Research Article Yagi Array of Microstrip Quarter-Wave Patch Antennas with Microstrip Lines Coupling

Similar documents
Research Article A Wide-Bandwidth Monopolar Patch Antenna with Dual-Ring Couplers

Research Article Circularly Polarized Microstrip Yagi Array Antenna with Wide Beamwidth and High Front-to-Back Ratio

THROUGHOUT the last several years, many contributions

Research Article A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection

Research Article A New Kind of Circular Polarization Leaky-Wave Antenna Based on Substrate Integrated Waveguide

Research Article A Design of Wide Band and Wide Beam Cavity-Backed Slot Antenna Array with Slant Polarization

Research Article Modified Dual-Band Stacked Circularly Polarized Microstrip Antenna

Research Article Multiband Planar Monopole Antenna for LTE MIMO Systems

Research Article Novel Design of Microstrip Antenna with Improved Bandwidth

Research Article Bandwidth Extension of a Printed Square Monopole Antenna Loaded with Periodic Parallel-Plate Lines

Research Article Compact Dual-Band Dipole Antenna with Asymmetric Arms for WLAN Applications

Research Article Miniaturized Circularly Polarized Microstrip RFID Antenna Using Fractal Metamaterial

Research Article Design and Analysis of Printed Yagi-Uda Antenna and Two-Element Array for WLAN Applications

Research Article A Dual-Band Printed End-Fire Antenna with DSPSL Feeding

Research Article Very Compact and Broadband Active Antenna for VHF Band Applications

Research Article CPW-Fed Slot Antenna for Wideband Applications

BROADBAND SERIES-FED DIPOLE PAIR ANTENNA WITH PARASITIC STRIP PAIR DIRECTOR

Research Article Harmonic-Rejection Compact Bandpass Filter Using Defected Ground Structure for GPS Application

Research Article Analysis and Design of Leaky-Wave Antenna with Low SLL Based on Half-Mode SIW Structure

Research Article A Miniaturized Triple Band Monopole Antenna for WLAN and WiMAX Applications

IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 7, /$ IEEE

Research Article Cross-Slot Antenna with U-Shaped Tuning Stub for Ultra-Wideband Applications

Research Article High Efficiency and Broadband Microstrip Leaky-Wave Antenna

Research Article Small-Size Meandered Loop Antenna for WLAN Dongle Devices

Compact Microstrip Magnetic Yagi Antenna and Array with Vertical Polarization Based on Substrate Integrated Waveguide

Research Article A Miniaturized Meandered Dipole UHF RFID Tag Antenna for Flexible Application

Research Article CPW-Fed Wideband Circular Polarized Antenna for UHF RFID Applications

Planar Leaky-Wave Antennas Based on Microstrip Line and Substrate Integrated Waveguide (SIW)

Research Article Suppression of Cross-Polarization of the Microstrip Integrated Balun-Fed Printed Dipole Antenna

Research Article Ka-Band Slot-Microstrip-Covered and Waveguide-Cavity-Backed Monopulse Antenna Array

Research Article A Compact CPW-Fed UWB Antenna with Dual Band-Notched Characteristics

Research Article A High-Isolation Dual-Polarization Substrate-Integrated Fabry-Pérot Cavity Antenna

Research Article Compact Antenna with Frequency Reconfigurability for GPS/LTE/WWAN Mobile Handset Applications

Research Article Compact Multiantenna

Research Article Wideband Microstrip 90 Hybrid Coupler Using High Pass Network

Jae-Hyun Kim Boo-Gyoun Kim * Abstract

A Beam Switching Planar Yagi-patch Array for Automotive Applications

Cylindrical Conformal Microstrip Yagi Array with Endfire Radiation and Vertical Polarization

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

Research Article Multiband Printed Asymmetric Dipole Antenna for LTE/WLAN Applications

A Broadband Omnidirectional Antenna Array for Base Station

Research Article A High Gain Omnidirectional Antenna Using Negative Permeability Metamaterial

A Pair Dipole Antenna with Double Tapered Microstrip Balun for Wireless Communications

