Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 81

Similar documents
IN APPLICATIONS where nonisolation, step-down conversion

Improved Step down Conversion in Interleaved Buck Converter and Low Switching Losses

SOFT SWITCHING MODEL OF INTERLEAVED BUCK CONVERTER

Analysis of An Non-Isolated Interleaved Buck Converter with Reduced Voltage Stress And high Step down Ratio

One-Cycle Control of Interleaved Buck Converter with Improved Step- Down Conversion Ratio

A High Efficient DC-DC Converter with Soft Switching for Stress Reduction

AN INTERLEAVED HIGH STEP-DOWN CONVERSION RATIO BUCK CONVERTER WITH LOW SWITCH VOLTAGE STRESS

NON-ISOLATED SOFT SWITCHING DC-DC CONVERTER AND LOAD AT FULL RANGE OF ZVS

PSIM Simulation of a Buck Boost DC-DC Converter with Wide Conversion Range

Figure.1. Block of PV power conversion system JCHPS Special Issue 8: June Page 89

MICROCONTROLLER BASED ISOLATED BOOST DC-DC CONVERTER

A Single Switch High Gain Coupled Inductor Boost Converter

Design And Analysis Of Dc-Dc Converter For Photovoltaic (PV) Applications.

A HIGH STEP UP RESONANT BOOST CONVERTER USING ZCS WITH PUSH-PULL TOPOLOGY

Soft-Switching Two-Switch Resonant Ac-Dc Converter

Implementation of an Interleaved High-Step-Up Dc-Dc Converter with A Common Active Clamp

1 Introduction

International Journal of Research Available at

Dynamic Performance Investigation of Transformer less High Gain Converter with PI Controller

BIDIRECTIONAL dc dc converters are widely used in

A Solar Powered Water Pumping System with Efficient Storage and Energy Management

Soft Switching with Cascaded Transformers to Drive the PMDC Motor

A High Step-Up DC-DC Converter

Push-Pull Quasi Resonant Converter Techniques used for Boost Power Factor Corrector

ANALYSIS, SIMULATION AND HARDWARE IMPLEMENTATION OF BOOST DC-DC CONVERTER

International Journal of Current Research and Modern Education (IJCRME) ISSN (Online): & Impact Factor: Special Issue, NCFTCCPS -

A Novel Interleaved Buck Converter with Closed Loop Control

CLOSED LOOP CONTROL OF HIGH STEP-UP DC/DC CONVERTER BASED ON COUPLED INDUCTOR AND SWITCHED-CAPACITOR

Soft-Switching DC-DC Converters Based on A Phase Shift Controlled Active Boost Rectifier Using Fuzzy Controller

Analysis and Design of Soft Switched DC-DC Converters for Battery Charging Application

A Single Switch DC-DC Converter for Photo Voltaic-Battery System

A New Phase Shifted Converter using Soft Switching Feature for Low Power Applications

ZCS-PWM Converter for Reducing Switching Losses

Implementation of Voltage Multiplier Module in Interleaved High Step-up Converter with Higher Efficiency for PV System

IN recent years, environmental troubles, such as climate

HALF BRIDGE CONVERTER WITH WIDE RANGE ZVS

Analysis of Novel DC-DC Boost Converter topology using Transfer Function Approach

Analysis and Design of a Bidirectional Isolated buck-boost DC-DC Converter with duel coupled inductors

Linear Transformer based Sepic Converter with Ripple Free Output for Wide Input Range Applications

Modelling and Simulation of High Step up Dc-Dc Converter for Micro Grid Application

LLC Resonant Converter with Capacitor Diode Clamped Current Limiting Fundamental Harmonic Approximation

High Step up Dc-Dc Converter For Distributed Power Generation

A DC DC Boost Converter for Photovoltaic Application

High Voltage-Boosting Converter with Improved Transfer Ratio

A NOVEL SOFT-SWITCHING BUCK CONVERTER WITH COUPLED INDUCTOR

Sepic Topology Based High Step-Up Step down Soft Switching Bidirectional DC-DC Converter for Energy Storage Applications

IN recent years, the development of high power isolated bidirectional

Quasi Z-Source DC-DC Converter With Switched Capacitor

I. INTRODUCTION II. LITERATURE REVIEW

A Single Phase Single Stage AC/DC Converter with High Input Power Factor and Tight Output Voltage Regulation

