MIGITATION OF INTER CELL INTERFERENCE AND FADING IN LTE SYSTEMS

Similar documents
Block Error Rate and UE Throughput Performance Evaluation using LLS and SLS in 3GPP LTE Downlink

Downlink Scheduling in Long Term Evolution

A Practical Resource Allocation Approach for Interference Management in LTE Uplink Transmission

System Performance of Cooperative Massive MIMO Downlink 5G Cellular Systems

The final publication is available at IEEE via:

Channel Estimation for Downlink LTE System Based on LAGRANGE Polynomial Interpolation

LTE System Level Performance in the Presence of CQI Feedback Uplink Delay and Mobility

Technical Aspects of LTE Part I: OFDM

(R1) each RRU. R3 each

Open-Loop and Closed-Loop Uplink Power Control for LTE System

Simulation Analysis of the Long Term Evolution

SIMULATION OF LTE DOWNLINK SIGNAL

Decrease Interference Using Adaptive Modulation and Coding

Dynamic Grouping and Frequency Reuse Scheme for Dense Small Cell Network

Carrier Frequency Synchronization in OFDM-Downlink LTE Systems

Multi-Cell Interference Coordination in LTE Systems using Beamforming Techniques

LTE-A Carrier Aggregation Enhancements in Release 11

New Cross-layer QoS-based Scheduling Algorithm in LTE System

Performance Evaluation of Adaptive MIMO Switching in Long Term Evolution

Survey of Power Control Schemes for LTE Uplink E Tejaswi, Suresh B

Evaluation of Adaptive and Non Adaptive LTE Fractional Frequency Reuse Mechanisms

A REVIEW OF RESOURCE ALLOCATION TECHNIQUES FOR THROUGHPUT MAXIMIZATION IN DOWNLINK LTE

Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA. OFDM-Based Radio Access in Downlink. Features of Evolved UTRA and UTRAN

Interference management Within 3GPP LTE advanced

Multiple Antenna Processing for WiMAX

BER Performance of OFDM-IDMA Comparison to OFDM for Femtocell

Inter-cell Interference Mitigation through Flexible Resource Reuse in OFDMA based Communication Networks

American Journal of Engineering Research (AJER) 2015

OFDMA and MIMO Notes

The Impact of EVA & EPA Parameters on LTE- MIMO System under Fading Environment

Physical Layer Frame Structure in 4G LTE/LTE-A Downlink based on LTE System Toolbox

Comparative Study of OFDM & MC-CDMA in WiMAX System

Radio Interface and Radio Access Techniques for LTE-Advanced

System-Level Performance of Downlink Non-orthogonal Multiple Access (NOMA) Under Various Environments

Further Vision on TD-SCDMA Evolution

MASTER THESIS. TITLE: Frequency Scheduling Algorithms for 3G-LTE Networks

Long Term Evolution and Optimization based Downlink Scheduling

3G long-term evolution

A Radio Resource Management Framework for the 3GPP LTE Uplink

ISSN: (Online) Volume 2, Issue 6, June 2014 International Journal of Advance Research in Computer Science and Management Studies

BASIC CONCEPTS OF HSPA

Carrier Frequency Offset Estimation Algorithm in the Presence of I/Q Imbalance in OFDM Systems

Training Programme. 1. LTE Planning Overview. 2. Modelling a LTE Network. 3. LTE Predictions. 4. Frequency and PCI Plan Analysis

Performance Analysis of WiMAX Physical Layer Model using Various Techniques

4G++: Advanced Performance Boosting Techniques in 4 th Generation Wireless Systems. A National Telecommunication Regulatory Authority Funded Project

Page 1. Overview : Wireless Networks Lecture 9: OFDM, WiMAX, LTE

Lecture LTE (4G) -Technologies used in 4G and 5G. Spread Spectrum Communications

IEEE Project m as an IMT-Advanced Technology

Performance Evaluation of Uplink Closed Loop Power Control for LTE System

Dynamic Frequency Hopping in Cellular Fixed Relay Networks

LTE-Advanced research in 3GPP

Planning of LTE Radio Networks in WinProp

2.

