DEVELOPMENT OF SEISMIC ISOLATION SYSTEM IN VERTICAL DIRECTION

Similar documents
A Failure Mode Evaluation of a 480V MCC in Nuclear Power Plants at the Seismic Events

GENERAL GUIDELINES FOR APPLICATION OF THE EXTENDED SUBTRACTION METHOD IN SASSI SOIL-STRUCTURE INTERACTION ANALYSIS

Response spectrum Time history Power Spectral Density, PSD

(i) Sine sweep (ii) Sine beat (iii) Time history (iv) Continuous sine

MOCK-UP TEST OF R EMOTE CONTROL MACHI" 4 CR THE JPDR BIOLOGICAL SHIELD CONCRETE DISMANTLEMENT. Tokai-mura, Naka-gun, Ibaraki-ken , JAPAN

EARTHQUAKE RESPONSE OF HIGHWAY BRIDGES SUBJECTED TO LONG DURATION SEISMIC MOTIONS. Kataoka Shojiro 1

Control Servo Design for Inverted Pendulum

Finite Element Study of Using Concrete Tie Beams to Reduce Differential Settlement Between Footings

DYNAMIC CHARACTERISTICS OF A BRIDGE ESTIMATED WITH NEW BOLT-TYPE SENSOR, AMBIENT VIBRATION MEASUREMENTS AND FINITE ELEMENT ANALYSIS

Earthquake Resistance Test Specifications for Communications Equipment

Module 7 : Design of Machine Foundations. Lecture 31 : Basics of soil dynamics [ Section 31.1: Introduction ]

SOLVING VIBRATIONAL RESONANCE ON A LARGE SLENDER BOAT USING A TUNED MASS DAMPER. A.W. Vredeveldt, TNO, The Netherlands

EFFECT OF SETBACK RATIO ON SEISMIC PERFORMANCE OF RC STRUCTURES

DYNAMIC PERFORMANCE EVALUATION OF BRACED SHEAR WALL WITH NEW BRACE FASTENER FOR WOODEN HOUSES

UTILIZING MODERN DIGITAL SIGNAL PROCESSING FOR IMPROVEMENT OF LARGE SCALE SHAKING TABLE PERFORMANCE

Site-specific seismic hazard analysis

StandingWaves_P2 [41 marks]

Geopier Foundation Company, Inc.

What Can We Learn from High Quality Instrumentation in Structures? John Clinton

MODAL IDENTIFICATION OF BILL EMERSON BRIDGE

Shinde Suyog Sudhakar, Galatage Abhijeet.A, Kulkarni Sumant.K, International Journal of Advance Research, Ideas and Innovations in Technology.

DRAFT Expected performance of type-bp SAS in bkagra

Magnitude & Intensity

STRUCTURAL HEALTH MONITORING USING STRONG AND WEAK EARTHQUAKE MOTIONS

Simulate and Stimulate

Vibration studies of a superconducting accelerating

VIBRATIONAL TESTING OF A FULL-SCALE PILE GROUP IN SOFT CLAY

Principles of Vibration Measurement and Analysis. Dr. Colin Novak, P.Eng July 29, 2015

Ground motion and structural vibration reduction using periodic wave bamer as a passive isolation

Improving seismic isolation in Advanced LIGO using a ground rotation sensor

Introduction*to*Machinery*Vibration*Sheet*Answer* Chapter*1:*Vibrations*Sources*and*Uses*

VIBRATION MEASUREMENTS IN THE KEKB TUNNEL. Mika Masuzawa, Yasunobu Ohsawa, Ryuhei Sugahara and Hiroshi Yamaoka. KEK, OHO 1-1 Tsukuba, Japan

Borehole vibration response to hydraulic fracture pressure

Module 4 TEST SYSTEM Part 2. SHAKING TABLE CONTROLLER ASSOCIATED SOFTWARES Dr. J.C. QUEVAL, CEA/Saclay

FINITE ELEMENT ANALYSIS OF ACTIVE VIBRATION ISOLATION

Development of the accelerometer for cryogenic experiments II

K L Rakshith, Smitha, International Journal of Advance Research, Ideas and Innovations in Technology.

high, thin-walled buildings in glass and steel

On the axes of Fig. 4.1, sketch the variation with displacement x of the acceleration a of a particle undergoing simple harmonic motion.