A High Voltage Gain Interleaved Boost Converter with Dual Coupled Inductors

ANALYSIS OF BIDIRECTIONAL DC-DC CONVERTER FOR LOW POWER APPLICATIONS

Transformerless Buck-Boost Converter with Positive Output Voltage and Feedback

A HIGHLY EFFICIENT ISOLATED DC-DC BOOST CONVERTER

Simulation and Performance Evaluation of Closed Loop Pi and Pid Controlled Sepic Converter Systems

A Novel Bidirectional DC-DC Converter with Battery Protection

An Efficient High-Step-Up Interleaved DC DC Converter with a Common Active Clamp

Existing system: The Master of IEEE Projects. LeMenizInfotech. 36, 100 Feet Road, Natesan Nagar, Near Indira Gandhi Statue, Pondicherry

A Dual Half-bridge Resonant DC-DC Converter for Bi-directional Power Conversion

DESIGN OF TAPPED INDUCTOR BASED BUCK-BOOST CONVERTER FOR DC MOTOR

ZVT Buck Converter with Synchronous Rectifier

Performance Improvement of Bridgeless Cuk Converter Using Hysteresis Controller

ISSN Vol.07,Issue.06, July-2015, Pages:

Student Department of EEE (M.E-PED), 2 Assitant Professor of EEE Selvam College of Technology Namakkal, India

Interleaved Boost Converter Fed DC Machine with Zero Voltage Switching and PWM Technique

Design of step-up converter for a constant output in a high power design

Non-Isolated Three Stage Interleaved Boost Converter For High Voltage Gain

Novel Zero-Current-Switching (ZCS) PWM Switch Cell Minimizing Additional Conduction Loss

Implementation of Resistor based Protection Scheme for the Fault Conditions and Closed Loop Operation of a Three-Level DC-DC Converter

Experiment No.15 DC-DC Converters

Simulation of an Integrated PWM Resonant Converter for Photovoltaic Applications

A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor

ISSN Vol.03,Issue.11, December-2015, Pages:

FOR THE DESIGN of high input voltage isolated dc dc

IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 27, NO. 8, AUGUST

Half bridge converter with LCL filter for battery charging application using DC-DC converter topology

Implementation of a Voltage Multiplier based on High Step-up Converter using FLC

A High Step-Up Boost-Flyback Converter with Voltage Multiplier Module for Photovoltaic System

An Interleaved High Step-Up Boost Converter With Voltage Multiplier Module for Renewable Energy System

Closed Loop Control of the Three Switch Serial Input Interleaved Forward Converter Fed Dc Drive

High Gain DC-DC ConverterUsing Coupled Inductor and Voltage Doubler

Novel Soft-Switching DC DC Converter with Full ZVS-Range and Reduced Filter Requirement Part I: Regulated-Output Applications

SINGLE STAGE SINGLE SWITCH AC-DC STEP DOWN CONVERTER WITHOUT TRANSFORMER

COMPARISON OF SIMULATION AND EXPERIMENTAL RESULTS OF ZVS BIDIRECTIONAL DC-DC CONVERTER

DYNAMIC CONTROL OF INTERLEAVED BOOST CONVERTER FOR AUTOMOTIVE LED LIGHTING APPLICATION

DESIGN OF BRIDGELESS HIGH-POWER-FACTOR BUCK-CONVERTER OPERATING IN DISCONTINUOUS CAPACITOR VOLTAGE MODE.

An Interleaved Boost Converter with LC Coupled Soft Switching Mahesh.P 1, Srilatha.D 2 1 M.Tech (PE) Scholar, 2 Associate Professor

An Asymmetrical Dc-Dc Converter with a High Voltage Gain

IN THE high power isolated dc/dc applications, full bridge

Design and Simulation of Synchronous Buck Converter for Microprocessor Applications

MATHEMATICAL MODELLING AND PERFORMANCE ANALYSIS OF HIGH BOOST CONVERTER WITH COUPLED INDUCTOR

A Dual Switch Dc-Dc Converter with Coupled Inductor and Charge Pump for High Step up Voltage Gain

Narasimharaju. Balaraju *1, B.Venkateswarlu *2

Comparison between the Performance of Basic SEPIC Converter and modified SEPIC Converter with PI Controller

SIMULATION OF HIGH BOOST CONVERTER FOR CONTINUOUS AND DISCONTINUOUS MODE OF OPERATION WITH COUPLED INDUCTOR

HIGH GAIN MULTIPLE-INPUT DC-DC CONVERTER FOR HYBRID ENERGY SYSTEMS

Muhammad M, Armstrong M, Elgendy M. A Non-isolated Interleaved Boost Converter for High Voltage Gain Applications.