Performance Studies on LTE Advanced in the Easy-C Project Andreas Weber, Alcatel Lucent Bell Labs

EasyChair Preprint. A User-Centric Cluster Resource Allocation Scheme for Ultra-Dense Network

Broadcast Operation. Christopher Schmidt. University of Erlangen-Nürnberg Chair of Mobile Communications. January 27, 2010

BER Analysis for MC-CDMA

Radio Resource Allocation Scheme for Device-to-Device Communication in Cellular Networks Using Fractional Frequency Reuse

Inter-Cell Interference Coordination in Wireless Networks

[Gehlot*, 5(3): March, 2016] ISSN: (I2OR), Publication Impact Factor: 3.785

Analysis of RF requirements for Active Antenna System

LTE and NB-IoT. Luca Feltrin. RadioNetworks, DEI, Alma Mater Studiorum - Università di Bologna. Telecom Italia Mobile S.p.a. - TIM

PERFORMANCE ANALYSIS OF ADAPTIVE ANTENNA SYSTEM

Qualcomm Research DC-HSUPA

Analytical Evaluation of the Cell Spectral Efficiency of a Beamforming Enhanced IEEE m System

3GPP: Evolution of Air Interface and IP Network for IMT-Advanced. Francois COURAU TSG RAN Chairman Alcatel-Lucent

(COMPUTER NETWORKS & COMMUNICATION PROTOCOLS) Ali kamil Khairullah Number:

A Downlink Power Control Heuristic Algorithm for LTE Networks

1

WINNER+ IMT-Advanced Evaluation Group

Adaptive Modulation and Coding for LTE Wireless Communication

Fractional Frequency Reuse Schemes and Performance Evaluation for OFDMA Multi-hop Cellular Networks

Performance Evaluation of Wireless Communication System Employing DWT-OFDM using Simulink Model

Self-Management for Unified Heterogeneous Radio Access Networks. Symposium on Wireless Communication Systems. Brussels, Belgium August 25, 2015

Radio Access Techniques for LTE-Advanced

Millimeter-Wave Communication and Mobile Relaying in 5G Cellular Networks

Performance review of Pico base station in Indoor Environments

Lecture 3: Wireless Physical Layer: Modulation Techniques. Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday

Performance of Uplink Carrier Aggregation in LTE-Advanced Systems Wang, Hua; Rosa, Claudio; Pedersen, Klaus

Background: Cellular network technology

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 2.114

Inter-Cell Interference Mitigation in Cellular Networks Applying Grids of Beams

INTERFERENCE SELF CANCELLATION IN SC-FDMA SYSTEMS -A CAMPARATIVE STUDY

Study of Handover Techniques for 4G Network MIMO Systems

Harmonized Q-Learning for Radio Resource Management in LTE Based Networks

2. LITERATURE REVIEW

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing

BER Performance of CRC Coded LTE System for Various Modulation Schemes and Channel Conditions

LTE & LTE-A PROSPECTIVE OF MOBILE BROADBAND

LTE-Advanced and Release 10

Test Range Spectrum Management with LTE-A

Qualcomm Research Dual-Cell HSDPA

SNS COLLEGE OF ENGINEERING COIMBATORE DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK

On Channel-Aware Frequency-Domain Scheduling With QoS Support for Uplink Transmission in LTE Systems

A Polling Based Approach For Delay Analysis of WiMAX/IEEE Systems

Scheduling Algorithm for Coordinated Beamforming in Heterogeneous Macro / Pico LTE-Advanced Networks

Performance of Amplify-and-Forward and Decodeand-Forward

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /PIMRC.2009.

