Hardware implementation of Zero-force Precoded MIMO OFDM system to reduce BER

Similar documents
Optimized BPSK and QAM Techniques for OFDM Systems

2.

IN AN MIMO communication system, multiple transmission

Performance Comparison of Channel Estimation Technique using Power Delay Profile for MIMO OFDM

Channel Estimation for Downlink LTE System Based on LAGRANGE Polynomial Interpolation

4x4 Time-Domain MIMO encoder with OFDM Scheme in WIMAX Context

Simulation Study and Performance Comparison of OFDM System with QPSK and BPSK

DESIGN, IMPLEMENTATION AND OPTIMISATION OF 4X4 MIMO-OFDM TRANSMITTER FOR

Performance Evaluation of STBC-OFDM System for Wireless Communication

OFDM AS AN ACCESS TECHNIQUE FOR NEXT GENERATION NETWORK

Performance Analysis of SVD Based Single and. Multiple Beamforming for SU-MIMO and. MU-MIMO Systems with Various Modulation.

A Research Concept on Bit Rate Detection using Carrier offset through Analysis of MC-CDMA SYSTEM

Anju 1, Amit Ahlawat 2

Performance Analysis of Ofdm Transceiver using Gmsk Modulation Technique

Implementation and Comparative analysis of Orthogonal Frequency Division Multiplexing (OFDM) Signaling Rashmi Choudhary

1. INTRODUCTION II. SPREADING USING WALSH CODE. International Journal of Advanced Networking & Applications (IJANA) ISSN:

ANALYSIS OF BER AND SEP OF QPSK SIGNAL FOR MULTIPLE ANENNAS

Keywords SEFDM, OFDM, FFT, CORDIC, FPGA.

A Low Power and Low Latency Inter Carrier Interference Cancellation Architecture in Multi User OFDM System

Performance Evaluation of OFDM System with Rayleigh, Rician and AWGN Channels

A Polling Based Approach For Delay Analysis of WiMAX/IEEE Systems

Power Efficiency of LDPC Codes under Hard and Soft Decision QAM Modulated OFDM

A Novel Investigation on BER Measurement of SC- FDMA System with Combined Tomlinson-Harashima Precoding and Reed Solomon Coding

OFDM Systems For Different Modulation Technique

Performance Analysis of OFDM for Different Digital Modulation Schemes using Matlab Simulation

Summary of the PhD Thesis

UNDERSTANDING LTE WITH MATLAB

Comparison of BER for Various Digital Modulation Schemes in OFDM System

BER ANALYSIS OF WiMAX IN MULTIPATH FADING CHANNELS

An Efficient Linear Precoding Scheme Based on Block Diagonalization for Multiuser MIMO Downlink System

Power allocation for Block Diagonalization Multi-user MIMO downlink with fair user scheduling and unequal average SNR users

Performance Evaluation of IEEE STD d Transceiver

Realization of 8x8 MIMO-OFDM design system using FPGA veritex 5

An OFDM Transmitter and Receiver using NI USRP with LabVIEW

COMPARISON OF CHANNEL ESTIMATION AND EQUALIZATION TECHNIQUES FOR OFDM SYSTEMS

Decrease Interference Using Adaptive Modulation and Coding

Multiple Input Multiple Output (MIMO) Operation Principles

Simulative Investigations for Robust Frequency Estimation Technique in OFDM System

Performance Analysis of MIMO-OFDM based IEEE n using Different Modulation Techniques

Orthogonal Cyclic Prefix for Time Synchronization in MIMO-OFDM

Cascaded Tomlinson Harashima Precoding and Block Diagonalization for Multi-User MIMO

Technical Aspects of LTE Part I: OFDM

Advanced 3G & 4G Wireless Communication Prof. Aditya K. Jaganathan Department of Electrical Engineering Indian Institute of Technology, Kanpur

SPARSE CHANNEL ESTIMATION BY PILOT ALLOCATION IN MIMO-OFDM SYSTEMS

Performance Evaluation of Wireless Communication System Employing DWT-OFDM using Simulink Model

Page 1. Overview : Wireless Networks Lecture 9: OFDM, WiMAX, LTE

Bit Error Rate Performance Evaluation of Various Modulation Techniques with Forward Error Correction Coding of WiMAX

Study and Analysis of 2x2 MIMO Systems for Different Modulation Techniques using MATLAB

