RT mA, Low Input Voltage, Low Dropout, Low Noise Ultra- Fast Without Bypass Capacitor CMOS LDO Regulator. General Description.

Similar documents
RT mA, Low Input Voltage, Low Dropout, Low Noise Ultra- Fast Without Bypass Capacitor CMOS LDO Regulator. General Description.

RT mA, Low Dropout, Low Noise Ultra-Fast Without Bypass Capacitor CMOS LDO Regulator. Features. General Description.

RT mA, Low Dropout, Low Noise Ultra-Fast With Soft Start CMOS LDO Regulator. General Description. Features. Applications. Ordering Information

RT mA, 0.5% Accuracy Low Dropout, Ultra Low Noise Voltage Regulator. Features. General Description. Applications. Ordering Information

RT9043- High PSRR, Low Dropout, 400mA Adjustable LDO Regulator. Features. General Description. Applications. Ordering Information. Pin Configurations

RT mA, Ultra-Low Noise, Ultra-Fast CMOS LDO Regulator. General Description. Features. Applications. Ordering Information. Marking Information

RT9187C. 600mA, Ultra-Low Dropout, CMOS Regulator. General Description. Features. Applications. Ordering Information. Pin Configurations (TOP VIEW)

RT mA, Ultra-Low Noise, Ultra-Fast CMOS LDO Regulator. General Description. Features. Applications. Ordering Information. Marking Information

RT9187B. 600mA, Ultra-Low Dropout, Ultra-Fast CMOS LDO Regulator. General Description. Features. Applications. Ordering Information RT9187B

RT mA, Low Dropout, Low Noise Ultra-Fast With Soft Start CMOS LDO Regulator. General Description. Features. Applications

RT9198/A. 300mA, Low Noise, Ultra-Fast CMOS LDO Regulator. General Description. Ordering Information RT9198/A- Features. Marking Information

RT mA Dual LDO Regulator. General Description. Features. Applications. Ordering Information. Pin Configurations (TOP VIEW) Marking Information

RT9053A. Low Dropout, 400mA Adjustable Linear Regulator. Features. General Description. Applications. Ordering Information RT9053A. Pin Configurations

RT A, Ultra Low Dropout LDO. General Description. Features. Applications. Pin Configurations. Ordering Information RT9025-

RT A, Ultra-Low Dropout Voltage Regulator. General Description. Features. Applications. Pin Configurations. Ordering Information RT9059(- )

RT9041F. 500mA, Low Voltage, LDO Regulator with External Bias Supply. General Description. Features. Applications. Ordering Information

RT A, Ultra-Low Dropout Voltage Regulator. General Description. Features. Applications. Pin Configurations. Ordering Information

RT9041E. 500mA, Low Voltage, LDO Regulator with External Bias Supply. General Description. Features. Applications. Ordering Information RT9041E-

RT9041A/B. 500mA, Low Voltage, LDO Regulator with External Bias Supply. General Description. Features. Applications. Ordering Information

RT A, Low Input Voltage, Ultra-Low Dropout LDO Regulator with Enable. Features. General Description. Applications. Ordering Information

RT9059A. 3A, Ultra-Low Dropout Voltage Regulator. General Description. Features. Applications. Ordering Information. Marking Information

RT2515A. 2A, Low Input Voltage, Ultra-Low Dropout Linear Regulator with Enable. General Description. Features. Applications

RT9022. High Voltage, Low Quiescent, 60mA LDO Regulator. General Description. Features. Applications. Pin Configurations. Ordering Information

RT V, 2μA, I Q, 100mA Low Dropout Voltage Linear Regulator. General Description. Features. Ordering Information RT2558- Applications

RT μA I Q, 250mA Low-Dropout Linear Regulator. General Description. Features

RT9018A/B. Maximum 3A, Ultra Low Dropout Regulator. General Description. Features. Applications. Marking Information. Ordering Information

RT9008 SS. Low Dropout Linear Regulator Controller with Soft-Start. General Description. Features. Ordering Information.

