ECS 455 Chapter 1 Introduction

Similar documents
1.4 Spectrum Allocation Office Hours: BKD Monday 9:20-10:20 Wednesday 9:20-10:20

ECS 455 Chapter 1 Introduction & Review

1.2 Fourier Transform and Communication System Office Hours: BKD Wednesday 15:30-16:30 Friday 9:30-10:30

Modulator: a crucial part of any communication systems

Fourier transform ( ) LED Audio Spectrum Analyzer. Fourier transform: Example. Asst. Prof. Dr. Prapun Suksompong

Legislation & Standardization

Legislation & Standardization. Pawel Waszczur McMaster RFID Applications Lab McMaster University

IMT & Digital Dividend

5G Spectrum Roadmap & Challenges IEEE 5G Summit. 2 November, 2016

The Evolution of WiFi

Policy for Allocation and Assignment of Spectrum 2.5GHz Band (2500MHz MHz)

EE 577: Wireless and Personal Communications

EC Talk. Asst. Prof. Dr. Prapun Suksompong.

IMT issues for WRC-15: Looking for Spectrum

The sensible guide to y

Testing Carrier Aggregation in LTE-Advanced Network Infrastructure

IEEE Project m as an IMT-Advanced Technology

Section 1 Wireless Transmission

Requirements on 5G Development Device manufacturer s perspective

TRENDS IN SPECTRUM MANAGEMENT OF MONGOLIA

Dynamic Spectrum Alliance response to consultation on the ACMA Five-year spectrum outlook

EIE324 Communication & Telecommunication Lab. Date of the experiment Topics: Objectives : Introduction Equipment Operating Frequencies

Issues in Information Systems

Understanding the role governments and industry organizations play in RFID adoption. Mark Roberti, Founder & Editor, RFID Journal

SPECTRUM FOR MOBILE. Digital Dividend Status. Peter Lyons, Head of Middle East and North Africa, Government & Regulatory Affairs, GSMA

Wireless & Cellular Communications

2.4GHz & 900MHz UNLICENSED SPECTRUM COMPARISON A WHITE PAPER BY INGENU

Vietnam Spectrum Occupancy Measurements and Analysis for Cognitive Radio Applications

Current Status. Future Developments. Current Status And Possible Future Developments

Performance evaluation of LTE in unlicensed bands for indoor deployment of ultra-broadband mobile networks

Wi-Fi For Beginners Module 4

ECS455: Chapter 6 Applications

Cognitive Cellular Systems in China Challenges, Solutions and Testbed

International Telecommunication Union

Glossary of Terms Black Sky Event: Blue Sky Operations: Federal Communications Commission (FCC): Grey Sky Operations:

Finding right frequencies

ANNEX TO QUALCOMM COMMENTS ON THE DRAFT IMT ROADMAP

700MHz awards and approaches in the region

WiMAX and Non-Standard Solutions

Overview: Radio Frequency Spectrum

UMTS Forum. IMT-2000 spectrum activities

Comparative Use of Unlicensed Spectrum. Training materials for wireless trainers

June 21, 2016 comments from AT&T's president of Technology Operations, Bill Smith, at the Wells Fargo 2016 Convergence and Connectivity Symposium

9. Spectrum Implications

ECS455: Chapter 6 Applications

PCC.II/REC. 8 (IV-04) 1 FREQUENCY ARRANGEMENTS FOR IMT-2000 IN THE BANDS 806 TO 960 MHZ, 1710 TO 2025 MHZ, 2110 TO 2200 MHZ AND 2500 TO 2690 MHz

Tutorial on to 802. Outline (1)

Trouble-shooting Radio Links in Unlicensed Frequency Bands TUTORIAL

Direct Link Communication II: Wireless Media. Current Trend

Telecommunications Regulation & Trends Lectures 2-4: Spectrum Management Fundamentals

VALUING SPECTRUM. Michael Honig Department of EECS Northwestern University. Based on a paper with Tom Hazlett. December 2016

COPYRIGHTED MATERIAL. Chapter. Overview of Wireless Standards and Organizations IN THIS CHAPTER, YOU WILL LEARN ABOUT THE FOLLOWING:

Engr 1202 ECE. Clean Room Project

e-guide to RF Signals UNLICENSED & ISM BANDS LAND MOBILE & PUBLIC SAFETY CELLULAR AERONAUTICAL RADIO & TELEVISION BROADCAST WEATHER RADAR

SPECTRUM MANAGEMENT Sirewu Baxton POTRAZ

In this unit we will see how WiFi networks work

mm Wave Communications J Klutto Milleth CEWiT

Chapter 1 INTRODUCTION

Page 1. Overview : Wireless Networks Lecture 9: OFDM, WiMAX, LTE

TDD and FDD Wireless Access Systems

Public or Private (2)

Lecture 4 October 10, Wireless Access. Graduate course in Communications Engineering. University of Rome La Sapienza. Rome, Italy

Overcoming Interference is Critical to Success in a Wireless IoT World

Reading and working through Learn Networking Basics before this document will help you with some of the concepts used in wireless networks.