The VIRGO suspensions

Q1. The diagram below shows three transparent glass blocks A, B and C joined together. Each glass block has a different refractive index.

An Overview of Ground Motion and Vibration Studies

Structural. engineering. dynamics of earthquake. s. Rajasekaran. W OODHEAD PUBLISHING LIMITED Oxford Cambridge New Delhi

Assessment of the performance of tuned liquid dampers for vibration mitigation in structures

Virtual Measurement System MATLAB GUI Documentation

SHAKER TABLE SEISMIC TESTING OF EQUIPMENT USING HISTORICAL STRONG MOTION DATA SCALED TO SATISFY A SHOCK RESPONSE SPECTRUM Revision C

FB-PIER VALIDATION SET

Chapter 13 Tuned-Mass Dampers. CIE Structural Control 1

Nonlinear Analysis of Pacoima Dam with Spatially Nonuniform Ground Motion

3.0 Apparatus. 3.1 Excitation System

Vertical-Vibration Suppressing Design of Accumulator with New Vibration-Measuring Method

Surveillance of concrete structures in cooling water ways

Application of a wireless sensing and control system to control a torsion-coupling building with MR-dampers

TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK

CALIBRATION OF COMPUTER PROGRAM SASSI FOR VIBRATION TRANSMISSIBILITY ANALYSIS IN UNDERGROUND STRUCTURES USING FIELD MEASURED DATA

CHAPTER 3 THE DESIGN OF TRANSMISSION LOSS SUITE AND EXPERIMENTAL DETAILS

Vibration Fundamentals Training System

Dynamic Characteristics of Structures Extracted From In-situ Testing

The effect of underground cavities on design seismic ground motion

THE INVESTIGATION OF VIBRATION OF LINAC AT KEK

Development of Shock Acceleration Calibration Machine in NMIJ

Pacific Earthquake Engineering Research Center

VIBRATION ANALYSIS AND MODAL IDENTIFICATION OF A CIRCULAR CABLE-STAYED FOOTBRIDGE

Active Stabilization of a Mechanical Structure

REAL TIME VISUALIZATION OF STRUCTURAL RESPONSE WITH WIRELESS MEMS SENSORS

Earthquake response analysis of Ankara high speed train station by finite element modeling

Tilt sensor and servo control system for gravitational wave detection.

Heat-Mechanics Interaction Behavior of Laminated Rubber Bearings under Large and Cyclic Lateral Deformation

IOMAC'13 5 th International Operational Modal Analysis Conference

Elastic Support of Machinery and Equipment

Foundations Subjected to Vibration Loads

ME scope Application Note 02 Waveform Integration & Differentiation

AGN 008 Vibration DESCRIPTION. Cummins Generator Technologies manufacture ac generators (alternators) to ensure compliance with BS 5000, Part 3.

An Alternative to Pyrotechnic Testing For Shock Identification

Methods for reducing unwanted noise (and increasing signal) in passive seismic surveys

Experimental Modal Analysis

Dynamic Analysis of Infills on R.C Framed Structures

ASC IMU 7.X.Y. Inertial Measurement Unit (IMU) Description.

Recent Advances to Obtain Real - time Displacements for Engineering Applications

Linguistics 401 LECTURE #2. BASIC ACOUSTIC CONCEPTS (A review)

Effects of Surface Geology on Seismic Motion

ATA s Nanoradian-Class Rotational Sensors. 10 November 2009

Piezoelectric multilayer triaxial accelerometer

IDENTIFICATION OF NONLINEAR SITE RESPONSE FROM TIME VARIATIONS OF THE PREDOMINANT FREQUENCY

Prof. Sudhir Misra, Dept of CE (PI) Prof. Samit Raychaudhari, Dept of CE (Co PI) Dr. KK Bajpai, Dept of CE (Co PI)

The Role of Buildings and Slabs-on-Grade in the Suppression of Low-Amplitude Ambient Ground Vibrations

Assessment of the Metrological Performance of Seismic Tables for a QMS Recognition

Texas Components - Data Sheet. The TX53G1 is an extremely rugged, low distortion, wide dynamic range sensor. suspending Fluid.