Evaluation of BER and PAPR by using Different Modulation Schemes in OFDM System

Channel Estimation by 2D-Enhanced DFT Interpolation Supporting High-speed Movement

Iterative Clipping and Filtering Technique for PAPR Reduction in OFDM System without Encoding

Wireless Communication Systems: Implementation perspective

Improvement of the Throughput-SNR Tradeoff using a 4G Adaptive MCM system

Reduced Complexity of QRD-M Detection Scheme in MIMO-OFDM Systems

ISSN: International Journal of Advanced Research in Computer Engineering & Technology (IJARCET) Volume 1, Issue 8, October 2012

BER performance evaluation of conventional OFDM system and Wavelet Packet Modulator System in 4G LTE

ISSN (PRINT): , (ONLINE): , VOLUME-4, ISSUE-5,

Review on Improvement in WIMAX System

The Impact of EVA & EPA Parameters on LTE- MIMO System under Fading Environment

Artificial Neural Network Channel Estimation for OFDM System

An FPGA 1Gbps Wireless Baseband MIMO Transceiver

Available online at ScienceDirect. Procedia Technology 17 (2014 )

Image Transmission over OFDM System with Minimum Peak to Average Power Ratio (PAPR)

Block Processing Linear Equalizer for MIMO CDMA Downlinks in STTD Mode

Study of Turbo Coded OFDM over Fading Channel

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

ENHANCING BER PERFORMANCE FOR OFDM

BLOCK-DIAGONAL GEOMETRIC MEAN DECOMPOSITION (BD-GMD) FOR MULTIUSER MIMO BROADCAST CHANNELS

Nutaq OFDM Reference

TCM-coded OFDM assisted by ANN in Wireless Channels

DESIGN OF STBC ENCODER AND DECODER FOR 2X1 AND 2X2 MIMO SYSTEM

Low BER performance using Index Modulation in MIMO OFDM

INTERFERENCE SELF CANCELLATION IN SC-FDMA SYSTEMS -A CAMPARATIVE STUDY

MIMO CHANNEL OPTIMIZATION IN INDOOR LINE-OF-SIGHT (LOS) ENVIRONMENT

Field Experiments of 2.5 Gbit/s High-Speed Packet Transmission Using MIMO OFDM Broadband Packet Radio Access

A Cyclic Prefix OFDM System with BPSK Modulation By Er. V ipin Mittal & Prof. S.R. Mittal Indus Institute of Engineering and Technology

Orthogonal Frequency Division Multiplexing (OFDM) based Uplink Multiple Access Method over AWGN and Fading Channels

MIMO Systems and Applications

Keywords MISO, BER, SNR, EGT, SDT, MRT & BPSK.

Hardware Implementation of OFDM Transceiver. Authors Birangal U. M 1, Askhedkar A. R 2 1,2 MITCOE, Pune, India

G410 CHANNEL ESTIMATION USING LEAST SQUARE ESTIMATION (LSE) ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM) SYSTEM

Improving the Data Rate of OFDM System in Rayleigh Fading Channel Using Spatial Multiplexing with Different Modulation Techniques

UNIFIED DIGITAL AUDIO AND DIGITAL VIDEO BROADCASTING SYSTEM USING ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM) SYSTEM

CHAPTER 8 MIMO. Xijun Wang

FPGA Implementation of PAPR Reduction Technique using Polar Clipping

BER Performance of CRC Coded LTE System for Various Modulation Schemes and Channel Conditions

Comparison between Performances of Channel estimation Techniques for CP-LTE and ZP-LTE Downlink Systems

International Journal of Digital Application & Contemporary research Website: (Volume 1, Issue 7, February 2013)

Professor & Executive Director, Banasthali University, Jaipur Campus, Jaipur (Rajasthan), INDIA 3 Assistant Professor, PIET, SAMALKHA Haryana, INDIA

Performance Analysis of OFDM System with QPSK for Wireless Communication

Performance analysis of MISO-OFDM & MIMO-OFDM Systems

Volume 2, Issue 9, September 2014 International Journal of Advance Research in Computer Science and Management Studies

Low Power Efficient MIMO-OFDM Design for n WLAN System

REALISATION OF AWGN CHANNEL EMULATION MODULES UNDER SISO AND SIMO

International Journal of Digital Application & Contemporary research Website: (Volume 2, Issue 7, February 2014)