ECS455: Chapter 4 Multiple Access

License Exempt Spectrum and Advanced Technologies. Marianna Goldhammer Director Strategic Technologies

1. Spectrum Management Process:

Ammar Abu-Hudrouss Islamic University Gaza

International Telecommunication Union

IARU Positions on WRC-15 Agenda Items

WIRELESS NETWORKS IN A POST-SPECTRUM WORLD

Official Journal of the European Union L 163/37

ITU WRC-15 summary Slide title 70 pt CAPITALS Slide subtitle minimum 30 pt

Service and technology neutrality - universal service obligations

CSC344 Wireless and Mobile Computing. Department of Computer Science COMSATS Institute of Information Technology

Kordia Submission on Preparing for 5G in New Zealand. 8 May 2018

Application Note SAW-Components

Use of the 5 GHz Shared Band for the Provision of Public Mobile Services. Consultation Paper. 1 February 2018

9. Spectrum Implications

Co-existence. DECT/CAT-iq vs. other wireless technologies from a HW perspective

Radio Spectrum Allocations 101

THE USE OF MHZ FOR 5G EARLY ROLLOUT: OPPORTUNITIES AND CHALLENGES

Smart Meter connectivity solutions

Report approved on 01 March 2016 by the ECC

The 3 rd Annual CIS and CEE Spectrum Management Conference

Chapter 1 Introduction

Broadcasting Frequency Management National, Regional and Global Issues

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November ISSN

Wireless Transmission Rab Nawaz Jadoon

Channel selection for IEEE based wireless LANs using 2.4 GHz band

(Reports and Commnets) UWB

Coexistence of fixed and space services at 2 GHz

COMMISSION IMPLEMENTING DECISION

Wireless Intro : Computer Networking. Wireless Challenges. Overview

Direct Link Communication II: Wireless Media. Motivation

Report ITU-R M.2198 (11/2010)

Connecting the Unconnected with Fixed Wireless Broadband A Compelling Solution Even in Unlicensed Band.

ITU-R Activities Impact on ITS. Paul Najarian U.S. Dept. of Commerce National Telecommunications and Information Administration

Spectrum issues for IMT Wassim CHOURBAJI Deputy Director Spectrum ITU-D IMT-2000 seminar, Doha, 29 September 2003

Lecture 5 October 17, Wireless Access. Graduate course in Communications Engineering. University of Rome La Sapienza. Rome, Italy

Transcription:

ECS 455 Chapter 1 Introduction 1.3 Spectrum Allocation 1 Dr.Prapun prapun.com/ecs455 Office Hours: BKD, 6th floor of Sirindhralai building Tuesday 14:20-15:20 Wednesday 14:20-15:20 Friday 9:15-10:15

Electromagnetic Spectrum 3 MHz 3 GHz 100 m 10 cm 8 3 10 m/s c [Gosling, 1999, Fig 1.1 and 1.2] f Wavelength Frequency 2

[http://www.britannica.com/ebchecked/topic-art/585825/3697/commercially-exploited-bands-of-the-radio-frequency-spectrum] Radio-frequency spectrum Commercially exploited bands 3 8 3 10 m/s c f Frequency Wavelength Note that the freq. bands are given in decades; the VHF band has 10 times as much frequency space as the HF band.

Cellular Bands Cellular phone networks worldwide use a portion of the radio frequency spectrum designated as ultra high frequency (UHF) (300 MHz to 3 GHz) The UHF band is also used for television, GPS, Wi-Fi, and Bluetooth transmission. Due to historical reasons, radio frequencies used for cellular networks differ in the Americas, Europe, and Asia. Frequency bands that are currently identified for IMT (International Mobile Telecommunications) in all three ITU Regions: 450 470 MHz 790 960 MHz 1710 2025 MHz 2110 2200 MHz 2300 2400 MHz 2500 2690 MHz Additional frequency bands identified for IMT on a Regional or National basis: 698-790 MHz (Region 2) 610 790 MHz (9 countries in Region 3: Bangladesh, China, Rep. of Korea, India, Japan, New Zealand, Papua New Guinea, Philippines and Singapore.) 3400 3600 MHz (Over 80 Administrations in Region 1 plus 9 in Region 3 including India, China, Japan and Rep. of Korea). 4 [ https://www.itu.int/itu-d/tech/mobilecommunications/spectrum-imt.pdf ]

ITU Regions The ITU divides the world into three ITU regions for the purposes of managing the global radio spectrum. Region 2 Region 1 Region 3 5