RT9073A. 1μA I Q, 250mA Low-Dropout Linear Regulator. General Description. Features. Ordering Information RT9073A- Applications. Marking Information

RT9167/A. Low-Noise, Fixed Output Voltage,300mA/500mA LDO Regulator. Features. General Description. Applications. Ordering Information

RT CH Power Management IC. General Description. Features. Applications. Pin Configurations

RT mA 3-Channel Pulse Dimming Current Source LED Driver. General Description. Features. Applications. Ordering Information. Pin Configurations

RT9064. Ultra Low Power, 14V, 200mA Low-Dropout Linear Regulator. General Description. Features. Pin Configurations. Applications

RT mA CMOS LDO Regulator with 15μA Quiescent Current. Features. General Description. Applications. Ordering Information. Pin Configurations

RT2517B. 1A, 6V, Ultra-Low Dropout Linear Regulator. General Description. Features. Applications. Ordering Information. Marking Information

RT9067. Ultra Low Power, 14V, 200mA LDO Regulator

RT2517A. 1A, 6V, Ultra Low Dropout Linear Regulator. General Description. Features. Applications. Ordering Information. Marking Information

RT2517B. 1A, 6V, Ultra-Low Dropout Linear Regulator. Features. General Description. Applications. Ordering Information. Marking Information

RT μA I Q, 300mA Low-Dropout Linear Regulator. General Description. Features. Pin Configuration. Applications

RTQ2569-QA. 200mA, 36V, 2 A IQ, Low Dropout Voltage Linear Regulator. Features. General Description. Applications

RT9296. Synchronous Boost Converter with LDO Controller. General Description. Features. Applications. Ordering Information RT9296(- )

RT A, Low Noise, Ultra High PSRR, Low-Dropout Linear Regulator. Features. General Description. Applications. Ordering Information

RT mA, Ultra-Low Noise, Ultra-Fast CMOS LDO Regulator. Features. General Description. Applications. Ordering Information. Marking Information

RTQ2516-QT. 2A, Low Input Voltage, Ultra-Low Dropout LDO Regulator with Enable. General Description. Features. Applications. Ordering Information

RT9179. Adjustable, 300mA LDO Regulator with Enable. General Description. Features. Applications. Ordering Information. Marking Information

RT9052. Single Channel LED Current Source Controller. Features. General Description. Applications. Ordering Information. Pin Configurations

RT9066. Source/Sink DDR Termination Regulator. General Description. Features. Applications. Marking Information. Simplified Application Circuit

RT Channel Charge Pump White LED Driver with Low Dropout Current Source. Preliminary. Features. General Description. Ordering Information

RT9167/A. Low-Noise, Fixed Output Voltage, 300mA/500mA LDO Regulator Features. General Description. Applications. Ordering Information RT9167/A-

RT9363A. 3 Channels 90mA x1/x2 Charge Pump White LED Driver. General Description. Features. Applications

RT MHz 1A Step-Down Converter. General Description. Features. Applications. Pin Configurations. Ordering Information. Marking Information

id id mA, Low Dropout, Low Noise Ultra-Fast With Soft Start CMOS LDO Regulator Features General Description Applications

RT9285A/B. Tiny Package, High Performance, Diode Embedded White LED Driver. Preliminary. Features. General Description.

RT9554A. Battery Output Current Sense Protection IC. General Description. Features. Applications. Pin Configurations. Ordering Information RT9554A

RT9085A. 1A, 5.5V, Ultra Low Dropout Linear Regulator. Features. General Description. Pin Configuration. Applications. Marking Information

RT9199. Cost-Effective, 2A Peak Sink/Source Bus Termination Regulator. General Description. Features. Applications. Ordering Information

RT9740A. Dual Channel, Ultra-Low Resistance Load Switch. General Description. Features. Ordering Information. Applications. Marking Information

RT4503/A. Asynchronous Boost Converter for 10 WLEDs. Features. General Description. Ordering Information. Applications. Simplified Application Circuit

RT9179A. Adjustable, 500mA LDO Regulator with Enable. General Description. Features. Applications. Ordering Information. Pin Configurations

500mA Low Noise LDO with Soft Start and Output Discharge Function

RT mA 3-Terminal Positive Regulator General Description Features Low Dropout, Maximum 1.3V at 150mA Fast Transient Response

RTQ9148-QT. 20V, 350mA, Rail-to-Rail Operational Amplifier. General Description. Features. Applications. Ordering Information.