Carrier Frequency Offset Estimation Algorithm in the Presence of I/Q Imbalance in OFDM Systems

Performance Comparison of MIMO Systems over AWGN and Rician Channels with Zero Forcing Receivers

Performance analysis of FFT based and Wavelet Based SC-FDMA in Lte

Link Adaptation Technique for MIMO-OFDM systems with Low Complexity QRM-MLD Algorithm

Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques

Transcription:

Hardware implementation of Zero-force Precoded MIMO OFDM system to reduce BER Deepak Kumar S Nadiger 1, Meena Priya Dharshini 2 P.G. Student, Department of Electronics & communication Engineering, CMRIT Engineering College, Bangalore, India 1 Associate Professor, Department of Electronics & communication Engineering, CMRIT Engineering College, Bangalore, India 2 ABSTRACT: Achieving high data rates in wireless transmission is in demand and has become a competitive factor in current fast moving world. Generally Multiple-Input-Multiple-Output systems are used to achieve high data rates. In MIMO every user may experience inter-user-interference because data of two or more users is transmitted from transmitter over a same channel. To mitigate this inter-user-interference a zero-force pre-coding is used at the transmitter, where data is coded and transmitted through channel (MIMO), so that data received at receiver has less Bit Error Rate (BER). Various efforts are made to simulate zero-force pre-coding algorithm for performance, in this work zero-force pre-coding technique with OFDM transmitter and receiver is implemented in HDL and this Zero-force precoded MIMO-OFDM system is simulated using Xilinx 13.4 and MATLAB R2013. BER is calculated for different values of SNR and this BER is compared with MIMO OFDM channel without pre-coding. More over this zero-force pre-coded MIMO OFDM system is synthesized for synthesis report. KEYWORDS: Multiple-input-multiple-output (MIMO) OFDM system, Zero-force pre-coding, Block Diagonalization, Singular value decomposition (SVD), Bit error rate (BER).. I. INTRODUCTION In wireless communication achieving higher channel capacity by efficiently exploiting the transmission medium is a challenging task. Normally communication is carried out through TDMA and FDMA, Where single user data is transmitted through a channel at a time. In case of TDMA and FDMA maximum channel capacity (Data rate) for particular SNR is theoretically given by Shannon limit. With evolution of 4G technologies and emergence of extremely high rate applications such as high-definition video conference, demands to achieve data rate above this Shannon limit. This demand to achieve high data rate becomes challenging and motivational factor for implementation of MIMO systems without inter-user interference (IUI). To reduce Bit Error Rate (BER) in these MIMO systems due to IUI a proper pre-coding technique should be used which is less complex to implement. One of such technique is to use zero-force pre-coding at transmitter in MIMO system, which is less complex and simple compared to non-linear pre-coding techniques. Zero force pre-coding is a linear pre-coding technique and it based on generalization of channel inversion for Multi user systems, denoted as Block diagonalization. Block diagonalization is a matrix calculated based on singular value decomposition (SVD) operation, which depend on number of users and the dimensions of each user s channel matrix. Paper is organized as follows. Section II gives the literature survey carried out to implement this zero-force pre-coded OFDM system. Section III explains the basic principle of zero-force pre-coding to reduce BER. Section IV provides the implementation details of zero-force pre-coded OFDM system. Section V presents simulated results and Device utilization summary of implementation. Finally, Section VI presents conclusion. Copyright to IJIRSET www.ijirset.com 14368