FDD and TDD LTE frequency bands 6 FDD LTE frequency band allocations WIDTH OF DUPLEX LTE BAND BAND GAP UPLINK (MHZ) DOWNLINK (MHz) BAND SPACING NUMBER (MHZ) (MHZ) (MHZ) 1 1920-1980 2110-2170 60 190 130 2 1850-1910 1930-1990 60 80 20 3 1710-1785 1805-1880 75 95 20 4 1710-1755 2110-2155 45 400 355 5 824-849 869-894 25 45 20 6 830-840 875-885 10 35 25 7 2500-2570 2620-2690 70 120 50 8 880-915 925-960 35 45 10 9 1749.9-1784.9 1844.9-1879.9 35 95 60 10 1710-1770 2110-2170 60 400 340 11 1427.9-1452.9 1475.9-1500.9 20 48 28 12 698-716 728-746 18 30 12 13 777-787 746-756 10-31 41 14 788-798 758-768 10-30 40 15 1900-1920 2600-2620 20 700 680 16 2010-2025 2585-2600 15 575 560 17 704-716 734-746 12 30 18 18 815-830 860-875 15 45 30 19 830-845 875-890 15 45 30 20 832-862 791-821 30-41 71 21 1447.9-1462.9 1495.5-1510.9 15 48 33 22 3410-3500 3510-3600 90 100 10 23 2000-2020 2180-2200 20 180 160 24 1625.5-1660.5 1525-1559 34-101.5 135.5 25 1850-1915 1930-1995 65 80 15 26 814-849 859-894 30 / 40 10 27 807-824 852-869 17 45 28 28 703-748 758-803 45 55 10 29 n/a 717-728 11 30 2305-2315 2350-2360 10 45 35 31 452.5-457.5 462.5-467.5 5 10 5 TDD LTE frequency band allocations LTE BAND NUMBER ALLOCATION (MHZ) WIDTH OF BAND (MHZ) 33 1900-1920 20 34 2010-2025 15 35 1850-1910 60 36 1930-1990 60 37 1910-1930 20 38 2570-2620 50 39 1880-1920 40 40 2300-2400 100 41 2496-2690 194 42 3400-3600 200 43 3600-3800 200 44 703-803 100 [http://www.radio-electronics.com/info/cellulartelecomms/lte-long-term-evolution/lte-frequency-spectrum.php]

Spectrum Allocation Spectral resource is limited. Most countries have government agencies responsible for allocating and controlling the use of the radio spectrum. Commercial spectral allocation is governed globally by the International Telecommunications Union (ITU) ITU Radiocommunication Sector (ITU-R) is responsible for radio communication. in the U.S. by the Federal Communications Commission (FCC) in Europe by the European Telecommunications Standards Institute (ETSI) in Thailand by the National Broadcasting and Telecommunications Commission (NBTC; คณะกรรมการก จการกระจายเส ยง ก จการโทรท ศน และก จการ โทรคมนาคมแห งชาต ; กสทช.) Blocks of spectrum are now commonly assigned through spectral auctions to the highest bidder. 7

2016 8 [ https://www.ntia.doc.gov/category/spectrum-management ]

Thailand Freq. Allocations 9 [ https://www.youtube.com/watch?v=vzd-l24vg4u ]

ตารางก าหนดคล นความถ แห งชาต 10 [ nbtc.go.th/spectrum_management/แผนแม บท/ตารางก าหนดคล นความถ แห งชาต.aspx ]

National Table of Frequency Allocation 11 [ nbtc.go.th/spectrum_management/แผนแม บท/ตารางก าหนดคล นความถ แห งชาต.aspx ]

Thailand Freq. Allocations Chart 12 http://www.ntc.or.th/uploadfiles/freq_chart_thai.htm

Spectrum Allocation 13 Spectrum is a scarce resource. Radio spectrum will be the first of our finite resources to run out, long before oil, gas or mineral deposits. Spectrum is allocated in chunks in frequency domain. Chunks are licensed to (cellular/wireless) operators. Within a single cellular operator, the chunk is further divided into many channels. Each channel has its own band of frequency. Mobile networks based on different standards may use the same frequency chunk. For example, AMPS, D-AMPS, N-AMPS and IS-95 all use the 800 MHz frequency chunk. This is achieved by the use of different channels.