High Performance System-on-Package Integrated Yagi-Uda Antennas for W-band Applications and mm-wave Ultra-Wideband Data Links

Research Article Compact and Wideband Parallel-Strip 180 Hybrid Coupler with Arbitrary Power Division Ratios

DESIGN OF PRINTED YAGI ANTENNA WITH ADDI- TIONAL DRIVEN ELEMENT FOR WLAN APPLICA- TIONS

Research Article A MIMO Reversed Antenna Array Design for gsm1800/td-scdma/lte/wi-max/wilan/wifi

Research Article Integrated Filtering Microstrip Duplex Antenna Array with High Isolation

Research Article Design of a Novel UWB Omnidirectional Antenna Using Particle Swarm Optimization

Proximity fed gap-coupled half E-shaped microstrip antenna array

Research Article Quad Band Handset Antenna for LTE MIMO and WLAN Application

Research Article Low-Profile Array of Wire Patch Antennas

Research Article A Parallel-Strip Balun for Wideband Frequency Doubler

Research Article UWB Directive Triangular Patch Antenna

Research Article A Novel SIW H-Plane Horn Antenna Based on Parabolic Reflector

Design of a Wideband Planar Microstrip-Fed Quasi-Yagi Antenna

A Broadband Planar Quasi-Yagi Antenna with a Modified Bow-Tie Driver for Multi-Band 3G/4G Applications

Research Article Theoretical and Experimental Results of Substrate Effects on Microstrip Power Divider Designs

RCS Reduction of Patch Array Antenna by Complementary Split-Ring Resonators Structure

High Performance System-on-Package Integrated Yagi-Uda Antennas for W-band Applications and mm-wave Ultra-Wideband Data Links

A Compact Dual Band-Notched Ultrawideband Antenna with λ/4 Stub and Open Slots

Research Article Gain Enhancement of Low-Profile, Electrically Small Capacitive Feed Antennas Using Stacked Meander Lines

Research Article A Compact Experimental Planar Antenna with a USB Connector for Mobile Phone Application

Research Article Effect of Parasitic Element on 408 MHz Antenna for Radio Astronomy Application

Resonant Antennas: Wires and Patches

A Simple Dual-Wideband Magneto-Electric Dipole Directional Antenna

Research Article Embedded Spiral Microstrip Implantable Antenna

EMG4066:Antennas and Propagation Exp 1:ANTENNAS MMU:FOE. To study the radiation pattern characteristics of various types of antennas.

A COMPACT UWB MONOPOLE ANTENNA WITH WIMAX AND WLAN BAND REJECTIONS

Research Article Wideband Dual-Element Antenna Array for MIMO Mobile Phone Applications

Research Article A UWB Band-Pass Antenna with Triple-Notched Band Using Common Direction Rectangular Complementary Split-Ring Resonators

Chapter 7 Design of the UWB Fractal Antenna

Research Article Triband Omnidirectional Circularly Polarized Dielectric Resonator Antenna with Top-Loaded Alford Loop

Research Article Low-Profile Repeater Antenna with Parasitic Elements for On-On-Off WBAN Applications

ADVANCES in NATURAL and APPLIED SCIENCES

Research Article A Broadband Single-Feed Circularly Polarized Patch Antenna with Wide Beamwidth

Application Article Improved Low-Profile Helical Antenna Design for INMARSAT Applications

CHAPTER 5 PRINTED FLARED DIPOLE ANTENNA

A NOVEL DUAL-BAND PATCH ANTENNA FOR WLAN COMMUNICATION. E. Wang Information Engineering College of NCUT China

High gain W-shaped microstrip patch antenna

Research Article Design of a Compact Quad-Band Slot Antenna for Integrated Mobile Devices

Research Article A Multibeam Antenna Array Based on Printed Rotman Lens

A Wideband Dual-polarized Modified Bowtie Antenna for 2G/3G/LTE Base-station Applications

PLANAR BEAM-FORMING ARRAY FOR BROADBAND COMMUNICATION IN THE 60 GHZ BAND

A NEW INNOVATIVE ANTENNA CONCEPT FOR BOTH NARROW BAND AND UWB APPLICATIONS. Neuroscience, CIN, University of Tuebingen, Tuebingen, Germany