NETWORK SOLUTION FROM GSM to LTE

UPLINK SPATIAL SCHEDULING WITH ADAPTIVE TRANSMIT BEAMFORMING IN MULTIUSER MIMO SYSTEMS

Transcription:

Journal of Computer Science 10 (3): 434-442, 2014 ISSN: 1549-3636 2014 doi:10.3844/jcssp.2014.434.442 Published Online 10 (3) 2014 (http://www.thescipub.com/jcs.toc) MIGITATION OF INTER CELL INTERFERENCE AND FADING IN LTE SYSTEMS 1 Nagarajan Amutha Prabha, 1 Gorla Vidhya Sagar and 2 Venugopal Manikandan 1 School of Electrical Engineering, VIT University, Vellore, TamilNadu, India 2 Department of Electrical and Electronics Engineering, Coimbatore Institute of Technology, Coimbatore, TamilNadu, India Received 2013-09-05; Revised 2013-10-07; Accepted 2013-11-28 ABSTRACT In this study we investigate the compensation of outage area utmost. It introduces the self optimization of the neighbors of the outage cells with antenna tilts for the generation of the most suitable configuration settings for the network with base stations/enodebs positional information. All the neighbors of the outage cell increase their coverage area and thus contribute to cell outage compensation. Every neighbor cell calculates the edge points of its antenna reach by propagation path loss model in order to minimize the inter-cell interference. Antenna parameter selection and optimization has an important role to achieve maximum capacity and coverage performance in LTE and beyond (LTE-A). For this reason, the LTE framework is adopted for simulations and Cell coverage extension, cell capacity enhancement and Inter- Cell Interference (ICI) mitigation provided by optimized antenna parameter investigations on the basis of specifications (TR25.814 and TR36.814). The simulation results provide strong evidence that our scheme delivers substantial gains in terms of coverage compared to existing solutions without sacrificing the SINR. Keywords: Long Term Evolution, OFDMA, Transmission Time Interval, Channel Quality Indicator, Intercell Interference, Region of Interest, User Equipment 1. INTRODUCTION Multi Input Multi Output (MIMO) for increasing the system capacity effectively for the demand of significant LTE access network forms the standard technology growth in mobile data traffic. ensured to achieve the future requirement of advanced Selection of antenna parameters with respect to the universal telecommunication. With simplified network path loss, macroscopic, shadow fading and channel architecture LTE supports more users per cell and quality indicator plays a key role in the optimizing the emphasis Self Organized Network (SON). The coverage capacity and mitigating the fading that occurs. principle of introducing SON is self-configuring, self optimizing network capacity coverage and service 2. SYSTEM MODEL quality. LTE provides better user experience by improving fairness in throughput and higher data rates In LTE downlink transmission, the binary source with a flexible design. Innovation of enodeb provides higher capacity in cell edge throughput and to reduce generator generates the signal randomly. The number of the interference existing between the cells. the generated binary symbols depends on the modulation Orthogonal Frequency Division Multiple Access scheme, i.e., the number of bits per symbol and the (OFDMA) is a modulation technique used in LTE to number of subcarriers (Ikuno et al., 2010). These binary support wide range spectrum and provide high data rates, input data stream is converted into two parallel data low latency with respect to previous networks. The use streams by using serial to parallel converter. Parallel data of subcarrier structure enables simpler implementation of stream is modulated with different subcarriers and Corresponding Author: Nagarajan Amutha Prabha, School of Electrical Engineering, VIT University, Vellore, TamilNadu, India 434