Oct 2012: Thailand 2.1GHz Auction 4.5bn baht per license (freq chunk) 1 license (chunk) = 5 MHz (UL) + 5 MHz (DL) 450 million baht per MHz 30 million baht per MHz per year 14

Nov 2015: Thailand 1800MHz Auction 40bn baht 15 MHz (UL) + 15 MHz (DL) 1.3 billion baht per MHz 74 million baht per MHz per year ( 2.5 ) (15 years) (18 years) 15

Dec 2015: Thailand 900MHz Auction 76bn baht 10 MHz (UL) + 10 MHz (DL) 3.8 billion baht per MHz 250 million baht per MHz per year ( 3 ) Nov 2015 18 years Dec 2015 15 years (forfeit) 16

Interesting Book Spectrum Wars: The Policy and Technology Debate Designed to help you ensure that your company wins the battle for the spectrum, this text maps out the strategies required for structuring entry and operations in the spectrum. It offers advice on how to master the lobbying, technical, regulatory, legal and political tools needed for success. [Manner, 2003] 17

ECS 455 Chapter 1 Introduction 1.4 Unlicensed bands 18 Dr.Prapun prapun.com/ecs455 Office Hours: BKD, 6th floor of Sirindhralai building Tuesday 14:20-15:20 Wednesday 14:20-15:20 Friday 9:15-10:15

Unlicensed bands Frequency bands that are free to use according to a specific set of etiquette rules. The purpose of these unlicensed bands is to encourage innovation and low-cost implementation. Many extremely successful wireless systems operate in unlicensed bands, including wireless LANs, Bluetooth, and cordless phones. Major difficulty: If many unlicensed devices in the same band are used in close proximity, they generate much interference to each other, which can make the band unusable. 19

20 Unlicensed bands (2) Unlicensed spectrum is allocated by the governing body within a given country. Often countries try to match their frequency allocation for unlicensed use so that technology developed for that spectrum is compatible worldwide. The following table shows the unlicensed spectrum allocations in the U.S. (ISM = Industrial, Scientific, and Medical) 900 MHz 2.4 GHz 5.8 GHz 5 GHz 5 GHz 5.8 GHz (U-NII = Unlicensed National Information Infrastructure)

[TseViswanath, 2005, Section 4.1] Licensed vs. Unlicensed Spectra 21 Licensed Typically nationwide. Over a period of a few years. From the spectrum regulatory agency. Bandwidth is very expensive. No hard constraints on the power transmitted within the licensed spectrum but the power is expected to decay rapidly outside. Provide immunity from any kind of interference outside of the system itself. Unlicensed For experimental systems and to aid development of new wireless technologies. Very cheap to transmit on. There is a maximum power constraint over the entire spectrum. Have to deal with interference.

Ex. Wi-Fi Standards 802.11a/b/g/n operate in the 2.4 GHz band. 802.11n optionally supporting the 5 GHz band. The new 802.11ac standard mandates operation only in the 5 GHz band. 2.4 GHz band is susceptible to greater interference from crowded legacy Wi-Fi devices as well as many household devices. The 5 GHz band has relatively reduced interference and there are a greater number of nonoverlapping channels available (25 non-overlapping channels in US) compared to the 2.4 GHz band (3 non-overlapping channels in the US). 22

Section 17.4.6.3 (Channel Numbering of operating channels) of the IEEE Std 802.11 (2012) states In a multiple cell network topology, overlapping and/or adjacent cells using different channels can operate simultaneously without interference if the distance between the center frequencies is at least 25 MHz. 23 [http://en.wikipedia.org/wiki/ieee_802.11]

24 5 GHz Band Channels

Unlicensed 60 GHz Frequency Band A lot of bandwidth available Worldwide spectrum availability 25 Even for the smallest allocation, there is more than 3 GHz of bandwidth available, and most regions allow use of at least 7 GHz. In comparison, the 5 GHz unlicensed band has about 500 MHz of total usable bandwidth. The 2.4 GHz band has less than 85 MHz of bandwidth in most regions.

ECS 455 Chapter 1 Introduction 1.5 LTE in Unlicensed Spectrum 26 Dr.Prapun prapun.com/ecs455 Office Hours: BKD, 6th floor of Sirindhralai building Tuesday 14:20-15:20 Wednesday 14:20-15:20 Friday 9:15-10:15

LTE in unlicensed spectrum The use of the 4G LTE radio communications technology in unlicensed spectrum, such as the 5 GHz band already populated by Wi-Fi devices. (400 MHz 3.8 GHz) LTE (5 GHz) 27

LTE Unlicensed has Multiple Flavors LTE in unlicensed spectrum (LTE-U) Based on 3GPP Rel. 12 Target early mobile operators deployments in USA, Korea and India License Assisted Access (LAA) Defined in 3GPP Rel. 13 as part of LTE Advanced Pro Target deployments in Europe, Japan, & beyond. 28

LTE-U: Controversy June 2015: Google sent the FCC a protest August 2015: the Wi-Fi Alliance also voiced opposition The technical concern with LTE-U is that LTE is a rude technology. WiFi includes a politeness protocol that LTE lacks. WiFi will back off if it senses interference from other users. Eventually rude LTE operating in WiFi s polite bands could take over the band. 29

LAA: Fair Wi-Fi coexistence A better neighbor to Wi-Fi than Wi-Fi itself 30