A Phase Diversity Printed-Dipole Antenna Element for Patterns Selectivity Array Application

Triangular Patch Antennas for Mobile Radio-Communications Systems

Design and Development of a 2 1 Array of Slotted Microstrip Line Fed Shorted Patch Antenna for DCS Mobile Communication System

TRIPLE-BAND OMNI-DIRECTIONAL ANTENNA FOR WLAN APPLICATION

FOUR BRANCHES YAGI ARRAY OF MICROSTRIP PATCH ANTENNA S DESIGN AND ANALYSIS FOR WIRELESS LAN APPLICATION

Research Article A Dual Band Patch Antenna with a Pinwheel-Shaped Slots EBG Substrate

Broadband and Gain Enhanced Bowtie Antenna with AMC Ground

Micro-strip line feed I shaped slot Antenna with finite slotted ground plane for Return Loss enhancement

Research Article Design and Optimization of a Millimetre Wave Compact Folded Magic-T

Ultra Wideband Slotted Microstrip Patch Antenna for Downlink and Uplink Satellite Application in C band

Couple-fed Circular Polarization Bow Tie Microstrip Antenna

Research Article A Broadband Circularly Polarized Stacked Probe-Fed Patch Antenna for UHF RFID Applications

Design of a Short/Open-Ended Slot Antenna with Capacitive Coupling Feed Strips for Hepta-Band Mobile Application

WIDE BEAMWIDTH QUADIFILAR HELIX ANTENNA WITH CROSS DIPOLES

A High Gain Double-Octagon Fractal Microstrip Yagi Antenna

Transcription:

Antennas and Propagation Volume 214, Article ID 12362, 7 pages http://dx.doi.org/1.1155/214/12362 Research Article Yagi Array of Microstrip Quarter-Wave Patch Antennas with Microstrip Lines Coupling Juhua Liu, 1,2 Yue Kang, 1,2 Jie Chen, 1,2 and Yunliang Long 1,2 1 Department of Electronics and Communication Engineering, Sun Yat-sen University, Guangzhou 516, China 2 SYSU-CMU Shunde International Joint Research Institute, Shunde 5283, China Correspondence should be addressed to Juhua Liu; liujh33@mail.sysu.edu.cn Received 28 March 214; Revised 29 June 214; Accepted 14 July 214; Published 22 July 214 AcademicEditor:Z.N.Chen Copyright 214 Juhua Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A new kind of Yagi array of quarter-wave patch antennas is presented. The Yagi array has a low profile, a wide bandwidth, and a high gain. A main beam close to endfire is produced, with a vertical polarization in the horizontal plane. A set of microstrip lines are introduced between the driven element and the first director element to enhance the coupling between them, and therefore the bandwidth could be increased and the back lobes could be suppressed. Measured results show that the Yagi array with 4 elements generates a peak gain of about 9.7 dbi, a front-to-back ratio higher than 1 db, and a 1 db return loss band from 4.68 GHz to 5.24 GHz, with a profile of 1.5 mm and an overall size of 8 1 mm 2. An increase of the number of director elements would enhance the gain and have the main beam pointing closer to endfire. 1. Introduction YAGI-UDA arrays of classical electric dipole antennas are famous and widely used [1 3], because they provide a high gain and have a simple structure with only one driven element. However, the classical Yagi array of dipole antennas has a high profile (about half wavelength) if it is set for generating vertical polarization. Yagi array of monopole antennas [4] is also developed that produces a beam close to endfire and with a vertical polarization in the horizontal plane. Nonetheless, the Yagi array of monopole antennas has ahighprofileof.25λ (where λ is the wavelength in free space). In mobile communications, vertical polarization is usually preferred, since transmitter and receiver can keep thesameverticalpolarizationforgoodconnectionnomatter how transmitter or receiver rotates on a horizontal platform. Recently, Yagi arrays of printed antennas [5 12] have been studied, since printed antennas have a low profile, light weight, and easy fabrication. The microstrip Yagi array of half-wave patch antennas [5 9] provides a high gain and has its main beam tilted away from the broadside. This type of antenna can generate a vertical polarization in the horizontal plane. The quasi Yagi array based on classical dipole antennas [1 12] has a high gain,a wide bandwidth, and a main beam pointing exactly at endfire, but this type of Yagi arrays could only generate horizontal polarization. In this paper, we propose a new type of microstrip Yagi array based on quarter-wave patch antennas. The microstrip Yagi array has advantages of low profile and simple structure and can easily be fabricated on a PCB with shorting vias. A set of microstrip lines are introduced between the driven element and the first director element to enhance the coupling between them, and therefore the bandwidth couldbeincreasedandthebacklobescouldbesuppressed. An increase of the number of director elements would enhancethegainandhavethemainbeampointingcloser to endfire. The front-to-back ratio of the presented Yagi array is higher than 1 db. Compared with a half-wave patch antenna, a quarter-wave patch antenna has half the length of thehalf-wavepatch,andthereforetheyagiarrayofquarterwave patch antennas has a smaller length compared with the conventional Yagi array of half-wave patch antennas. The comparison between the Yagi array of half-wave patch