RT V DC-DC Boost Converter. Features. General Description. Applications. Ordering Information. Marking Information

RT9399-XX. Dual Channel Charge Pump Controller. General Description. Features. Ordering Information. Applications.

RT mΩ, 1A Power Multiplexer. Preliminary. General Description. Features. Applications. Ordering Information. Pin Configurations

EM1103. Pin Assignment. Function Block Diagram

id9309 Ultra-Low Noise Ultra-Fast 300mA LDO Regulator Features

Low Noise 300mA LDO Regulator General Description. Features

RT8078A. 4A, 1MHz, Synchronous Step-Down Converter. General Description. Features. Applications

RT9045. Cost-Effective, 1.8A Sink/Source Bus Termination Regulator. General Description. Features. Ordering Information.

RT9728A. 120mΩ, 1.3A Power Switch with Programmable Current Limit. General Description. Features. Applications. Pin Configurations

RT9089A. DDR Termination Regulator. Features. General Description. Applications. Ordering Information. Marking Information.

RT8474. High Voltage Multiple-Topology LED Driver with Dimming Control. Features. General Description. Applications. Ordering Information

RT9148/9. 20V, 350mA, Rail-to-Rail Operational Amplifier. General Description. Features. Applications. Ordering Information. Marking Information

RT A, 2MHz, Synchronous Step-Down Converter. General Description. Features. Applications. Ordering Information. Pin Configurations

RT9161/A. 300/500mA Low Dropout Linear Voltage Regulator. General Description. Features. Ordering Information RT9161/A- Applications

RT9173B. 2A Bus Termination Regulator. Features. General Description. Applications. Ordering Information. Pin Configurations

RT9276. Synchronous Boost Converter with Voltage Detector. General Description. Features. Applications. Ordering Information. Pin Configurations

RT9070B. 70V, Low Dropout Voltage Linear Regulator. Features. General Description. Marking Information. Applications. Simplified Application Circuit

RT CH LED Current Source Controller. General Description. Features. Ordering Information. Applications. Pin Configuration. Marking Information

RT A, 2MHz, High Efficiency Synchronous Step-Down Converter. General Description. Features. Applications. Ordering Information

RT A, 2MHz, Synchronous Step-Down Converter. Features. General Description. Applications. Ordering Information. Marking Information

RT A, Hysteretic, High Brightness LED Driver with Internal Switch. General Description. Features. Applications. Ordering Information RT8472

RT9705A. 80mΩ, 1A Power Multiplexer. Preliminary. General Description. Features. Applications. Ordering Information. Pin Configurations

RT8477. High Voltage High Current LED Driver. Features. General Description. Applications. Ordering Information RT8477. Pin Configurations (TOP VIEW)

RT A, 2MHz, High Efficiency Synchronous Step-Down Converter. General Description. Features. Applications. Ordering Information

RT8474A. High Voltage Multiple-Topology LED Driver with Open Detection. General Description. Features. Ordering Information.

RT9045. Cost-Effective, 1.8A Sink/Source Bus Termination Regulator. General Description. Features. Ordering Information.

RT8068A. 3A, 1MHz, Synchronous Step-Down Converter. General Description. Features. Applications. Ordering Information. Pin Configurations

RT9199. Cost-Effective, 2A Peak Sink/Source Bus Termination Regulator. General Description. Features. Applications. Ordering Information RT9199

RT2568. DDR Termination Regulator. Features. General Description. Applications. Marking Information. Simplified Application Circuit

80V, Low Dropout Voltage Linear Regulator

RT9728C. 120mΩ, 1.3A Power Switch with Programmable Current Limit. General Description. Features. Applications. Pin Configurations

RT9173B. 2A Bus Termination Regulator. Features. General Description. Applications. Ordering Information. Pin Configurations

MP20041 Dual, Ultra Low Noise, High PSRR 300mA Linear Regulator

RT mA, Ultra-Low Noise, Low Quiescent Current, LDO Regulator. General Description. Features. Ordering Information.

