frequency Selective Time Varying Fading OFDM Channels

Optimization of PAPR Using HPA and Amplitude Clipping Reduction Technique

Optical Wireless Communication System with PAPR Reduction

Bit Error Rate Performance Evaluation of Various Modulation Techniques with Forward Error Correction Coding of WiMAX

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 4, Issue 12, June 2015

Modified PTS Technique Of Its Transceiver For PAPR Reduction In OFDM System

Multi-carrier Modulation and OFDM

EC 551 Telecommunication System Engineering. Mohamed Khedr

Comparison of BER for Various Digital Modulation Schemes in OFDM System

Adaptive Pre-Distorters for Linearization of High Power Amplifiers in OFDM Wireless Communications

ELT Receiver Architectures and Signal Processing Fall Mandatory homework exercises

Comparative Study of OFDM & MC-CDMA in WiMAX System

Transcription:

Advances in Wireless Communications and Networks 2016; 2(2): 15-24 http://www.sciencepublishinggroup.com/j/awcn doi: 10.11648/j.awcn.20160202.11 USRP Implementation of PTS Technique for PAPR Reduction in OFDM Using LABVIEW Mamdouh Elsayed Gouda 1, Mohamed Hussien Moharam 2, Mohamed Rabie Ragab 2, Ahmed Mahmoud. Anwar 2, Ahmed Fathi Gouda 2 1 Electronic sand Communications Engineering Department, ElGazeera High Institute for Computer & Management Information, Cairo, Egypt 2 Electronics and Communications Engineering Department, Misr University for Science and Technology (MUST), Giza, Egypt Email address: dr_mamdouh2004a@yahoo.com (M. E. Gouda), Mohamed.moharem@must.edu.eg (M. H. Moharam), mohamdrabiee@gmail.com (M. R. Ragab), ahmed40121@gmail.com (A. Mahmoud. Anwar), ahmedgouda12340@gmail.com (A. F. Gouda) To cite this article: Mamdouh Elsayed Gouda, Mohamed Hussien Moharam, Mohamed Rabie Ragab, Ahmed Mahmoud. Anwar, Ahmed Fathi Gouda. USRP Implementation of PTS Technique for PAPR Reduction in OFDM Using LABVIEW. Advances in Wireless Communications and Networks. Vol. 2, No. 2, 2016, pp. 15-24. doi: 10.11648/j.awcn.20160202.11 Received: April 26, 2016; Accepted: June 22, 2016; Published: January 10, 2017 Abstract: Orthogonal frequency-division multiplexing (OFDM) is an orthogonal waveform technique for encoding digital data on multiple carrier frequencies. OFDM has developed into a popular scheme for wide band digital communication, used in applications such as wireless networks and 4G mobile communications such as LTE, WIMAX and Wifi. It still exists with some of the drawbacks, out of which, high peak to average power ratio (PAPR) gives rise to non-linear distortion, inter-symbol interference and out-of-band radiation. There has been various ways developed and implemented to reduce PAPR. we will describe all of these techniques to reduce PAPR, then focus on technique called Partial Transmit Sequence technique(pts) which comes under Signal scrambling techniques. In this technique, the symbol in the frequency domain is partitioned into smaller disjoint sub-blocks. The objective is to design an optimal phase for the sub-block set that minimizes the PAPR. In this paper, an efficient Universal Software Radio Peripheral (USRP) implementation of PTS scheme for PAPR reduction OFDM signals using LABVIEW has been carried out. Keywords: OFDM, PAPR, CCDF, PTS, Reduction Techniques, USRP, LABVIEW, National Instruments 1. Introduction Orthogonal Frequency Division Multiplexing (OFDM) is an orthogonal multicarrier communication system. Bandwidth efficiency, high data rate and immune to fading makes the OFDM systems preferred choice for modern communication system and are being implemented in many modern communication systems [2] like Digital Audio Broadcasting (DAB), Digital Video Broadcasting (DVB), Wireless Local Area Network (WLAN) and Long Term Evolution (LTE) [3]. Although OFDM gives many advantages, it suffers from many technical difficulties. Few of these difficulties include tight frequency synchronization, time offset, peak to average power ratio (PAPR) and channel estimation. In a multicarrier communication system, like OFDM, independent phases of subcarriers may have constructive or destructive effect. When all subcarriers have same phase then the constructive effect gives high peak amplitude and produces high peak to average power ratio (PAPR). The high PAPR drives the power amplifier to operate in non-linear region which causes inter-modulation distortions and out-of-band radiations. So, it is highly essential to reduce PAPR. For the same, various techniques have been employed such as coding, companding, amplitude clipping and filtering, active constellation extension (ACE), tone reservation (TR), tone injection (TI), selected mapping (SLM), partial transmit sequence (PTS). These schemes can mainly be categorized into signal scrambling techniques, such as PTS, and signal distortion techniques such as clipping, companding techniques. Among these methods, PTS scheme is the most efficient approach and a distortionless scheme for PAPR reduction by optimally combining signal subblocks [6]. In PTS technique, the input data block is broken up into disjoint sub-blocks. The sub-blocks are multiplied by phase weighting factors and then added together to produce