2 Antennas and Propagation L r L d L m L d1 L d2 5 R D D1 D2 1 15 p d b s m s m W W g S 11 2 25 3 35 y s g x s r s d s d s d2 L g d 4 45 4.4 4.6 4.8 5 5.2 5.4 5.6 Frequency (GHz) 4E (not coupled), HFSS 4E (coupled), HFSS 4E (coupled), measure 12E (coupled), measure z x ε r h Figure 3: Reflection coefficients for the 4-element Yagi array of quarter-wave patch antennas without microstrip lines coupling, the 4-element Yagi array with microstrip lines coupling (Figure 2), and the 12-element Yagi array with microsrip lines coupling (Figure 7). Figure 1: Top view and cross-section of the microstrip Yagi array of quarter-wave patch antennas. Figure 2: Photo for the 4-element Yagi array of quarter-wave patch antennas with the geometry shown in Figure 1. antennas and the Yagi array of quarter-wave patch antennas will be discussed in the paper. 2. Quarter-Wave Patch Antenna Yagi Array 2.1. Operation Principles. The structure of the Yagi array basedfourquarter-wavepatchantennasisshowninfigure1. Four quarter-wave patch antennas [13 15] and a set of coupling microstrip lines are fabricated on a substrate backed with a ground plane. The substrate could be air or dielectric substrate. The four quarter-wave patch antennas include a driven element (D), two director elements (D1 and D2), and a reflector element (R). Only the driven element is excited with a 5 Ω coaxial probe, and the other patches are parasitic radiators. Radiation is mainly generated from the open apertures of the four quarter-wave patches (the open apertures opposite to the shorting vias). Since the tangential electric field at each open aperture can be considered as a magnetic current, the Yagi array can be considered as a Yagi array of magnetic elements. With respect to the principle of duality to the classical electric dipole Yagi array, the parasitic magnetic element would act as a reflector when it has an additional capacitive component and it would act as a director when it has an additional inductive component. The reactive component of each magnetic element can be controlled by adjusting the length of the quarter-wave patch (the distance from the open edge to the shorting vias of the quarter-wave patch). Therefore, a quarter-wave patch must have a smaller length in order to have an additional inductive component (in view at the open aperture), when it acts as a director. Otherwise,aquarter-wavepatchwouldactasareflectorwhen ithasalargerlength.thelengthsofthedirectorsandreflector need to be tuned with simulation tools (such HFSS) to have optimum values and to have the array radiating in forward direction. In order to make more power coupled into the first director from the driven element, three parallel microstrip lines with equal widths (W 2s m )/3 are introduced between them. Actually, the three coupling microstrip lines can be considered as a wide microstrip line with width W that is cut with two slits with width s m,asshowninfigure1. Thetwo slits cutting the wide microstrip line are to avoid the wide microstrip line resonating as a radiating patch. Therefore, the coupling effect between the driven element and the first director element is mainly through a guided wave under the microstrip transmission lines. On the other hand, the coupling between the driven and the reflector elements and that between the first and the second elements are through space wave.