Developer Techniques Sessions

Comparison of Transmissibility of Non-Metallic Materials For Vibration Isolation

IV B. Tech. II Sem (13EE432A) ELECTRICAL DISTRIBUTION SYSTEMS. (Elective - II)

Industrial vibration sensor selection: Piezovelocity transducers

Effect of Infill Walls on RC Framed Structure

AGASTAT E7000 Series, Nuclear Qualified Time Delay Relays

Barrier. (a) State the conditions which must be met for an object to move with simple harmonic motion. (2)

Research on the Transient Response and Measure Method of Engineering Vibration Sensors

Six degree of freedom active vibration isolation using quasi-zero stiffness magnetic levitation

Impact sound insulation: Transient power input from the rubber ball on locally reacting mass-spring systems

Influence of Peak Factors on Random Vibration Theory Based Site Response Analysis

CODE FORMULA FOR THE FUNDAMENTAL PERIOD OF RC PRECAST BUILDINGS

Transcription:

JNC TN9400 99-060

T319-1194 Inquiries about copyright and reproduction should be addressed to: Technical Cooperation Section, Technology Management Division, Japan Nuclear Cycle Development Institute 4-49 Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1194, Japan. $$M HM 5 ;U$ &$Mf (Japan Nuclear Cycle Development Institute) 1999

JNC TN9400 99-060 April, 19 9 9 DEVELOPMENT OF SEISMIC ISOLATION SYSTEM IN VERTICAL DIRECTION Report No.9 Horizontal Dynamic Tests of A common Deck Isolation Structure Makoto OHOKA* and Morito HORIKIRI** Abstract A structure concept of vertical seismic isolation system which uses a common deck and a set of large dish springs was created in past studies. In this report, a series of dynamic tests on a small scale model of a common deck isolation structure were performed. The model was excited by random and seismic waves in the horizontal direction and 2-D excitation, horizontal and vertical, in order to identify the characteristics of isolation effect. The tests results are summarized as below. 1) This structure has three vibration mode. The second mode is rocking. 2) Rocking frequency depends on the excitation, for this structure has dish spring which contact with cylinders. Rocking damping varies from 2 to 8%. 3) Each mode's response peak frequency to 2-D(horizontal and vertical) excitation is almost the same the some to horizontal excitation. Vertical mode damping to 2-D excitation is about three times to horizontal excitation. 4) Isolation effect depends on a characteristics of frequency of input motion. The minimum response is to the Monju design seismic wave, soil shear wave:vs=2000m/sec, natural frequency of horizontal isolation in vertical direction:fv=20hz. A relative displacement is controlled. 5) A rocking angular displacement to 2-D excitation is about 2 times to 1-D excitation(vertical). However, it is about 1.2E-4(rad), sufficiently small for a practical plant. * Community Relations Section, Administration Division, O-arai Engineering Center(OEC), JNC ** Structure Safety Engineering Group, Sodium and Safety Engineering Division, OEC, JNC