RT8463. High Voltage Multi-Topology LED Driver. General Description. Features. Applications. Ordering Information. Marking Information RT8463GCP

RT A, 36V, 500kHz Step-Down Converter. Features. General Description. Applications. Ordering Information. Pin Configurations (TOP VIEW)

RT8288A. 4A, 21V 500kHz Synchronous Step-Down Converter. General Description. Features. Applications. Ordering Information. Pin Configurations

RT MHz 1.5A Synchronous Step-Down Converter with Two LDOs. General Description. Features. Applications. Ordering Information

RT9173C. Cost-Effective, 2A Sink/Source Bus Termination Regulator. Features. General Description. Applications. Ordering Information

Transcription:

Applications CDMA/GSM Cellular Handsets Portable Information Appliances Laptop, Palmtops, Notebook Computers Hand-Held Instruments Mini PCI & PCI-Express Cards PCMCIA & New Cards RT9030 150mA, Low Input Voltage, Low Dropout, Low Noise Ultra- Fast Without Bypass Capacitor CMOS LDO Regulator General Description The RT9030 is a high-performance, 150mA LDO regulator, offering extremely high PSRR and ultra-low dropout. Ideal for portable RF and wireless applications with demanding performance and space requirements. The RT9030 quiescent current as low as 25μA, further prolonging the battery life. The RT9030 also works with low-esr ceramic capacitors, reducing the amount of board space necessary for power applications, critical in handheld wireless devices. The RT9030 consumes typical 0.7μA in shutdown mode and has fast turn-on time less than 40μs. The other features include ultra-low dropout voltage, high output accuracy, current limiting protection, and high ripple rejection ratio. Available in the SC-70-5 and WDFN-6L 1.6x1.6 package. Ordering Information RT9030- Package Type U5 : SC-70-5 QW : WDFN-6L 1.6x1.6 (W-Type) Lead Plating System G : Green (Halogen Free and Pb Free) Fixed Output Voltage 10 : 1.0V 11 : 1.1V : 32 : 3.2V 33 : 3.3V 1B : 1.25V 1H : 1.85V 2H : 2.85V 1K : 1.05V Note : Richtek products are : RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020. Suitable for use in SnPb or Pb-free soldering processes. Features Wide Operating Voltage Ranges : 1.65V to 5.5V Output Voltage Ranges : 1V to 3.3V Low Dropout : 100mV at 150mA Ultra-Low-Noise for RF Application Ultra-Fast Response in Line/Load Transient Current Limiting Protection Thermal Shutdown Protection High Power Supply Rejection Ratio Only 1μF Output Capacitor Required for Stability TTL-Logic-Controlled Shutdown Input RoHS Compliant and Halogen Free Pin Configurations (TOP VIEW) EN 1 NC 2 VIN 3 SC-70-5 WDFN-6L 1.6x1.6 Marking Information 5 VIN EN NC For marking information, contact our sales representative directly or through a Richtek distributor located in your area. 7 NC 6 5 4 4 2 3 1

Typical Application Circuit V IN VIN C IN 1µF/X7R RT9030 C OUT 1µF/X7R Chip Enable EN NC Functional Pin Description SC-70-5 Pin Number WDFN-6L 1.6x1.6 Pin Name 5 4 Regulator Output. Pin Function 4 2, 5 NC No Internal Connection. 2 6, Ground. The exposed pad must be soldered to a large PCB and 7 (Exposed Pad) connected to for maximum power dissipation. 3 1 EN Enable Input Logic, Active High. When the EN pin is open it will be pulled to low internally. 1 3 VIN Supply Input. Function Block Diagram EN POR OTP Current Limit VIN 1µA V REF - + MOS Driver 2