II. LITERATURE SURVEY Multiple input/multiple output (MIMO) systems were described in the mid-to-late 1990s. MIMO offers higher data rates as well as spectral efficiency. So due to this advantage many standards have already incorporated MIMO. ITU uses MIMO in the High Speed Downlink Packet Access (HSPDA), part of the UMTS standard. MIMO is also part of the 802.11n standard used by wireless router as well as 802.16 for Mobile WiMax application used by cell phones. The LTE standard also incorporates MIMO A single input single output (SISO) channel has one transmitter and one receive [1]. In SISO channel in order to increase the channel capacity it is required to increase the enormous amount of power. In MIMO systems the channel capacity increases linearly with number of transmitting and receiving of antennas. A MIMO system has number of transmitting and receiving antennas and this MIMO system is modeled by using channel matrix H. The matrix H of size (N R, N T ) has N R rows, representing N R received signals, each of which is composed of N T components from N T transmitters. Each column of the H matrix represents the components arriving from one transmitter to N R receivers. The H matrix is called the channel information. Each of its entries is distortion coefficient acting on the transmitted signal amplitude and phase in time-domain. So if H is a channel matrix can be thought as a matrix channel. To find this channel matrix data is sent from one antenna and response is noted from all receivers.this procedure is repeated for all transmitting antennas to obtain all the elements of channel matrix. This channel matrix is a key parameter used in precoding technique to mitigate inter-symbol-interference Different pre-coding techniques are been proposed to mitigate IUI [2]. These pre-coding techniques are classified as linear and non-linear pre-coding techniques. Nonlinear pre-coding technique includes successive minimum-meansquared error (SMMSE) and Tomlinson-Harashima pre-coding (THP). Linear pre-coding includes block diagonalization pre-coding and regularized block diagonalization pre-coding (RBD). Simulation results of all above mentioned pre-coding techniques [2] shows that RBD has less bit error rate and extracts full diversity of the system.rbd is based on generalization of block diagonalization (BD), which forms basis for zero-force pre-coding algorithm. More over these linear pre-coding techniques are less complex to implement when compared with non-linear types. Zero-force pre-coding is a linear pre-coding technique and it is based on calculation of pre-coding matrix [3]. Optimal pre coding matrix M is calculated such that all MUI is zero by choosing a pre coding matrix Mj that lies in the null space of the other users channel matrices. Zero-Forcing (ZF) tries to enforce the complete nulling of the MUI. A MU MIMO DL channel decomposed into multiple parallel independent SU- MIMO channels. The main idea behind the method relies on the computation of the BD matrix via Singular Value Decomposition (SVD) for these SU MIMO channels. The main blocks necessary for Implementing [3] Zero-Forcing pre coding algorithm are: construction of matrices taking vectors as input, extraction of columns from matrices, scalar and matrix multiplications, additions, data storage, SVD factorization. There are different choices for Implementing SVD such as Jocobi rotation and QR decomposition. In our project we use this CORDIC module to implement SVD since they are more accurate and computationally more efficient than Jacobi method III PRINCIPLE ZERO-FORCE PRE-CODING Let [3] us consider a MU-MIMO transmission system that includes linear pre processing performed at the transmitter let the transmitter has n T transmitting antennas. The received signal R at the receiver side can be defined as R = CPd + n (1) Where d is a data vector of arbitrary dimension n T m, P is the n T m pre coding matrix that has to be computed and n is the additive noise. Copyright to IJIRSET www.ijirset.com 14369

The condition to for eliminating the multi-user interferences is that C i P j = 0 for i j. Then computation of the pre coding matrix P becomes extremely important [3]. It is possible to find the optimal pre coding matrix P such that all MUI is zero by choosing a pre coding matrix Pj that lies in the null space of the other users channel matrices. In order to achieve such a goal, the channel matrix of each user, or its estimation, is needed. A MU MIMO down Link channel is then decomposed into multiple parallel independent SU MIMO channels and the main idea behind the method relies on the computation of the Block Diagonalization matrix via a Singular Value Decomposition (SVD). Figure 1 shows the flowchart [3] of the ZF Algorithm. Fig 1. Flow chart of zero-forcing algorithm. IV IMPLEMENTATION OF PRE-CODED MIMO OFDM CHANNEL Hardware implementation of zero-force pre-coded 2X2 MIMO OFDM system is as shown in Fig 2. The binary data is passed through QAM-16 modulator and the modulated data is pre-coded using zero-force pre-coding, then this precoded it is passed through OFDM system. Output of 2 transmitters (or 2 user data) is passed through Additive White Gaussian Noise (AWGN) channel (MATLAB is used to create channel part). Data is received at the receiver by OFDM demodulation and QAM-16 demodulation. BER is calculated for different values of SNR and it is compared with MIMO OFDM channel without pre-coding. Copyright to IJIRSET www.ijirset.com 14370

Transmitter and receiver including zero-force pre-coding is implemented using hardware description language (VHDL) and AWGN channel is implemented using MATLAB coding. Fig 2 Block diagram of Zero-force pre-coded MIMO channel To implement QAM-16 modulation constellation mapping is used as shown in Fig 3, and data is encoded accordingly. This modulated encoded data is of 16 bit width and it passed through IFFT block then and to zero-force pre-coder. Demapping or QAM-16 demodulation used in receiver part is reverse process of constellation mapping. Fig 3 QAM-16 Constellation diagram Copyright to IJIRSET www.ijirset.com 14371