JNC TN9400 99-060 List of Tables Table 2.2.1 Specification of Common Deck Model 10 Table 2.2.2 Similarity Law for Test Devices 10 Table 2.2.3 Results of Similarity Law for Test Devices 10 Table 2.2.4 Specification of Dish Spring 11 Table 2.3.1 Specification of Accelerometer 12 Table 2.3.2 Specification of Displacement Transducer (LVDT) 12 Table 2.4.1 List of Test Cases (Random Excitation) 13 Table 2.4.2 List of Test Cases (Seismic Excitation) (lof3:monjusl,vs=2000m/sec,fv=20hz) 13 Table 2.4.3 List of Test Cases (Seismic Excitation) (2 of 3 :Monju SI, Vs=700 m/sec, fv= 10 Hz) 13 Table 2.4.4 List of Test Cases (Seismic Excitation) (3 of 3 : Tokachi, Vs=2000 m/sec, fv=20 Hz) 13 Table 3.1.1 Results of Random Excitation -Longitudinal Response 400gal- 36 Table 3.1.2 Results of Random Excitation -Long+Vert Response 400gal- 37 Table 3.1.3 Results of Random Excitation Vertical Response 38 Table 3.2.1 Summary of Earthquake Longitudinal Response Tests 39 Table 3.2.2 Summary of Earthquake Longitudinal Response Tests Values 40 Table 3.2.3 Summary of Earthquake Long+Vert Response Tests 41 Table 3.2.4 Summary of Earthquake Long+Vert Response Tests Values 42 Table 3.2.5 Summary of Earthquake Longitudinal Response Tests 43 Table 3.2.6 Summary of Earthquake Longitudinal Response Tests Values 44 Table 3.2.7 Summary of Earthquake Long+Vert Response Tests 45 Table 3.2.8 Summary of Earthquake Long+Vert Response Tests Values 46 Table 3.2.9 Summary of Earthquake Longitudinal Response Tests 47 Table 3.2.10 Summary of Earthquake Longitudinal Response Tests Values 48 Table 3.2.11 Summary of Earthquake Long+Vert Response Tests 49 Table 3.2.12 Summary of Earthquake Long+Vert Response Tests Values 50 Table 3.2.13 Summary of Earthquake Vertical Response Tests Values MONJU : Vs=2000 m/sec, fv=20 Hz 51 Table 3.2.14 Summary of Earthquake Vertical Response Tests Values MONJU: Vs=700 m/sec, fv= 10 Hz 52 Table 3.2.15 Summary of Earthquake Vertical Response Tests Values TOKACHI: Vs=2000 m/sec, fv=20 Hz 53

JNC TN9400 99-060 List of Table (cont'd) Table 4.3.2 Properties of Longitudinal 74 Table 4.3.3 Stiffness of Rotation 75 Table 4.5.1 Eigen Values Analysis Cases 78 Table 4.5.2 Constants of Analysis Model 78 Table 4.5.3 Results of Eigen Values Analysis 79 Table 5.2.1 Effective Stiffness of Analysis Model 89 Table 5.2.2 Natural Frequency and Mode Description 90 Table A.6.1 Dynamic Properties of Isolation Reactor Building : R/B 106 Table A.6.2 Dynamic Properties of Isolation Containment Vessel: C/V 107 Table A.6.3 Material Properties of Concrete and Steel 108 Table A.7.1 Material Properties of Soil 108 Table A.7.2 Constants of Soil Springs 108 Table A.9.1 Cases of Eigen Values Analysis 109 Table A.9.2 Cases of Response Analysis 109 Table A. 10.1 Results of Eigenvalue Analysis 110 Table A. 11.1 Maximum Response Acceleration at R/V Support Level Ill - V -