Antennas and Propagation 3 1 3 3 1 12 9 6 2 6 6 2 15 3 3 3 4 9 9 4 18 3 3 2 1 12 12 2 1 21 33 15 ±18 15 24 27 3 E θ, measure E θ, HFSS E φ, measure E φ, HFSS E θ, measure E θ, HFSS E φ, measure E φ, HFSS (a) (b) Figure 4: Elevation (a) and azimuth (b) radiation patterns for the Yagi array (Figure 2) working at 5.1GHz. 1 3 3 1 12 9 6 2 6 6 2 15 3 3 3 4 9 9 4 18 3 3 2 1 12 15 ±18 15 12 2 1 21 24 27 3 33 (f = 4.8 GHz) (a) (f = 4.8 GHz) (b) Figure 5: Measured elevation (a) and azimuth (b) radiation patterns for the Yagi array (Figure 2). The width s d of the gaps between the coupling microstrip lines and the quarter-wave patches controls the coupling strength, which is usually less than the thickness h of the substrate. The length L m of the coupling microstrip lines would have an effect on the directivity and front-to-back (F/B) ratio. The length L m is usually between.1 λ and.15 λ.weletall theseelementshavethesamewidthw, and then we tune the length of each element to control its resonant frequency. Optimized values for the parameters of the Yagi array are given in Table 1. 2.2. 4-Element Yagi Array. Simulated and measured results for the reflection coefficient are shown in Figure 3.The array has an overall size of 1 8 mm 2 and a profile of 1.5 mm. It shows that the simulated results agree very well with the measured ones. Measured results show that the array works in the band from 4.68 GHz to 5.24 GHz for the reflection coefficient being less than 1 db, with a fractional bandwidth of 11.3%. The profile of the antenna is about.26λ (where λ isthewavelengthinfreespace). Also shown in Figure 3 is the reflection coefficient for the Yagi array without microstrip lines coupling between the

4 Antennas and Propagation Gain 12 1 8 6 4 2 4.4 4.6 4.8 5 5.2 5.4 5.6 Frequency (GHz) 4E, HFSS 4E, measure 12E, measure Figure 6: Gains for the 4-element Yagi array (Figure 2)andthe12- element Yagi array (Figure 7). Yagi array of quarter-wave patch antennas (Figure 1) Table 1: Parameters for the Yagi arrays. Yagi array of half-wave patch antennas (Figure 9) Variable Values Variable Values ε r 2.33 ε r 2.33 h 1.57 mm h 1.57 mm L d 8.926 mm L d 17.6 mm L r 9.26 mm L r 19 mm L d1 7.826 mm L d1 15 mm L d2 7.626 mm L d2 15 mm W 4 mm W 25 mm b 1.4 mm b 1.3 mm s d.8 mm s.8 mm s m.8 mm L g 115 mm L m 8.4 mm W g 8 mm s r 3.37 mm s d2 3.37 mm s g 23.67 mm L g 1 mm W g 8 mm d.6 mm p 1.5 mm Figure 7: Photo of the 12-element Yagi array of quarter-wave patch antennas. driven element and the first director element. It shows that the bandwidth could be greatly improved when the coupling microstrip lines are introduced. Figure 4 shows radiation patterns in the elevation plane and in the azimuth plane for the Yagi array working at 5.1 GHz. It shows that simulated results agree very well with measured ones. While not shown here, the main beam would point exactly at endfire when the array is on an infinite ground plane.duetothefinitegroundplanediffractioneffects,the main beam does not point exactly at endfire but at an angle of about 45 5 from the normal direction, when the array is in a finite ground plane. Measured results show that the cross polarization is less than 17 db in the main elevation plane and less than 1 db in the horizontal (azimuth) plane. The front-to-back (F/B) ratio that is used to represent the main lobe in the front quadrant over that of the reflected lobe in thebackquadrantishigherthan1db. Figure 5 shows radiation patterns for other frequencies for the Yagi array. It shows that the beam directions are stable at an angle of about 45 5 from the normal direction. While not shown here, the cross polarization is also less than 1 db for these frequencies. The back lobes for these frequencies are less than 1 db, as shown in the horizontal plane in Figure 5. Figure 6 showsthegainsfortheyagiarrayinfiniteground plane. Figure 6 shows that measured gains (dashed line) agree very well with simulated ones (dotted line). Measured results show that the array has a gain of about 9.5 dbi in the band from 4.68 GHz to 5.24 GHz. 2.3. 12-Element Yagi Array. The photo of the designed Yagi array is shown in Figure 7.Thesubstrate,thefirstfourpatches, andthecouplingmicrostriplinesarethesameastheyagi array shown in Figure 2. The added eight director elements arethesameastheseconddirectorelementthathasalength of L d2 = 7.626 mm, and the apertures of the added eight director elements have the same size as that of the second element. The ground plane has a length of L g = 18 mm and awidthofw g =8mm. The reflection coefficient for the Yagi array with 12 radiators is shown in black dashed line in Figure 2. Itshows that the 12-element Yagi array works in the band from 4.64 GHz to 5.22 GHz for the reflection coefficient being less than 1dB,withafractionalbandwidthof11.8%.The bandwidthoftheyagiarraywith12radiatorsisverycloseto that of the Yagi array with 4 radiators. As a matter of fact, the driven and the first director elements play a much more important role in the bandwidth than other elements, since the coupling through a guided wave under the microstrip lines between the driven and the first director elements is much stronger than the coupling through space waves between other elements. Therefore, adding more director elements would not help to enhance the bandwidth in this type of Yagi array.