16 Mamdouh Elsayed Gouda et al.: USRP Implementation of PTS Technique for PAPR Reduction in OFDM Using LABVIEW alternative transmit containing the same information. The phase weighting factors, whose amplitude is usually set to 1, are selected such that the resulting PAPR is minimized. The number of allowed phase factors should not be excessively high, to keep the number of required side information bits and the search complexity within a reasonable limit. However, the exhaustive search complexity of the PTS technique increases exponentially with number of sub-blocks, so it is practically not realizable for a large number of sub-blocks. To find out a best weighting factor is a complex and difficult problem [4]. In this paper, PTS implements on USRP using LABVIEW. The paper is organized as follows. Section II briefly shows the OFDM signal model. In Section III the PAPR problem of the OFDM system is presented. In Section V The analysis of the PTS technique are described. In Section VI Simulation results using LABVIEW are provided. In Section VII Implementation results using USRP are provided. Finally conclusions are drawn in Section VIII. 2. OFDM System Model In an OFDM system, the serial data stream to be transmitted is divided into parallel data stream constituting series of frames. All bits/symbols in a frame is modulated by, subcarriers, 0,1,,1 Which are orthogonal. This is achieved by considering, f= Where, denotes the duration of OFDM symbol, f is the subcarrier spacing and, is number of subcarriers. After modulation, the frequency domain symbol is converted to time domain symbol with an, -point IFFT operation. The transmitted symbol is given by, )= exp2!",0## (1) Where is the data block period. The basic building blocks of OFDM transceiver are the FFT and IFFT blocks. At the transmitter side IFFT is implemented whereas at the receiver side FFT is implemented. At OFDM Transmitter: The incoming serial data stream is converted to parallel blocks of data, with the number of elements in one parallel block being equal to the number of sub-carriers, say N. The parallel block of data is then passed through an N-point IFFT block to obtain the OFDM symbol. Thus the OFDM symbol is in digital time domain. At OFDM Receiver: OFDM signal is passed through a channel to the receiver which is then converted from serial to parallel stream. This parallel stream of OFDM signal data is de-mapped or demodulated by any of the demodulation technique BPSK or QPSK. This demodulated data is transformed from time domain to frequency domain with the operation of Fast Fourier Transform (FFT). Finally, the frequency domain signal is converted from parallel to serial and is received at the receiver [6]. The Block diagram of OFDM System is illustrated in the following Figure 1. Figure 1. Block diagram of OFDM System. 3. Peak to Average Power Ratio High Peak-to-Average Power Ratio (PAPR) has been recognized as one of the major practical problem involving OFDM modulation. High PAPR results from the nature of the modulation itself where multiple subcarriers/sinusoids are added together to form the signal to be transmitted. When N sinusoids add, the peak magnitude would have a value of N, where the (rms) average might be quitelow due to destructive interference between the sinusoids. High signals are usually undesirable for it usually strains the analog circuitry. High PAPR signals would require a large range of dynamic linearity from the analog circuits, which usually results in expensive devices, and higher power consumption/lower efficiency (for example, power amplifier has to operate with larger backoff to maintain linearity) [8]. It s quite straightforward to observe that in OFDM systems, some input sequences would result in higher PAPR than others. Theoretically, large peaks in OFDM system can be expressed as PAPR. It is defined as: PAPR= ' ()*+ 234 6 =10log 7 8 ' " *,)-*.) 9 6 7 8 Where : ;<=> represents peak output power, : =?<@=A< represents means average output power and B represents the transmitted OFDM signals. Mathematically B is expressed as: (2) B == B> C!" (3) Where represents the D EF input symbol. PAPR is generally represented by a complementary