JNC TN9400 99-060 List of Figures Fig. 2.2.1 Common Deck Vertical Isolation System 14 Fig. 2.2.2 Common Deck Test Model 15 Fig. 2.2.3 Isolation Cut Model 16 Fig. 2.3.1 Location of Transducer 17 Fig. 2.4.1 Acceleration and Power Spectrum of White Noise 18 Fig. 2.4.2 Monju SI Long. Wave (Vs=2000 m/sec,fv20 Hz,fh=0.5 Hz) 19 Fig. 2.4.3 Monju SI Vert. Wave (Vs=2000 m/sec,fv20 Hz,fh=0.5 Hz) 20 Fig. 2.4.4 Monju SI Long. Wave (Vs=700 m/sec,m0 Hz,fh=0.5 Hz) 21 Fig. 2.4.5 Monju SI Vert. Wave (Vs=700 m/sec ; fvl0 Hz,fh=0.5Hz) 22 Fig. 2.4.6 Tokachi Long. Wave (Vs=2000 m/sec,fv20 Hz,fh=0.5 Hz) 23 Fig. 2.4.7 Tokachi Vert. Wave (Vs=2000 m/sec,fv20 Hz,fh=0.5 Hz) 24 Fig. 3.1.1 Rocking Mode Concept 54 Fig. 3.1.2 Transfer Function of Long Test: {(AZ02+AZ04)-(AZ08+AZ06)}/2Ll 55 Fig. 3.1.3 Transfer Function of Long Test: AX30/L4 56 Fig. 3.1.4 Mode Shape (Mode#l) 57 Fig. 3.1.5 Mode Shape (Mode#2) 58 Fig. 3.1.6 Transfer Function of Vert Test: TOTAL (Case#Rl-5) 59 Fig. 3.1.7 Transfer Function of Long+Vert Test: TOTAL 60 Fig. 3.1.8 Transfer Function of Long+Vert Test: {(AZ02+AZ04)-(AZ08+AZ06)}/2Ll 61 Fig. 3.1.9 Transfer Function of Long+Vert Test: AX30/L4 62 Fig. 3.2.1 Comparison of Rocking Response (red) : rms Values 63 Fig. 3.2.2 Comparison of Maximum Vertical Displacement at Deck : rms Values 64 Fig. 3.2.3 Comparison of Maximum Horizontal Displacement at R/V : rms Values 65 Fig. 3.2.4 Comparison of Longitudinal Response Acceleration : rms Values 66 Fig. 3.2.5 Comparison of Vertical Response Acceleration : MAX Values 67 Fig. 3.2.6 Comparison of Vertical Response Acceleration : rms Values 68 Fig. 3.2.7 Comparison of Vertical Response Displacement: MAX Values 69 Fig. 3.2.8 Comparison of Vertical Response Displacement: rms Values 70 Fig. 4.5.1 Location of Isolation Devices 76 Fig. 4.5.2 ModeShape#l 80 Fig. 4.5.3 ModeShape#2 81 Fig. 4.5.4 ModeShape#3 82 Fig. 4.5.5 ModeShape#4 83 Fig. 4.5.6 ModeShape#5 84 Fig. 5.2.1 Analysis Model 91 - VI -

JNC TN9400 99-060 List of Figures (Cont'd) Fig. A.2.1 Original Input Wave at Analysis Model: MONJU SI 112 Fig. A.2.2 Original Input Wave at Analysis Model: TOKACHI 113 Fig. A.10.1 Mode Shape Case#E-l : Fixed Base 114 Fig. A.10.2 Mode Shape Case#E-2 : SSI (Vs=700m/sec) w/o Isolation 115 Fig. A. 10.3 Mode Shape Case#E-3 : SSI (Vs=2000m/sec) w/o Isolation 116 Fig. A.10.4 Mode Shape Case#E4 : Isolation (fh=0.5hz) w/o SSI 117 Fig. A.10.5 Mode Shape Case#E-5 : Isolation (fh=0.5hz) + SSI (Vs=700m/sec) 118 Fig. A.10.6 Mode Shape Case#E-6 : Isolation (fh=0.5hz) + SSI (Vs=2000m/sec) 119 Fig. A.ll.l Comparison of Time History 120 Fig. A.11.2 Comparison of Time History 121 Fig. A.11.3 Comparison of Time History 122 Fig. A.11.4 Comparison of Time History 123 Fig. A.11.5 Comparison of Floor Response Spectrum 124 Fig. A.11.6 Comparison of Floor Response Spectrum 125 Fig. A.11.7 Comparison of Floor Response Spectrum 126 Fig. A.11.8 Comparison of Floor Response Spectrum 127 Fig. B.I.I Transfer Function of Long Test: {(AZ12+AZ14)-(AZ18+AZ16)}/2L2 135 Fig. B.1.2 Transfer Function of Long Test: (AZ13+AZ17)/L3 136 Fig. B.1.3 Transfer Function of Long Test: AZ00 137 Fig. B.1.4 Transfer Function of Long Test: AZ02 138 Fig. B. 1.5 Transfer Function of Long Test: AZ04 139 Fig. B. 1.6 Transfer Function of Long Test: AZ06 140 Fig. B.1.7 Transfer Function of Long Test: AZ08 141 Fig. B.1.8 Transfer Function of Long+Vert Test: {(AZ12+AZ14)-(AZ18+AZ16)}/2L2 142 Fig. B.1.9 Transfer Function of Long+Vert Test: (AZ13+AZ17)}/L3 143 Fig. B.I.10 Transfer Function of Long+Vert Test: AZ00 144 Fig. B.I.11 Transfer Function of Long+Vert Test: AZ02 145 Fig. B.I.12 Transfer Function of Long+Vert Test: AZ04 146 Fig. B.I.13 Transfer Function of Long+Vert Test: AZ06 147 Fig. B.I.14 Transfer Function of Long+Vert Test: AZ08 148 Fig. B.I.15 Transfer Function of Long+Vert Test: AZ00 149 Fig. B.I.16 Transfer Function of Long+Vert Test: AZ02 150 Fig. B.I.17 Transfer Function of Long+Vert Test: AZ04 151 Fig. B.I.18 Transfer Function of Long+Vert Test: AZ06 152