Antennas and Propagation 5 1 2 6 3 3 6 1 2 15 12 9 6 3 3 3 4 9 9 4 18 3 3 2 1 12 15 ±18 15 12 2 1 21 24 27 3 33 (f = 4.8 GHz) (a) (f = 4.8 GHz) (b) Figure 8: Measured radiation patterns in the elevation (a) plane and in the azimuth (b) plane for the 12-element Yagi array (Figure 7). 1 12 L r L d L d1 L d1 D 9 b s W W g S 11 1 6 Gain (dbi) 2 3 y x L g Figure 9: Geometry of the Yagi array of half-wave patch antennas. The gain of the antenna with 12 elements is shown in red line in Figure 6. Measured results show that the peak gain of the 12-element Yagi array is about 1.5 dbi in the band from 4.64 GHz to 5.22 GHz, which is about 1 db higher than that of the 4-element Yagi array. Measured radiation patterns for the 12-element Yagi array are shown in Figure 8. It shows that the main beam of the 12-element Yagi array would point closer to endfire compared with the 4-element Yagi array. The beam direction is 65 75 entitled from the normal direction. 3. Comparisons with Yagi Array of Half-Wave Patch Antennas In this section, the Yagi array of quarter-wave patch antennas is compared with the conventional Yagi array of half-wave patch antennas. The geometry of the Yagi array of half-wave patch antennas is shown in Figure 9. Tohaveareasonable 3 4.8 4.9 5 5.1 5.2 5.3 5.4 5.5 5.6 Frequency (GHz) Figure 1: Reflection coefficient and gain for the 4-element Yagi array of half-wave patch antennas. compassion, the two kinds of Yagi arrays are fabricated on the same substrate. The length of the driven half-wave patch antenna is twice the effective length [16]ofthequarter-wave patch antenna. To prevent higher modes of the half-wave patch antenna to be excited, the width W of the half-wave patch antennas is 25 mm, which is smaller than the width of the quarter-wave patch antennas. The parameters for the Yagi array half-wave patch antennas and those for the Yagi arrays of quarter-wave patch antennas are given in Table 1. Simulated results for the reflection coefficient and gain forthe4-elementyagiarrayofhalf-wavepatchantennas are shown in Figure 1. Simulated results for the radiation patterns in the elevation and azimuth planes for the Yagi array are shown in Figure 11.Table2 gives data for the comparisons between the Yagi array of half-wave patch antennas and the Yagi array of quarter-wave patch antennas.