modulation is required to achieve bandwidth efficiency and high data rates in LTE. After the physical resource mapping, zero padding is done because the sampling rate is much higher than the transmission bandwidth of the system. The zero padded signals are applied to Inverse Fast Fourier Transform (IFFT) block for the sake of modulation, where the serial input data stream is divided into a number of parallel streams. To maintain orthogonality, minimum frequency separation is required between these subcarriers. IFFT is used to generate symbols and also reduces the complexity of the transmitter. OFDMA system has the ability to completely remove ICCI between two symbols. Cyclic prefix are inserted before the transmission of the modulated signal to remove the ICCI. The receiver section basically performs the reverse operation of the transmit ter. Physical-layer identity (SAL, 2013) of the cell detection is made through using IFFT and FFT respectively (Fig. 1): cell (1) ID = ID + ID N 3 N N N = 1,, 167 and (1) ID N = 0,1, 2 (2) ID ( 2) (1) The neighboring cell identification is made with relation indicated in Equation 1. The PSS and SSS provide the UE with its physical layer identity within the cell (TSG-RAN, 2009). It supports 504 possible physical layer cell identities and is divided into three groups. Each has 168 cell layer identities for the formation of cell ID. These signals provide time and frequency synchronization within the cell (Zyren, 2007). The performance analysis is estimated with respect to Measurements of the Signal to Interference plus Noise Ratio (SINR) of each Transmission Time Interval and the path loss of the antenna where the measuring of the Signal to Interference plus Noise Ratio (SINR) of each Transmission Time Interval (TTI) are fed back to the serving enodeb via a Channel Quality Indicator (CQI) in order to adjust the Adaptive Modulation and Coding (AMC) parameters for future TTIs appropriately (Kim et al., 2010). The serving enodeb presumes the downlink channel matches the CQI reported by the UE. The performance of this link adaptation is dependent on a non varying SINR within the validity period of a CQI. Consequently, unpredictable SINR variations caused by, e.g., inter-cell interference may result in unpredictable performance losses. Henceforth, Inter-Cell Interference Coordination (ICIC) techniques are indispensable in LTE-compliant 435 mobile communication systems and various strategies were introduced in the past (Carvalho and Vieira, 2011; Wrulich and Rupp, 2009). Castaneda et al. (2007) the authors investigated possible performance gains as utilized in LTE closed loop spatial multiplexing transmission mode. Most of these techniques aim at a reduction of the inter-cell interference instead of a full suppression by utilizing sophisticated scheduling methods for cell-edge users or by negotiation of physical resources between adjacent cells. Consequently, the remaining inter-cell interference is still unpredictable and its influence on the SINR can be described by statistical means only. Currently no fundamental statistical analyses of inter-cell interference exist in literature. Finally, in this contribution the inter-cell interference and the resulting SINR is done in LTE closed loop spatial multiplexing mode. Analytical results are verified by numerical simulations. 3. SIMULATION AND RESULTS OFDMA is employed in the downlink, where orthogonality between different subcarriers allows ignoring interference between users within one cell (Claussen and Nguyen, 2010). LTE considers a frequency reuse factor of one between adjacent cells and, therefore users may suffer from inter-cell interference caused by neighboring cells located at the edge of a cell. Moreover, the adjustment of the downlink transmission as per the channel conditions observed at the User Equipment (UE) is employed through MIMO techniques. 3.1. Block Length Error Rate The BLER and throughput for 15 different Modulation Coding Scheme (MCS) corresponds to 15 Channel Quality Indicator value at the receiver was obtained with Additive White Gaussian Noise (AWGN) and simulations were performed. In LTE, adaptive modulation and coding has ensured a BLER value smaller than 10 %. The SINR-to-CQI mapping required to achieve this goal is thus obtained by plotting the 10% BLER values of the curves over SNR as shown in Fig. 2. An effective SINR was obtained from mapping the set of sub-carrier-sinrs assigned to the UE. The effective SINR is obtained by non-linear averaging of several Resource Block SINRs given by Equation (2): N SINR i 1 β γ eff = βin e N i= 1 (2)

Fig. 1. Block diagram of signal transmission and reception Fig. 2. BLER for different CQI Vs SNR Fig. 3. CQI mapping with BLER of 10% points from BLER curve 436