JNC TN9400 99-060 List of Figures (Cont'd) Fig. B.I.19 Transfer Function of Long+Vert Test: AZ08 153 Fig. B.1.20 Transfer Function of Long+Vert Test: ISOALL 154 Fig. B.2.1 Comparison of Time-History : Case#Sl-10 155 Fig. B.2.2 Comparison of Time-History : Case#Sl-10 156 Fig. B.2.3 Comparison of Time-History : Case#Sl-10 157 Fig. B.2.4 Comparison of Time-History : Case#Sl-ll 158 Fig. B.2.5 Comparison of Time-History : Case#Sl-ll 159 Fig. B.2.6 Comparison of Time-History : Case#Sl-ll 160 Fig. B.2.7 Comparison of Time-History : Case#Sl-12 161 Fig. B.2.8 Comparison of Time-History : Case#Sl-12 162 Fig. B.2.9 Comparison of Time-History : Case#Sl-12 163 Fig. B.2.10 Comparison of Time-History : Case#S2-4 164 Fig. B.2.11 Comparison of Time-History : Case#S2-4 165 Fig. B.2.12 Comparison of Time-History : Case#S2-4 166 Fig. B.2.13 Comparison of Time-History : Case#S2-5 167 Fig. B.2.14 Comparison of Time-History : Case#S2-5 168 Fig. B.2.15 Comparison of Time-History: Case#S2-5 169 Fig. B.2.16 Comparison of Time-History : Case#S2-6 170 Fig. B.2.17 Comparison of Time-History : Case#S2-6 171 Fig. B.2.18 Comparison of Time-History : Case#S2-6 172 Fig. B.2.19 Comparison of Time-History : Case#S3-4 173 Fig. B.2.20 Comparison of Time-History : Case#S3-4 174 Fig. B.2.21 Comparison of Time-History : Case#S3-4 175 Fig. B.2.22 Comparison of Time-History : Case#S3-5 176 Fig. B.2.23 Comparison of Time-History : Case#S3-5 177 Fig. B.2.24 Comparison of Time-History : Case#S3-5 178 Fig. B.2.25 Comparison of Time-History : Case#S3-6 179 Fig. B.2.26 Comparison of Time-History : Case#S3-6 180 Fig. B.2.27 Comparison of Time-History : Case#S3-6 181 Fig. B.2.28 Comparison of Time-History :Case#Sl-13 182 Fig. B.2.29 Comparison of Time-History :Case#S 1-13 183 Fig. B.2.30 Comparison of Time-History :Case#Sl-13 184 Fig. B.2.31 Comparison of Time-History :Case#S 1-13 185 Fig. B.2.32 Comparison of Time-History :Case#S 1-14 186