6 Antennas and Propagation 1 3 3 1 12 9 6 2 6 6 2 15 3 3 3 4 9 9 4 18 3 3 2 1 12 12 2 1 21 33 15 ±18 15 24 27 3 (f = 5.3 GHz) (f = 5.1 GHz) (f = 5.4 GHz) (a) (f = 5.3 GHz) (f = 5.1 GHz) (f = 5.4 GHz) (b) Figure 11: Elevation radiation patterns (a) in the xz plane and azimuth radiation patterns (b) in the xy plane for the 4-element Yagi array of half-wave patch antennas. Table2:ComparisonsbetweentheYagiarrayofquarter-wavepatch Antennas and the Yagi array of half-wave patch antennas. Character Yagi array of quarter-wave patch antennas (Figure 1) Yagi array of half-wave patch antennas (Figure 9) Band 4.68 5.24 GHz 5. 5.43 GHz Fractional bandwidth 11.3% 8.25% Beamwidth (elevation plane) 56 58 42 46 Beamwidth (azimuth plane) 44 6 8 87 Gain 8.65 9.9 dbi 8.28 1.19 dbi Front-to-back ratio >1 db >7.4 db Radiation angle (from broadside) 45 5 35 4 Radiation efficiency 91 98% 95 99% Size of driven patch 8.926 4 mm 2 17.6 25 mm 2 Size of ground plane 1 8 mm 2 115 8 mm 2 From Table 2, it is seen that the bandwidth of the Yagi array of quarter-wave patch antennas is slightly wider than the Yagi array of half-wave patch antenna. The size of the ground plane for the Yagi array of quarter-wave patch antenna is smaller than that for the Yagi array of halfwave patch antenna, because the length of each quarter-wave patch antenna is only half the length of the corresponding half-wave patch antenna. The main beam of the Yagi array of quarter-wave patch antennas points closer to endfire than that of the Yagi array of half-wave patch antennas, because a single quarter-wave patch antenna has an almost omnidirectional pattern in upper half-space (when in infinite ground plane) while a single half-wave patch antenna has its main beam point at broadside [6]. The F/B ratio for the Yagi array of quarter-wave patch antennas is higher than that for the Yagi array of half-wave patch antennas. The gains arealmostthesameforthetwokindsofyagiarrays.the efficiency for the Yagi array of quarter-wave patch antennas is notashighasthatfortheyagiarrayofquarter-waveantennas due to the conducting loss of the shorting vias in the quarterwave patch antennas. Actually, the shorting-vias may also result in a sloppy fabrication, so the period of the shortingvias should not be too small (the period of the shorting-vias is about 2 2.5 times the diameter of the shorting-vias [16]). 4. Conclusion A new type of Yagi array of quarter-wave patch antennas has been presented and studied. The Yagi array has a wide bandwidth and a high gain and provides a vertical polarization in the horizontal plane. A Yagi array with 4 microstrip quarterwave patch antennas is designed and measured. Measured results show that the Yagi array generates a gain of about 9.5dBiandabandwidthof11.3%,withanoverallsizeof 1 8 mm 2 and a profile of 1.5 mm. An increase of director radiators of the Yagi array would enhance the gain and has themainbeampointingclosertoendfire. Compared with the classical Yagi array of half-wave patch antennas, the presented Yagi array of quarter-wave antennas has a smaller length, a slightly wider bandwidth, a beam closer to endfire, and a higher F/B ratio. However, the efficiency of the Yagi array of quarter-wave patch antennas isnotashighasthatoftheyagiarrayofhalf-wavepatch