Advances in Wireless Communications and Networks 2016; 2(2): 15-24 17 cumulative distribution function (CCDF) where x-axis denotes the preset threshold and y-axis denotes the probability that the PAPR exceeds this threshold. The CCDF is defined by, :(:G:H>:G:H EF )=1-1I 'J'K LM (4) Where, :G:H EF is the threshold [6] [7]. One of the major disadvantages of OFDM systems is that the OFDM signal has high (PAPR), and to deal with this problem many typical techniques have been proposed. Each technique is different from the other in its complexity and performance. The PAPR reduction techniques are listed in Table 1. Reduction Techniques [1] Signal Scrambling Techniques Table 1. Classification of PAPR Reduction Techniques. Signal Distortion Techniques With Explicit Side Information Without Explicit Side Information Signal Clipping Coding based Probabilistic Schemes Hadamard Transform Method Peak Windowing Block Coding Schemes Selective Level Mapping Dummy Sequence Insertion Envelope Scaling Sub Block Coding Schemes Partial Transmit Sequence Random Phase Updating Block Coding With Error Correction Interleaving Peak Reduction Carrier Tone reservation Companding Tone injection Active Constellation Extension Linear Block Coding 4. Partial Transmit Sequence (PTS) In PTS, the original data block is divided into multiple non-overlapping sub-blocks. Then these sub-blocks are rotated with rotation factors which are statistically independent. After that, the signal with the lowest PAPR is chosen for transmission. There are several ways for the partition of the data sequence into multiple sub-blocks, including adjacent partition, interleaved partition and pseudorandom partition. The major drawback of PTS is also the computational complexity (search complexity for optimal phase factor, and more than one IFFT blocks) and low data rate (required side information). Several techniques have been proposed in the literature to reduce the search complexity and overhead (by reducing/avoiding the usage of side information). In PTS method, the original frequency-domain data sequence is divided into multiple disjoint sub-blocks, which are then weighted by a set of phase sequences to create a set of candidates finally, the candidate with the lowest PAPR is chosen for transmission [1]. A block diagram of PTS techniques is shown in Figure 2 The input data block in X is divided in to V disjoint sub-blocks, which are represented by the vectors, N?, =0,1,,V-1} The input data block X can be written in terms of N? } as X= O?!" O forv=0,1,,v-1 Where,? = O ", O O,, with O > = or 0 After that, the sub-blocks? are transformed into V, time-domain partial transmit sequences by taking the IFFT of length N. These partial transit sequences can be written as? = O ", O O,, =IFFT[? ] for V= 0,1,, V 1 These partial sequences? are then independently rotated by phase factors={p O I QR? }, for V = 0,1,, V - 1 The rotated partial sequences are then optimally combined to obtain the OFDM signals with lowest PAPR. The time domain signal after combining is given by [7] [1]: S= O?!" P? T O (5) Figure 2. TheBlock diagram of Partial Transmit Sequence (PTS) technique. PTS Technique is distortion less due to which the BER performance is not affected in OFDM, can be implemented for large number of subcarriers In turn the complexity is not affected, provides flexibility to work with any number of