JNC TN9400 99-060 List of Figures (Cont'd) Fig. B.2.33 Comparison of Time-History : Case#Sl-14 187 Fig. B.2.34 Comparison of Time-History : Case#Sl-14 188 Fig. B.2.35 Comparison of Time-History :Case#Sl-14 189 Fig. B.2.36 Comparison of Time-History :Case#Sl-15 190 Fig. B.2.37 Comparison of Time-History :Case#Sl-15 191 Fig. B.2.38 Comparison of Time-History : Case#Sl-15 192 Fig. B.2.39 Comparison of Time-History : Case#Sl-15 193 Fig. B.2.40 Comparison of Time-History : Case#S2-7 194 Fig. B.2.41 Comparison of Time-History : Case#S2-7 195 Fig. B.2.42 Comparison of Time-History :Case#S2-7 196 Fig. B.2.43 Comparison of Time-History : Case#S2-7 197 Fig. B.2.44 Comparison of Time-History : Case#S2-8 198 Fig. B.2.45 Comparison of Time-History : Case#S2-8 199 Fig. B.2.46 Comparison of Time-History: Case#S2-8 200 Fig. B.2.47 Comparison of Time-History : Case#S2-8 201 Fig. B.2.48 Comparison of Time-History : Case#S2-9 202 Fig. B.2.49 Comparison of Time-History : Case#S2-9 203 Fig. B.2.50 Comparison of Time-History : Case#S2-9 204 Fig. B.2.51 Comparison of Time-History : Case#S2-9 205 Fig. B.2.52 Comparison of Time-History : Case#S3-7 206 Fig. B.2.53 Comparison of Time-History : Case#S3-7 207 Fig. B.2.54 Comparison of Time-History : Case#S3-7 208 Fig. B.2.55 Comparison of Time-History : Case#S3-7 209 Fig. B.2.56 Comparison of Time-History : Case#S3-8 210 Fig. B.2.57 Comparison of Time-History : Case#S3-8 221 Fig. B.2.58 Comparison of Time-History : Case#S3-8 212 Fig. B.2.59 Comparison of Time-History : Case#S3-8 213 Fig. B.2.60 Comparison of Time-History : Case#S3-9 214 Fig. B.2.61 Comparison of Time-History : Case#S3-9 215 Fig. B.2.62 Comparison of Time-History : Case#S3-9 216 Fig. B.2.63 Comparison of Time-History : Case#S3-9 217 Fig. B.2.64 Comparison of Spectrum : Case#Sl-10 218 Fig. B.2.65 Comparison of Spectrum : Case#Sl-10 219 Fig. B.2.66 Comparison of Spectrum :Case#Sl-10 220

JNC TN9400 99-060 List of Figures (Cont'd) Fig. B.2.67 Comparison of Spectrum :Case#Sl-10 221 Fig. B.2.68 Comparison of Spectrum : Case#Sl-10 222 Fig. B.2.69 Comparison of Spectrum : Case#Sl-10 223 Fig. B.2.70 Comparison of Spectrum : Case#Sl-ll 224 Fig. B.2.71 Comparison of Spectrum :Case#Sl-ll 225 Fig. B.2.72 Comparison of Spectrum :Case#Sl-ll 226 Fig. B.2.73 Comparison of Spectrum :Case#Sl-ll 227 Fig. B.2.74 Comparison of Spectrum :Case#Sl-ll 228 Fig. B.2.75 Comparison of Spectrum : Case#Sl-ll 229 Fig. B.2.76 Comparison of Spectrum : Case#Sl-12 230 Fig. B.2.77 Comparison of Spectrum :Case#Sl-12 231 Fig. B.2.78 Comparison of Spectrum :Case#Sl-12 232 Fig. B.2.79 Comparison of Spectrum : Case#Sl-12 233 Fig. B.2.80 Comparison of Spectrum :Case#Sl-12 234 Fig. B.2.81 Comparison of Spectrum :Case#Sl-12 235 Fig. B.2.82 Comparison of Spectrum : Case#S2-4 236 Fig. B.2.83 Comparison of Spectrum : Case#S2-4 237 Fig. B.2.84 Comparison of Spectrum : Case#S2-4 238 Fig. B.2.85 Comparison of Spectrum : Case#S2-4 239 Fig. B.2.86 Comparison of Spectrum : Case#S2-4 240 Fig. B.2.87 Comparison of Spectrum : Case#S2-4 - 241 Fig. B.2.88 Comparison of Spectrum : Case#S2-5-- 242 Fig. B.2.89 Comparison of Spectrum : Case#S2-5 243 Fig. B.2.90 Comparison of Spectrum : Case#S2-5 244 Fig. B.2.91 Comparison of Spectrum : Case#S2-5 245 Fig. B.2.92 Comparison of Spectrum : Case#S2-5-- 246 Fig. B.2.93 Comparison of Spectrum : Case#S2-5 247 Fig. B.2.94 Comparison of Spectrum : Case#S2-6 248 Fig. B.2.95 Comparison of Spectrum : Case#S2-6 249 Fig. B.2.96 Comparison of Spectrum : Case#S2-6 250 Fig. B.2.97 Comparison of Spectrum : Case#S2-6 251 Fig. B.2.98 Comparison of Spectrum : Case#S2-6 252 Fig. B.2.99 Comparison of Spectrum : Case#S2-6 253 Fig. B.2.100 Comparison of Spectrum : Case#S3-4 254 - X -