Antennas and Propagation 7 antennas. Both types of Yagi arrays have almost the same gains. Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper. [15] Y. X. Guo, K. M. Luk, and K. F. Lee, L-probe proximity-fed short-circuited patch antennas, Electronics Letters, vol. 35, no. 24, pp. 269 27, 1999. [16] Y. Cassivi, L. Perregrini, P. Arcioni, M. Bressan, K. Wu, and G. Conciauro, Dispersion characteristics of substrate integrated rectangular waveguide, IEEE Microwave and Wireless Components Letters,vol.12,no.9,pp.333 335,22. Acknowledgment This work was supported in part by the Research Project of Guangdong Province (212B969). References [1] H. Yagi, Beam transmission of the ultra short waves, Proceedings of the IEEE,vol.16,pp.715 741,1928. [2] J.D.KrausandR.J.Marhefka,Antennas: For All Applications, chapter8,mcgraw-hill,newyork,ny,usa,22. [3] T. A. Milligan, Traveling-wave antennas, in Modern Antenna Design, chaper 1, John Wiley & Sons, Hoboken, NJ, USA, 2nd edition, 25. [4] A. Blalanis, Modern Antenna Handbook, JohnWiley&Sons, New York, NY, USA, 28. [5] J. Huang, Planar microstrip Yagi array antenna, in Proceedings of the Digest Antennas and Propagation Society International Symposium, vol. 2, pp. 894 897, San Jose, Calif, USA, June 1989. [6] J. Huang and A. C. Densmore, Microstrip Yagi array antenna for mobile satellite vehicle application, IEEE Transactions on Antennas and Propagation,vol.39,no.7,pp.124 13,1991. [7] G. R. DeJean and M. M. Tentzeris, A new high-gain microstrip Yagi array antenna with a high front-to-back (F/B) ratio for WLAN and millimeter-wave applications, IEEE Transactions on Antennas and Propagation, vol. 55, no. 2, pp. 298 34, 27. [8] G. R. DeJean, T. T. Thai, S. Nikolaou, and M. M. Tentzeris, Design and analysis of microstrip bi-yagi and quad-yagi antenna arrays for WLAN applications, IEEE Antennas and Wireless Propagation Letters, vol. 6, pp. 244 248, 27. [9]T.T.Thai,G.R.DeJean,andM.M.Tentzeris, Designand development of a novel compact soft-surface structure for the front-to-back ratio improvement and size reduction of a microstrip Yagi array antenna, IEEE Antennas and Wireless Propagation Letters,vol.7,pp.369 373,28. [1] W. R. Deal, N. Kaneda, J. Sor, Y. Qian, and T. Itoh, A new quasi-yagi antenna for planar active antenna arrays, IEEE Transactions on Microwave Theory and Techniques, vol.48,no. 6, pp. 91 918, 2. [11] N. Kaneda, W. R. Deal, Y. Qian, R. Waterhouse, and T. Itoh, A broad-band planar quasi-yagi antenna, IEEE Transactions on Antennas and Propagation,vol.5,no.8,pp.1158 116,22. [12] P. R. Grajek, B. Schoenlinner, and G. M. Rebeiz, A 24- GHz high-gain Yagi-Uda antenna array, IEEE Transactions on Antennas and Propagation,vol.52,no.5,pp.1257 1261,24. [13] R. A. Sainati, CAD of Microstrip Antennas for Wireless Application,ArtechHouse,Norwood,Mass,USA,1996. [14] S. Pinhas and S. Shtrikman, Comparison between computed and measured bandwidth of quarter-wave microstrip radiators, IEEE Transactions on Antennas and Propagation,vol.36,no.11, pp. 1615 1616, 1988.

Rotating Machinery Engineering Volume 214 The Scientific World Journal Volume 214 Distributed Sensor Networks Sensors Volume 214 Volume 214 Volume 214 Control Science and Engineering Advances in Civil Engineering Volume 214 Volume 214 Submit your manuscripts at Electrical and Computer Engineering Robotics Volume 214 Volume 214 VLSI Design Advances in OptoElectronics Navigation and Observation Volume 214 Chemical Engineering Volume 214 Volume 214 Active and Passive Electronic Components Antennas and Propagation Aerospace Engineering Volume 214 Volume 214 Volume 214 Modelling & Simulation in Engineering Volume 214 Volume 214 Shock and Vibration Volume 214 Advances in Acoustics and Vibration Volume 214