18 Mamdouh Elsayed Gouda et al.: USRP Implementation of PTS Technique for PAPR Reduction in OFDM Using LABVIEW subcarriers, is flexible for any type of modulation. It functions equally well with BPSK, QPSK, etc, is flexible for any type of modulation and any number of sub-blocks and the best method for peak to average power ratio reduction as compared to other techniques. But it also suffers from High computational complexity: Due to IFFT operation and the phase factor optimization this technique undergoes very high computational complexity [6]. Suppose that there are phase angles to be allowed, thus U? can has the possibility of different values. Therefore, P O alternative representations for an OFDM symbol. The search complexity increases exponentially with the number of sub-blocks V. This is the major disadvantage of PTS technique but this technique is preferred only due to good PAPR reduction. Another disadvantage is the Loss in data rates: The side information is the main reason behind data rate loss. This takes place as because the phase factor rotation values needs to be send at receiver [1]. 5. Simulation Results Using LabVIEW LabVIEW is a graphical programming language developed by National Instruments. LabVIEW provides a simple inter-face for configuring and operating various external I/O, in-cluding the NI USRP hardware. Simulations were performed to compare the performance of PAPR reduction in OFDM symbols among OFDM without PTS and with PTS [9-11]. the parameter used for calculation of PAPR are illustrated in Table 2. Fig. 4 shows the CCDF of PAPR for a 16-QAM/OFDM system without PTS and with PTS technique as the number of subblock varies. Figure 4. CCDF of OFDM signals without PTS and with PTS of V = 4, 16, 32, and 64 for 16-QAM (using LABVIEW SIMULATION). Fig. 5 shows the CCDF of PAPR for a 64-QAM/OFDM system without PTS and with PTS technique as the number of subblock varies. Parameter Table 2. The System Parameters Used for Simulation. Valued used Number of sub-carriers (N) 64 Oversampling factor (OF) 4 Modulation scheme 4,16,64-QAM Number of sub-blocks used in PTS methods (V) 4,16,32,64 Number of generated OFDM signal 10000 Number of phase factors (b) 4 Fig. 3 shows the CCDF of PAPR for a 4-QAM/OFDM system without PTS and with PTS technique as the number of subblock varies. Figure 3. CCDF of OFDM signals without PTS and with PTS of V=4, 16, 32, and 64 for4-qam (using LABVIEW SIMULATION). Figure 5. CCDF of OFDM signals without PTS and with PTS of V = 4, 16, 32, and 64 for 64-QAM (using LABVIEW SIMULATION). As shown in figure 3,4,5: It is seen that the PAPR performance improves as the number of sub blocks increases with V = 4, 16, 32, and 64. The Basic OFDM curve has PAPR equals to 10.5 db. After applying PTS technique, the value was significantly reduced to 2.5 db using V=64 for 4-QAM, 3 db using V=64 for 16 QAM and 3.5 db using V=64 for 64-QAM. This proves that PTS gives better results which is superior performance in PAPR reduction. It is seen that the PAPR performance improves as the number of sub blocks increases with V = 4, 16, 32, and 64. The CCDF results for simulation are illustrated in Table 3.