Anfis Based Soft Switched Dc-Dc Buck Converter with Coupled Inductor

Non Isolated Dual Inductor Boost Converter With Auxiliary Transformer. Vidisha, Madhya Pradesh, India. Vidisha, Madhya Pradesh, India.

Photovoltaic Controller with CCW Voltage Multiplier Applied To Transformerless High Step-Up DC DC Converter

Transcription:

ISSN: 2320 8791 (Impact Factor: 2317) An Interleaved Buck-Boost Converter For High Efficient Power Conversion Jithin K Jose 1, Laly James 2, Prabin James 3 and Edstan Fernandez 4 1,3 Assistant Professors, 2 Professor & HOD Department of Electrical and Electronics Engineering, Vimal Jyothi Engineering College, Chemperi, Kannur, Kerala, 4 Lecturer Department of Electrical and Electronics Engineering, Ministry of Manpower, Al Musanna College of Technology,PO Box 191, Postal Code 314, Sultanate of Oman Abstract In many applications, an efficient DC - DC converters are required as an interface between the available low voltage sources and the output loads, which are operated at much higher voltages It is a major challenge to operate the conventional boost converters at high efficiency because it requires an extreme duty ratio to meet the high-voltage step-up requirements Under such conditions, problems like high ON-state resistance, diode reverse recovery problem, increased conduction losses, degrade of efficiency, and voltage stresses will occur In high current or high power applications, interleaving of buck and boost converters are well established Moreover, the active clamp circuit can successfully reduce the voltage stress of the switches and it collects the leakage energies from all the coupled-inductor boost converters and recycles the leakage energies to the output In the viewpoint of improved performance and better choice of design, it can be proposed to interleave the coupled-inductor buck boost converter with common active clamp circuit to process high power, and to achieve high efficiency and high reliability The proposed converter avoids the disadvantage of series conduction loss of the total power Detailed analysis and design of the proposed converter are carried out MATLAB software was used for simulation and verification of the proposed circuit Simulation results of the proposed converter are presented efficiency becomes poor And, for higher power density and better dynamics, it is required that the converter operates at higher switching frequencies To over come the drawbacks of conventional Interleaved buck converter[1] an interleaved buck-boost converter with active clamp circuit is introduced It is a major challenge to operate the conventional boost converters at high efficiency because it requires an extreme duty ratio to meet the high-voltage step-up requirements Under such conditions, problems like high ON-state resistance, diode reverse recovery problem, increased conduction losses, degrade of efficiency, and voltage stresses will occur In high current or high power applications, interleaving of buck[4] and boost converters are well established the active clamp circuit can successfully reduce the voltage stress of the switches and it collects the leakage energies from all the coupled-inductor boost converters and recycles the leakage energies to the output In the viewpoint of improved performance and better choice of design, it can be proposed to interleave the coupled-inductor buck boost converter with common active clamp circuit[12] to process high power, and to achieve high efficiency and high reliability The proposed converter avoids the disadvantage of series conduction loss of the total power Key Words: Buck-Boost converter, interleaved, low switching loss, Active clamp circuit 1 Introduction For the control of electric power or power conditioning the conversion of electric power from one form to another is necessary and the switching characteristics of the power devices permit these conversions The static power converters perform these functions of power conversions In applications where non isolation, step-down conversion In applications where non isolation, step-down conversion ratio, and high output current with low ripple are required, an interleaved buck-boost converter has received a lot of attention due to its simple structure and low control complexity the cost becomes high and the efficiency becomes poor as the converter operates under hard switching condition This results in the high cost and the Fig 1 Conventional Circuit In this paper, The active clamp circuit[12] can successfully reduce the voltage stress of the switches and it collects the leakage energies from all the coupled-inductor[14] boost converters and recycles the leakage energies to the output The buck-boost converter with closed loop controlled by Fuzzy logic helps in obtaining the needed output In the viewpoint of improved performance and better choice of design, it can be proposed to interleave the coupled-inductor Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (wwwprdgorg) 81