OFDM modulation [5] and demodulation are implemented using IFFT and FFT blocks respectively. Fig 4&5 shows the block diagram to implement OFDM modulator and demodulator respectively. Fig 4 OFDM modulator block diagram. a. The input to symbol generator is the output of zero-force pre-coder a symbol generator will produce 4 symbols (values) based on incoming data. b. Zero padding block pads 4 zeros for the values generated by symbol generator so that the FFT block can have 8 inputs to perform 8-bit IFFT c. An 8-point IFFT is performed on the data coming from zero padding blocks giving 128 values. Taking IFFT is equivalent to adding pilots or subcarrier because adding different orthogonal sinusoidal signals which are nothing but inverse Fourier transform. d. To mitigate the effect of dispersive channel distortion in high data rate OFDM systems, cyclic prefix is introduced to eliminate inter-symbol interference (ISI). It copies the end section of an IFFT packet to the beginning of an OFDM symbol. OFDM demodulation is the reverse process of OFDM modulation which includes inverse cyclic prefix, FFT, inverse zero padding and De-mapping. Here we use 128 point FFT to demodulate the data. De-mapping is nothing but a QAM demodulation Fig 5 OFDM Demodulator block diagram. V.RESULTS In our work OFDM transmitter including zero-force pre-coder and OFDM receiver is implemented in HDL. Channel part is created using MATLAB coding, hence simulation to calculate BER is Performed using two software tools modelsim 6.3f (Xilinx is used for coding) and MATLAB R2013. Intermediate data from one software tool is saved in text file and given as input to another software tool. BER is compared between zero-force pre-coded OFDM MIMO system and OFDM system without pre-coding. The comparison table and plot is as shown below. Copyright to IJIRSET www.ijirset.com 14372

SNR in db. BER for OFDM MIMO system without precoding BER for OFDM MIMO system with pre-coding -10 0.0834 0.0734-5 0.0803 0.0695 0 0.0721 0.0608 5 0.0435 0.0250 10 0.0148 0.0045 BER Comparison plot is as shown in figure 6 Table I BER Comparison. Fig 6 BER Comparison plot.. Synthesis (device utilization summary) result for a Zero-force pre-coded OFDM transmitter and receiver is shown is shown in table below. Selected Device: 4vlx15sf363-12 Speed Grade: -12 Copyright to IJIRSET www.ijirset.com 14373

Device Utilized. For Zero-force pre-coded OFDM For OFDM receiver(% of transmitter(% of utilization) utilization) Number of Slices 12155(197%) 3208(52%) Number of Slice 3950(32%) 2050(16%) Flip Flops Number of 4 input 22267(181%) 4847(39%) LUTs Number of IOS 36 42 Number of bonded IOBs: 36(15%) 42(17%) Table II Device utilization summary. VI. CONCLUSION In this work, a zero-force pre-coded OFDM MIMO system is implementing in HDL (VHDL) by surveying various implementation techniques for each block. A channel is created in MATLAB and the implemented system is simulated to calculate BER. BER is calculated for different values of SNR and it is compared with OFDM MIMO system without pre-coding. Simulation results show that the bit error rate is reduced in zero-force pre-coded OFDM MIMO system. The implemented design is synthesized for synthesis report. REFERENCES [1] Charan Langton, Bernard Sklar Finding MIMO : a tutorial and research survey Oct 2011. [2] Veljko Stankovic and Martin Haardt Novel linear and non-linear multi-user mimo downlink precoding with improved diversity and capacity Ilmenau University of Technology Communications Research Laboratory. [3] Andrea F. Cattoni, Yannick Le Moullec and Claudio Sacchi Zero-Forcing Pre coding for MIMO WiMAX Transceivers: Performance Analysis and Implementation Issues 2013 IEEE. [4] HaiXiang Lin and Henk J SIPS On line CORDIC algorithm 1990 IEEE. [5] Nilesh Chide, Shreyas Deshmukh & Prof. P.B. Borole Implementation of OFDM System using IFFT and FFT. International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 February 2013. [6] R. cavallaro and franklin T.Luk CORDIC arithmetic for SVD processors. 1987 IEEE. [7] Houcque Introduction to MATLAB for engineering students : tutorial. August 2005. Copyright to IJIRSET www.ijirset.com 14374