Where N is the total number of sub-carriers to be averaged and β is calibrated by means of simulations to fit the function to AWGN BLER results. The obtained CQIs are floored to obtain the integer CQI values that are back to the enodeb as shown in Fig. 3. 3.2. Transmission Time Interval Transmission Time Interval (TTI) is commonly used parameter in legacy cellular systems. As LTE specification adopts this parameter, it has been reduced to 1ms in LTE standards. TTI defines the minimum time required to exchange Medium Access Control Protocol Data Units (MAC PDUs) with physical layer. This approach improves flexibility of network resources (Lee et al., 2007). In this study, we investigated the performance of e-node and UE positions LTE with varying number of users per TTI. Their corresponding positions have been traced in Fig. 4 and 5. For each TTI the UE is moved, when UE goes outside the ROI then UE are re-allocated randomly in the ROI. Every enodeb receives a feedback after each feedback delay. The locations indicate the boundary bounce and the area of coverage and capacity where the interference may occur. 3.3. Region of Interest The simulation is performed by defining a Region of Interest (ROI) in which the enodebs and UEs are positioned and the simulation length in TTIs. To this effect, the model has been split into three parts for obtaining the SINR are macroscopic pathloss, shadow fading and small-scale fading. The macroscopic pathloss models the pathloss and the antenna gain. Shadow fading is caused by obstacles in the propagation path between the enodeb and the UE. It interprets the irregularities of the geographical characteristics of the terrain obtained from the macroscopic pathloss. Shadowing effects occurs over a large area to capture the dynamics affecting macro-cell diversity. Small-scale fading changes significantly even for small amounts of movement and this approach cannot adequately model the effects of shadow fading. The shadow fading effects occur over a large area (Foschini and Gans, 1998). The Fig. 6 and 7 states the UE traversing the ROI experiences a slowly changing pathloss due to shadow fading. The region closer to the enodeb (Red Region) is the high SINR region and as we move away from the center towards the edges, the interference from the neighboring cell increases and thus the SINR value decreases. 437 3.4. Macroscopic Pathloss The macro BS antenna radiation pattern to be used for each sector in 3-sector cell sites is plotted in Fig. 8 below Equation (3): 2 θ θ = < θ < ( ) A min 12, Am where 180 180 θ 3dB (3) θ is the 3dB beam width which corresponds to 65 degrees and Am = 20dB is the maximum attenuation. It is observed from the Fig. 8 that wider horizontal beam patterns and larger downtilt angles provide better coverage and capacity performance as inter-cell interference is dominant (Ikuno et al., 2009). The macroscopic pathloss between an enodeb sector and UE is used to jointly model the propagation pathloss due to the distance and the antenna gain. The timeinvariant and position-dependent macro-scale parameters are the pathloss, antenna gain and shadow fading. Figure 8 indicates the gain Vs the antenna tilt angle, where the antenna gain is maximum at 0. The losses caused by macroscopic pathloss and shadow fading are position-dependent and timeinvariant, whereas small-scale fading is time-dependent. To emphasize the difference shadow fading is set to 0 db. The Fig. 9 reflects the fact that antenna gain pattern keeps its original shape well in the case of electrical downtilt, whereas the shape of the antenna gain pattern may admit remarkable change when the mechanical downtilt is applied. On the other hand, since electrical tilt range is limited in practice due to changing side-lobe level, the impact of the hybrid approach which includes both mechanical and electrical downtilts with different proportions is investigated to find an optimal solution in terms of network performance (PLAE-UTRA, 2006). As seen from the Fig. 10, in both 3GPP cases with macro and shadow fading and only macro fading, reduced power per PRB and additional interference from the adjacent vertical sector makes SINR worse. Antenna downtilt provides optimal performance for the detailed capacity and throughput evaluations. The maximum achievable capacity gains for the cells in the 3-sector setup are compared. Although there is a remarkable decrease in SINR in both simulation scenarios, since the same resources can be used in both sectors, overall performance improves.

Fig. 4. Positions of enodeb and UE at TTI 49 Fig. 5. Position of enodeb and UE for TTI 50 Even though the vertical sectorization maximizes the overall cell capacity, the impact of vertical sectorization on the user throughput depends on the load of each 438 vertical sector. Moreover, the load imbalance between adjacent vertical sectors becomes more severe when the inter-site distance is larger.