Absolute Maximum Ratings (Note 1) Supply Input Voltage ------------------------------------------------------------------------------------------------------ 6V EN Input Voltage ----------------------------------------------------------------------------------------------------------- 6V RT9030 Power Dissipation, P D @ T A = 25 C SC-70-5 ---------------------------------------------------------------------------------------------------------------------- 0.3W WDFN-6L 1.6x1.6 --------------------------------------------------------------------------------------------------------- 0.571W Package Thermal Resistance (Note 2) SC-70-5, θ JA ---------------------------------------------------------------------------------------------------------------- 333 C/W WDFN-6L 1.6x1.6, θ JA ---------------------------------------------------------------------------------------------------- 175 C/W Lead Temperature (Soldering, 10 sec.) ------------------------------------------------------------------------------- 260 C Junction Temperature ----------------------------------------------------------------------------------------------------- 150 C Storage Temperature Range -------------------------------------------------------------------------------------------- 65 C to 150 C ESD Susceptibility (Note 3) HBM -------------------------------------------------------------------------------------------------------------------------- 2kV MM ---------------------------------------------------------------------------------------------------------------------------- 200V Recommended Operating Conditions (Note 4) Input Voltage Range ------------------------------------------------------------------------------------------------------ 1.65V to 5.5V Junction Temperature Range -------------------------------------------------------------------------------------------- Ambient Temperature Range -------------------------------------------------------------------------------------------- Electrical Characteristics (V IN = + 0.5V, VEN = VIN, CIN = COUT = 1μF/X5R (Ceramic), TA = 25 C, unless otherwise specified) 40 C to 125 C 40 C to 85 C Parameter Symbol Test Conditions Min Typ Max Unit Output Noise Voltage V ON I OUT = 0mA -- 30 -- μv RMS Output Voltage Accuracy (Fixed Output Voltage) Δ I OUT = 150mA 2 0 2 % Quiescent Current (Note 5) I Q I OUT = 0mA -- 25 50 μa Shutdown Current I SHDN V EN = 0V -- 0.7 1.5 μa Current Limit I LIM R LOAD = 0Ω, 1.65V V IN < 5.5V 170 285 400 ma Dropout Voltage (Note 6) V DROP Load Regulation (Note 7) (Fixed Output Voltage) EN Threshold ΔV LOAD = 1.7V to 2.4V, I OUT = 150mA, 1.65V V IN 5.5V = 2.5V to 3.3V, I OUT = 150mA, 1.65V V IN 5.5V 1mA < I OUT < 150mA 1.65V V IN 5.5V 50 -- 200 20 -- 150 mv -- -- 1 % Logic-Low Voltage V IL 0 -- 0.3 Logic-High Voltage V IH 1.6 -- 5.5 Enable Pin Current I EN -- 1 3 μa Power Supply Rejection Rate f = 1kHz -- 67 -- f = 10kHz PSRR -- 55 -- f = 100kHz -- 40 -- V db To be continued 3

Line Regulation Parameter Symbol Test Conditions Min Typ Max Unit ΔV LINE V IN = ( + 0.5) to 5.5V, I OUT = 1mA to 150mA -- 0.01 0.2 %/V Thermal Shutdown Temperature T SD -- 150 -- Thermal Shutdown Hysteresis ΔT SD -- 20 -- Note 1. Stresses listed as the above Absolute Maximum Ratings may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability. Note 2. θ JA is measured in the natural convection at T A = 25 C on a low effective thermal conductivity single layer test board of JEDEC 51-3 thermal measurement standard. Note 3. Devices are ESD sensitive. Handling precaution is recommended. Note 4. The device is not guaranteed to function outside its operating conditions. Note 5. Quiescent, or ground current, is the difference between input and output currents. It is defined by I Q = I IN - I OUT under no load condition (I OUT = 0mA). The total current drawn from the supply is the sum of the load current plus the ground pin current. Note 6. The dropout voltage is defined as V IN -, which is measured when is (NORMAL) - 100mV. Note 7. Regulation is measured at constant junction temperature by using a 2ms current pulse. Devices are tested for load regulation in the load range from 10mA to 120mA. C 4