ISSN: 2320 8791 (Impact Factor: 2317) buck boost converter with common active clamp circuit[13] to process high power, and to achieve high efficiency and high reliability Here we can get constant value which we need as output voltage This value is set at the Fuzzy logic reference value The fuzzy logic controls the PWM controller thus adjusting the time delay for needed operation, whether buck converter operation or boost converter operation according to our needed output When the input voltage is higher than the needed output voltage value the buck converter operation takes place and if the input voltage is lesser than the needed output voltage value the boost converter operation takes place 2 Circuit Operation 3 Modes Of Operation Buck operation: When the reference voltage given to the fuzzy logic is lesser than the input voltage the circuit has to produce the voltage which is lesser than the input and thus the circuit act as Buck converter Boost operation: When the reference voltage given to the fuzzy logic is higher than the input voltage the circuit has to produce the voltage which is higher than the input and thus the circuit act as Boost converter The waveform given here is for the output voltage of 50 volts, in the case of Buck converter operation the input given is 100 volts and for the Boost converter operation the input given is 25 volts Simulation Result Time in ms Fig 2 Proposed circuit The Fig2 shows the circuit configuration of the proposed circuit In the circuit IGBT/Diode 1 and IGBT/Diode 2 act as the interleaved Buck- Boost converter Here the switches are kept in series connection The capacitor C2 and inductor L1 act as the active clamp circuit[12] C3 is the ripple capacitor C4 is the load Fuzzy Logic Controller controls the PWM controller time delay settings for choosing the operation which has to be done whether buck or boost converter Diodes D1 and D2 are placed to block the reverse current flow direction Simulation result Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (wwwprdgorg) 82

ISSN: 2320 8791 (Impact Factor: 2317) 4Relevant Analysis Results The proposed circuit is designed for a maximum wattage of 250 watts The analysis of circuit with the operation of active parts is mentioned below 41 Output Voltage Obtained The output voltage obtained after the corresponding operation have the some losses present in it The actual output obtained is 49345 volts It represents almost 0655 volts is lost as losses in the circuit These losses occur in each Buck and Boost operation During this process losses will occur at the inductors and as the circulating currents in the active clamp area also 42 Active Clamp Circuit The active clamp circuit present in the circuit reduces the voltage stress and also the ripple contents in the output voltage The introduction of active clamp circuit reduces the ripple content in the proposed circuit to 003 volts comparing with the high value in the conventional circuit 43 Interleaved Switches The interleaved switches[5] may be connected either in parallel or series If connected parallel the current will be adjusted and controlled Here series connection of switches is selected so that the voltage is adjusted according to the needed operation The discharging voltage value of inductor is selected and added, for the Buck operation, and for the When the average value of output current is low or the switching frequency f is low, the converter may enter the discontinuous mode In DCM the inductor current is zero during a portion of switching period F i g 5 c i r c uit Fig5 Circuit diagram of Buck converter The waveform showing the operation of buck converter is shown in Fig 6 According to Faraday s law, the inductor volt-second product over a period of steady-state operation is zero For the buck converter (V S-V O)DT =V O(1-D)T 31 Hence, the dc voltage transfer function, defined as the ratio of the output voltage to the input voltage, is MV=VO/VS=D 32 It can be seen from Eq (32) that the output voltage is always smaller that the input voltage Boost operation the peak voltage value of inductor is selected and added 5 Details Of Buck And Boost Operation 51 Buck Operation Buck converter is commonly known as step down DC-DC converter[14] It consists of dc input voltage source V S, controlled switch S, diode D, filter inductor, filter capacitor C, and load resistance R The circuit diagram for buck converter is shown in Fig 5 Fig 6 Waveform for buck converter The state of converter in which the inductor current is never zero for any period of time is called the continuous conduction mode It can be seen from the circuit that when the switch S is commanded to the ON state, the diode D is reverse biased When the switch S is OFF the diode conducts to support an uninterrupted current in the inductor 52 Boost Converter A boost converter is also known as step-up or PWM boost converter A boost converter (step-up converter) is a power converter with an output DC voltage greater than its input DC voltage The circuit diagram for buck converter is shown in Fig 7 It consists of dc input voltage source V S, boost Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (wwwprdgorg) 83