Advances in Wireless Communications and Networks 2016; 2(2): 15-24 19 Table 3. The CCDF Results for Simulation. Modulation scheme Sub Block-partition- PAPR (db) V=4 7 db 4-QAM V=16 6 db V=32 3.5 db V=64 2.5 db V=4 6 db 16-QAM V=16 5 db V=32 3.5 db V=64 3 db V=4 7 db 64-QAM V=16 4.5 db V=32 3.5 db V=64 3.5 db 6. Implementation Using USRP deliver a platform for rapid prototyping involving physical layer design, wireless signal record & playback, signal intelligence, algorithm validation, Implementation was performed to test simulations result through a real wireless communication link using two Universal Software Radio Peripheral (USRP 29-20) one as transmitter and the other as a receiver [9-12]. Figure 6 shows Simplified Overview of a SDR Setup Built around an NI USRP. The parameters used for calculation of PAPR are illustrated in Table 4. Table 4. The System Parameters Used for Implementation. Parameter Valued used Data Random bits Symbol rate 5 Msps Modulation schemes 4,16,64 QAM Number of subcarrier 64 Oversampling factor 4 Length of cyclic prefix 8 bit Number of sub-blocks used in PTS methods (V) 4,16,32,64 Packet header/tail (8bit) IEEE 802.11a Short Training Channel encoding (3,1) repetition code Pulse shaping filter Raised cosine, α=0.5 TX average power level 0 dbm RX reference level -20 dbm 6.1. Implementation Results Using 4-QAM Figure 6. Simplified Overview of a SDR Setup Built Around an NI USRP. SDR refers to the technology wherein software modules running on a generic hardware platform are used to implement radio functions. Combine the NI USRP hardware with LabVIEW software for the flexibility and functionality to Fig. 7 shows The PAPR characteristics of the PTS-OFDM signals which includes the distributions of the imaginary and real parts using various V for N=64 and 4-QAM. Figure 7. Received signal for various V=4,16,32,64 using 4-QAM.

20 Mamdouh Elsayed Gouda et al.: USRP Implementation of PTS Technique for PAPR Reduction in OFDM Using LABVIEW Fig. 8. Shows the PTS-OFDM signals at time domain using 4-QAM modulated subcarrier for N=64. Figure 8. Received signal in time domain for various V=4,16,32,64 using 4-QAM. Fig. 9. shows the CCDF of PAPR for a 4-QAM/OFDM system without PTS and with PTS technique as the number of subblock varies. Figure 9. CCDF of OFDM signals without PTS and with PTS of V = 4,16,32,and 64 for 4-QAM (using USRPs). 6.2. Implementation Results Using 16-QAM Fig. 10 shows The PAPR characteristics of the PTS-OFDM signals which includes the distributions of the imaginary and real parts using various V for N=64 and 16-QAM.

Advances in Wireless Communications and Networks 2016; 2(2): 15-24 21 Figure 10. Received signal for various V=4,16,32,64 using 16-QAM. Fig. 11. shows the PTS-OFDM signals at time domain using 16-QAM modulated subcarrier for N=64. Figure 11. Received signal in time domain for various V=4,16,32,64 using 16-QAM.

22 Mamdouh Elsayed Gouda et al.: USRP Implementation of PTS Technique for PAPR Reduction in OFDM Using LABVIEW Fig. 12. shows the CCDF of PAPR for a 16-QAM/OFDM system without PTS and with PTS technique as the number of subblock varies. Figure 12. CCDF of OFDM signals without PTS and with PTS of V = 4,16,32,and 64 for 16-QAM (using USRPs). 6.3. Implementation Results Using 64-QAM Fig. 13 shows The PAPR characteristics of the PTS-OFDM signals which includes the distributions of the imaginary and real parts using various V for N=64 and 64-QAM. Figure 13. Received signal for various V=4,16,32,64 using 64-QAM. Fig. 14. shows the PTS-OFDM signals at time domain using 64-QAM modulated subcarrier for N=64.