Typical Operating Characteristics 1.80 Output Voltage vs. Temperature 31 Quiescent Current vs. Temperature 1.75 29 RT9030-33GU5, VIN = 4.2V Output Voltage (V) 1.70 1.65 1.60 1.55 1.50 RT9030-17GU5, VIN = 3.3V, = 1.7V Quiescent Current (ua) 27 25 23 21 19 17 15 RT9030-17GU5, VIN = 3.3V RT9030-10GU5, VIN = 1.65V -40-25 -10 5 20 35 50 65 80 95 110 125-40 -25-10 5 20 35 50 65 80 95 110 125 Temperature ( C) Temperature ( C) Dropout Voltage vs. Load Current Dropout Voltage vs. Load Current 0.12 0.18 Dropout Voltage (V) 0.10 0.08 0.06 0.04 0.02 0.00 125 C 25 C -40 C RT9030-33GU5 Dropout Voltage (V) 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00 125 C 25 C -40 C RT9030-17GU5 0 25 50 75 100 125 150 0 25 50 75 100 125 150 Load Current (ma) Load Current (ma) Power On from EN Power Off from EN RT9030-17GU5, VIN = 3.3V, ILOAD = 50mA RT9030-17GU5, VIN = 3.3V, ILOAD = 50mA V EN (5V/Div) V EN (5V/Div) (500mV/Div) (500mV/Div) Time (10μs/Div) Time (50μs/Div) 5

Line Transient Response Line Transient Response V IN (V) 4.5 3.5 VIN (V) 4.5 3.5 (10mV/Div) (10mV/Div) RT9030-17GU5, VIN = 3.5V to 4.5V, ILOAD = 10mA Time (100μs/Div) RT9030-17GU5, VIN = 3.5V to 4.5V, ILOAD = 100mA Time (100μs/Div) Load Transient Response Load Transient Response I OUT (50mA/Div) I OUT (50mA/Div) (50mV/Div) (50mV/Div) RT9030-17GU5, VIN = 3V, ILOAD = 1mA to 50mA Time (100μs/Div) RT9030-17GU5, VIN = 3V, ILOAD = 1mA to 120mA Time (100μs/Div) Noise 30 20 10 PSRR RT9030-17GU5, VIN = 3.3V ±50mV IOUT = 120mA 0 (100uV/Div) PSRR (db) -10-20 -30-40 IOUT = 50mA IOUT = 10mA -50-60 RT9030-17GU5, VIN = 4.5V (Battery), ILOAD = 50mA Time (10ms/Div) -70-80 10 100 1000 10000 100000 1000000 Frequency (Hz) 6

Applications Information Capacitor Selection In order to confirm the regulator stability and performance, X7R/X5R or other better quality ceramic capacitor should be selected. Like any low-dropout regulator, the external capacitors used with the RT9030 must be carefully selected for regulator stability and performance. Using a capacitor whose value is larger than 1μF on the RT9030 input and the amount of capacitance can be increased without limit. The input capacitor should be located in a distance of no more than 0.5 inch from the input pin of the IC and returned to a clean analog ground. The capacitor with larger value and lower ESR (equivalent series resistance) provides better PSRR and line-transient response. The output capacitor must meet both requirements for minimum amount of capacitance and ESR in all LDOs application. The RT9030 is designed specifically to work with low ESR ceramic output capacitor in space-saving and performance consideration. Using a ceramic capacitor whose value is at least 1μF with ESR is > 30mΩ on the RT9030 output ensures stability. The RT9030 still works well with output capacitor of other types due to the wide stable ESR range. Figure 1 shows the curves of allowable ESR range as a function of load current for various output capacitor values. Output capacitor with larger capacitance can reduce noise and improve load transient response, stability, and PSRR. The output capacitor should be located in a distance of no more than 0.5 inch from the pin of the RT9030 and returned to a clean analog ground. Enable The RT9030 goes into shutdown mode when the EN pin is in a logic low condition. During this condition, the pass transistor, error amplifier, and bandgap are turned off, reducing the supply current to 0.7μA typical. The EN pin can be directly tied to VIN to keep the part on. Current limit The RT9030 contains an independent current limiter, which monitors and controls the pass transistor's gate voltage, limiting the output current to 285mA (typ.). The output can be shorted to ground indefinitely without damaging the part. Region of Stable COUT C OUT ESR (Ω) (Ω) Region of Stable C OUT ESR vs. Load Current 100 10 1 0.1 0.01 = 3.3V, VIN = 5V, CIN = COUT = 1μF/X7R 0.001 0 30 60 90 120 150 Figure 1. Region of Stable output capacitor ESR Thermal Shutdown Protection As the die temperature is > 150 C, the chip will enter protection mode. The power MOSFET will turn-off during protection mode to prevent abnormal operation. Thermal Considerations Thermal protection limits power dissipation in the RT9030. When the operation junction temperature exceeds 170 C, the OTP circuit starts the thermal shutdown function and turns the pass element off. The pass element turn on again after the junction temperature cools by 30 C. For continuous operation, do not exceed absolute maximum operation junction temperature 125 C. The power dissipation definition in device is : P D = (V IN ) x I OUT + V IN x I Q The maximum power dissipation depends on the thermal resistance of IC package, PCB layout, the rate of surroundings airflow and temperature difference between junction to ambient. The maximum power dissipation can be calculated by following formula : P D(MAX) = ( T J(MAX) T A ) / θ JA Unstable Region Stable Region Simulation Verify Unstable Region Load Current (ma) 7