ISSN: 2320 8791 (Impact Factor: 2317) inductor L, controlled switch S, diode D, filter capacitor C, and load resistance R When the switch is the ON state, the current in the boost inductor increases linearly and the diode D is OFF at that time Fig 7 Circuit diagram of Boost converter When the switch S is turned OFF, the energy stored in the inductor is released through the diode to the output RC circuit Filters made of capacitors (sometimes in combination with inductors) are normally added to the output of the converter to reduce output voltage ripple Using the Faraday s law for the boost inductor V SDT=(V O-V S)(1-D)T 33 The DC voltage transfer function turns out to be M V=V O / V S= 1/ ( 1-D ) 34 As the name of the converter suggests, the output voltage is always greater than the input voltage The boost converter operates in the CCM for L > L B where LB=(1-D) 2 DR/2F 35 The waveform representing operation of boost converter is represented in Fig 8 voltage can be done only with step-down region This results in use of circuit only for step-down operation The absence of active clamp circuit can results in the voltage stress of the switches and the leakage energies from all the coupledinductors In the proposed system introduction of buck-boost converters with closed loop controlled by Fuzzy logic is introduced Also active clamp circuit[13] is added to the circuit The active clamp circuit can successfully reduce the voltage stress of the switches and it collects the leakage energies from all the coupled-inductor boost converters and recycles the leakage energies to the output The buck-boost converter with closed loop controlled by Fuzzy logic helps in obtaining the needed output In the viewpoint of improved performance and better choice of design, it can be proposed to interleave the coupled-inductor buck boost converter with common active clamp circuit to process high power, and to achieve high efficiency and high reliability 7 Experimental Results Results from the proposed interleaved buck boost converter Buck operation: When the reference voltage given to the fuzzy logic is lesser than the input voltage the circuit has to produce the voltage which is lesser than the input and thus the circuit act as Buck converter Input Voltage: 100V Reference Voltage: 50V Output Voltage: 49345V Output Voltage Ripple Content: 03V Boost operation: When the reference voltage given to the fuzzy logic is higher than the input voltage the circuit has to produce the voltage which is higher than the input and thus the circuit act as Boost converter Input Voltage: 25V Reference Voltage: 50V Output Voltage: 49345V Output Voltage Ripple Content: 03V Fig 6 Waveform for boost converter 6 Conclusion In general operation of buck converter problems like high ON-state resistance, diode reverse recovery problem, increased conduction losses, degrade of efficiency, and voltage stresses will occur Losses occur in relation with the diodes In interleaved buck converter[2] the variation of Reference [1] Chen Y M, Teseng S Y, Tsai C T and Wu T F (2004) Interleaved buck converters with a single-capacitor turn-off snubber, IEEE Trans Aerosp Electronic Syst, vol 40, no 3, pp 954 967 [2] Chuang Y C (2010) High-efficiency ZCS buck converter for rechargeable batteries, IEEE Trans Ind Electron, vol 57, no 7, pp 2463 2472 [3] Du X and Tai H M (2009) Double-frequency buck converter, IEEE Trans Ind Electron, vol 56, no 54, pp 1690 1698 [4] Garcia C, Zumel P, Castro A D, and CobosJ A (2006) Automotive DC DC bidirectional converter made with many interleaved buck stages, IEEE Trans Power Electron, vol 21, no 21, pp 578 586 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (wwwprdgorg) 84

ISSN: 2320 8791 (Impact Factor: 2317) [5] Ilic M and Maksimovic D (2007) Interleaved zero-currenttransition buck converter, IEEE Trans Ind App, vol 43, no 6, pp 1619 1627 [6] Jin K and Ruan X (2007) Zero-voltage-switching multi resonant three-level converters, IEEE Trans Ind Electron, vol 54, no 3, pp 1705 1715 [7] Lee J Y, Jeong Y S, and Han B M (2011) An isolated DC/DC converter using high-frequency unregulated LLC resonant converter for fuel cell applications, IEEE Trans Ind Electron, vol 58, no 7, pp 2926 2934 [8] Lee J H, Bae H S, and Cho B H (2008), Resistive control for a photovoltaic battery charging system using a microcontroller, IEEE Trans Ind Electron, vol 55, no 7, pp 2767 2775 [9] Lin R L, Hsu C C, and Changchien S K (2009) Interleaved four-phase buck-based current source with isolated energy-recovery scheme for electrical discharge machine, IEEE Trans Power Electron, vol 24, no 7, pp 2249 2258 [10] Moo C S, Chen Y J, Cheng H L, and Hsieh Y C (2011) Twin-buck converter with zero-voltage-transition, IEEE Trans Ind Electron, vol 58, no 6, pp 2366 2371 [11] Ruan X, Li B, Chen Q, Tan S C, and Tse C K (2008) Fundamental considerations of three-level DC DC converters: Topologies, analysis, and control, IEEE Trans Circuit Syst, vol 55, no 11, pp 3733 3743 [12] Rodrigues J P, S A Mussa, M L Heldwein, and A J Perin, (2009) Threelevel ZVS active clamping PWM for the DC DC buck converter, IEEE Trans Power Electron, vol 24, no 10, pp 2249 2258 [13]TsaiC T and C L Shen,(2009) Interleaved soft-switching coupled-buck converter with active-clamp circuits, in Proc IEEE Int Conf Power Electron and Drive Systems, pp 1113 1118 [14]Wong P L, Xu P, Yang B, and Lee F C (2001) Performance improvements of interleaving VRMs with coupling inductors, IEEE Trans Power Electron, vol 168, no 4, pp 499 507 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (wwwprdgorg) 85