Fig. 6. ROI for different fading Fig. 7. SINR Vs ROI 439

Fig. 8. Gain Vs Antenna tilt angle Fig. 9. Urban Pathloss Vs Distance 440

Fig. 10. SINR Vs fading effect 4. CONCLUSION SINR optimization via electrical and mechanical tilting with pathloss was simulated. We use only two sub-carrier SINRs by which the amount of memory reduction was made and an effective SINR was obtained. The CQI reporting provides the enodeb with a figure of merit of the state of the channel of the UE. Area Coverage and capacity in LTE networks was optimized using adaptive antenna systems. In simulation results, it is observed that the antenna tilt parameter has the major impact on the network performance especially in the interference limited conditions. Simulation results showed that electrical downtilt performs much better in interference-limited dense networks, whereas the performance slightly differs from each other in noiselimited sparse networks. It was also noticed that coverage and capacity criteria may lead to different optimal tilt angles in dense urban networks. 5. REFERENCES Carvalho, M. and P. Vieira, 2011. An enhanced handover oscillation control algorithm in LTE selfoptimizing networks. Proceedings of the 14th International Symposium on Wireless Personal Multimedia Communications, Oct. 3-7, IEEE Xplore Press, Brest, pp: 1-5. 441 Castaneda, M., M.T. Ivrlac, J.A. Nossek, I. Viering and A. Klein, 2007. On downlink intercell interference in a cellular system. Proceedings of the IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications, Sep. 3-7, IEEE Xplore Press, Athens, pp: 1-5. DOI: 10.1109/PIMRC.2007.4394052 Claussen, H. and V.M. Nguyen, 2010. Efficient selfoptimization of neighbour cell lists in macrocellular networks. Proceedings of the 21th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Sep. 26-30, IEEE Xplore Press, Instanbul, pp: 1923-1928. DOI: 10.1109/PIMRC.2010.5671609 Foschini, G.J. and M.J. Gans, 1998. On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Commun., 6: 311-335. DOI: 10.1023/A:1008889222784 Ikuno, J.C., M. Wrulich and M. Rupp, 2009. Performance and modeling of LTE H-ARQ. Proceedings of the ITG International Workshop on Smart Antennas, Feb. 16-18, Berlin, Germany. Ikuno, J.C., M. Wrulich and M. Rupp, 2010. System level simulation of LTE networks. Proceedings of the IEEE 71th Vehicular Technology Conference, May 16-19, IEEE Xplore Press, Taipei, pp: 1-5. DOI: 10.1109/VETECS.2010.5494007

Kim, D., B. Shin, D. Hong and J. Lim, 2010. Selfconfiguration of neighbor cell list utilizing E- UTRAN nodeb scanning in LTE systems. Proceedings of the 7th IEEE Consumer Communications and Networking Conference, Jan. 9-12, IEEE Xplore Press, Las Vegas, NV., pp: 1-5. DOI: 10.1109/CCNC.2010.5421822 Lee, S.B. S. Choudhury, A. Khoshnevis, S. Xu and S. Lu, 2007. Downlink MIMO with frequencydomain packet scheduling for 3GPP LTE. Proceedings of the IEEE INFOCOM, Apr. 19-25, IEEE Xplore Press, Rio de Janeiro, pp: 1269-1277. DOI: 10.1109/INFCOM.2009.5062041 PLAE-UTRA, 2006. 3rd Generation Partnership Project (3GPP). Tech. Rep. SAL, 2013. Steepest Ascent has been acquired by MathWorks, the maker of MATLAB and Simulink mathematical computing software. Steepest Ascent Ltd. TSG-RAN, 2009. E-UTRA; LTE RF system scenarios: 3rd Generation Partnership Project. Tech. Rep. Wrulich, M. and M. Rupp, 2009. Computationally efficient MIMO HSDPA system-level modeling. Eur. J. Wireless Commun. Netw., 2009: 382501-382501. DOI: 10.1155/2009/382501 Zyren, J., 2007. Overview of the 3GPP long term evolution physical layer. Freescale Semiconductor, Inc. 442