Advances in Wireless Communications and Networks 2016; 2(2): 15-24 23 Figure 14. Received signal in time domain for various V=4,16,32,64 using 64-QAM. Fig. 15. shows the CCDF of PAPR for a 64-QAM/OFDM system without PTS and with PTS technique as the number of subblock varies. Figure 15. CCDF of OFDM signals without PTS and with PTS of V = 4,16,32,and 64 for64-qam (using USRPs). The CCDF results for implementation are illustrated in Table 5. Table 5. The CCDF Results for Implementation. Modulation scheme Sub Block-partition- PAPR (db) V=4 7.5 db 4-QAM V=16 5.5 db V=32 4 db V=64 3.5 db V=4 6 db 16-QAM V=16 5.5 db V=32 4.5 db V=64 4 db V=4 6.5 db 64-QAM V=16 5 db V=32 4.5 db V=64 4 db Implementation results show that there is 0.5-1.5 db offset in CCDF curves among simulation and implementation due to USRP performance. 7. Conclusion This paper provides an overview of

24 Mamdouh Elsayed Gouda et al.: USRP Implementation of PTS Technique for PAPR Reduction in OFDM Using LABVIEW Orthogonal-Frequency-Division-Multiplexing (OFDM). The purpose of this paper was to reduce the High (PAPR) of OFDM signals. The comprehensive research and comparison are put forward for a variety of currently promising PAPR reduction methods quoted in the literature in this research area. This paper presented a Partial transmit sequence method that was used to reduce the PAPR of OFDM signals and this was successfully achieved. Simulations and Implementations using LABVIEW and USRP were conducted and show that the performance of PTS method provides a good PAPR reduction. References [1] Zainab Saad Hadi AL-Hashmi, An Overview: Peak to Average Power Ratio (PAPR) in OFDM system using some new PAPR techniques (with matlab code). Baghdad: Jordan, pp. 57-59, 2015. [2] Lim Dae-Woon, Heo Seok-Joong, No Jong-Seon, An overview of peak-to-average power ratio reduction schemes for OFDM signals, IEEE Journal of Communications and Networks, DOI: 10.1109/JCN.2009.6391327, ISSN:1229-2370/7 2009. [3] Jeffery G. Andrews, Arunabha Ghosha, Rias Muhamed, Prentice Hall Fundamental of WIMAX Auston: Texes, pp.113-147, 2007. [4] Jyh-Horng Wen, Shu-Hong Lee, Yung-Fa Huang, Ho-Lung Hung. A Suboptimal PTS Algorithm Based on Particle Swarm Optimization Technique for PAPR Reduction in OFDM Systems, EURASIP Journal on Wireless Communications and Networking, DOI: 10.1155/2008/601346, 25 June 2008. [5] Mamdouh Gouda, Mohamed Hussien. Partial Transmit Sequence PAPR Reduction Method for LTE OFDM Systems, 2013 4th International IEEE Conference on Intelligent Systems, Modelling and Simulation, DOI 10.1109/ISMS.2013.78, ISSN 2166-0662/13 2013. [6] Seemanjali Sahoo, Sarat Kumar Patra, VHDL Implementation of Circularly Shifted PTS Technique for PAPR Reduction in OFDM, 2014 International IEEE Conference on Advanced Communication Control and Computing Technologies (ICACCCT), DOI:10.1109/ICACCCT.2014.7019203, pp. 805-808/2014. [7] Mamdouh Gouda, Khaled Ali Shehata, Mohamed Hussien. PAPR Reduction Performance for LTE OFDM Systems with Different Techniques IJSER, ISSN 2229-5518, Volume 4, Issue 5, May 2013. [8] Renaldi Winoto, Peak-to-Average Power Control in OFDM Systems, unpublished. [9] National Instruments, Getting Started with LABVIEW, http://www.ni.com/pdf/manuals/373427j.pdf. 2013. [10] National Instruments, NI USRP Hardware: Getting Started Guide, http://www.ni.com/pdf/manuals/375717e.pdf. 2013. [11] Robert W. Heath Jr., Digital Wireless CommunicationPhysical Layer Exploration LabUsing the NI USRP. Auston: Texes, 2012 National Technology and Science Press. [12] National Instruments, "AN INTRODUCTION TO SOFTWARE DEFINED RADIO With NI LabVIEW and NI USRP" National Instruments issue 1.0-2013 page.4