Where T J(MAX) is the maximum operation junction temperature, T A is the ambient temperature and the θ JA is the junction to ambient thermal resistance. For recommended operating conditions specification of RT9030, the maximum junction temperature of the die is 125 C. The junction to ambient thermal resistance θ JA for WDFN-6L 1.6x1.6 package is 165 C/W and SC-70-5 package is 333 C/W on the standard JEDEC 51-3 singlelayer thermal test board. The maximum power dissipation at T A = 25 C can be calculated by following formula : P D(MAX) = (125 C 25 C) / (165 C/W) = 0.606W for WDFN-6L 1.6x1.6 packages P D(MAX) = (125 C 25 C) / (333 C/W) = 0.300W for SC-70-5 packages The maximum power dissipation depends on operating ambient temperature for fixed T J(MAX) and thermal resistance θ JA. For RT9030 packages, the Figure 2 of derating curves allows the designer to see the effect of rising ambient temperature on the maximum power allowed. Power Dissipation (W) 0.8 Single Layer PCB 0.7 WDFN-6L 1.6x1.6 0.6 0.5 0.4 SC-70-5 0.3 0.2 0.1 Layout Considerations Careful PCB Layout is necessary for better performance. The following guidelines should be followed for good PCB layout. Place the input and output capacitors as close as possible to the IC. Keep VIN and trace as possible as short and wide. Use a large PCB ground plane for maximum thermal dissipation. C IN should be placed as close as possible to VIN pin for good filtering. V IN C IN VIN EN 1 2 3 5 4 Figure 3 NC The through hole of the pin is recommended to be as many as possible. C OUT should be placed as close as possible to pin for good filtering. C OUT 0 0 25 50 75 100 125 Ambient Temperature ( C) Figure 2. Derating Curves for RT9030 Packages 8

Outline Dimension D H L C B b A A1 e Symbol Dimensions In Millimeters Dimensions In Inches Min Max Min Max A 0.800 1.100 0.031 0.044 A1 0.000 0.100 0.000 0.004 B 1.150 1.350 0.045 0.054 b 0.150 0.400 0.006 0.016 C 1.800 2.450 0.071 0.096 D 1.800 2.250 0.071 0.089 e 0.650 0.026 H 0.080 0.260 0.003 0.010 L 0.210 0.460 0.008 0.018 SC-70-5 Surface Mount Package 9

D D2 L E E2 1 SEE DETAIL A 2 1 2 1 A A1 A3 e b DETAIL A Pin #1 ID and Tie Bar Mark Options Note : The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated. Symbol Dimensions In Millimeters Dimensions In Inches Min Max Min Max A 0.700 0.800 0.028 0.031 A1 0.000 0.050 0.000 0.002 A3 0.175 0.250 0.007 0.010 b 0.200 0.300 0.008 0.012 D 1.550 1.650 0.061 0.065 D2 0.950 1.050 0.037 0.041 E 1.550 1.650 0.061 0.065 E2 0.550 0.650 0.022 0.026 e 0.500 0.020 L 0.190 0.290 0.007 0.011 W-Type 6L DFN 1.6x1.6 Package Richtek Technology Corporation Headquarter 5F, No. 20, Taiyuen Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789 Fax: (8863)5526611 Richtek Technology Corporation Taipei Office (Marketing) 5F, No. 95, Minchiuan Road, Hsintien City Taipei County, Taiwan, R.O.C. Tel: (8862)86672399 Fax: (8862)86672377 Email: marketing@richtek.com Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek. 10