JNC TN9400 99-060 List of Figures (Cont'd) Fig. B.2.101 Comparison of Spectrum : Case#S3-4 255 Fig. B.2.102 Comparison of Spectrum : Case#S3-4 256 Fig. B.2.103 Comparison of Spectrum : Case#S3-4 257 Fig. B.2.104 Comparison of Spectrum : Case#S3-4 258 Fig. B.2.105 Comparison of Spectrum : Case#S3-4 259 Fig. B.2.106 Comparison of Spectrum : Case#S3-5 260 Fig. B.2.107 Comparison of Spectrum : Case#S3-5 261 Fig. B.2.108 Comparison of Spectrum : Case#S3-5 262 Fig. B.2.109 Comparison of Spectrum : Case#S3-5 263 Fig. B.2.110 Comparison of Spectrum: Case#S3-5 264 Fig. B.2.111 Comparison of Spectrum : Case#S3-5 265 Fig. B.2.112 Comparison of Spectrum : Case#S3-6 266 Fig. B.2.113 Comparison of Spectrum : Case#S3-6 267 Fig. B.2.114 Comparison of Spectrum : Case#S3-6 268 Fig. B.2.115 Comparison of Spectrum : Case#S3-6 269 Fig. B.2.116 Comparison of Spectrum :Case#S3-6. 270 Fig. B.2.117 Comparison of Spectrum : Case#S3-6 271 Fig. B.2.118 Comparison of Spectrum : Case#Sl-13 272 Fig. B.2.119 Comparison of Spectrum : Case#Sl-13 273 Fig. B.2.120 Comparison of Spectrum : Case#Sl-13 274 Fig. B.2.121 Comparison of Spectrum :Case#Sl-13 275 Fig. B.2.122 Comparison of Spectrum : Case#Sl-13 276 Fig. B.2.123 Comparison of Spectrum: Case#Sl-13 277 Fig. B.2.124 Comparison of Spectrum : Case#Sl-13 278 Fig. B.2.125 Comparison of Spectrum : Case#Sl-13 279 Fig. B.2.126 Comparison of Spectrum : Case#Sl-14 --^SO Fig. B.2.127 Comparison of Spectrum : Case#Sl-14 281 Fig. B.2.128 Comparison of Spectrum : Case#Sl-14 282 Fig. B.2.129 Comparison of Spectrum : Case#Sl-14 283 Fig. B.2.130 Comparison of Spectrum : Case#Sl-14 284 Fig. B.2.131 Comparison of Spectrum : Case#Sl-14 285 Fig. B.2.132 Comparison of Spectrum :Case#Sl-14 286 Fig. B.2.133 Comparison of Spectrum : Case#Sl-14 287 Fig. B.2.134 Comparison of Spectrum : Case#Sl-15 288 - XI -

JNC TN9400 99-060 List of Figures (Cont'd) Fig. B.2.135 Comparison of Spectrum : Case#Sl-15 289 Fig. B.2.136 Comparison of Spectrum : Case#Sl-15 290 Fig. B.2.137 Comparison of Spectrum : Case#Sl-15 291 Fig. B.2.138 Comparison of Spectrum : Case#Sl-15 292 Fig. B.2.139 Comparison of Spectrum : Case#Sl-15 293 Fig. B.2.140 Comparison of Spectrum : Case#Sl-15 294 Fig. B.2.141 Comparison of Spectrum : Case#Sl-15 295 Fig. B.2.142 Comparison of Spectrum : Case#S2-7 296 Fig. B.2.143 Comparison of Spectrum : Case#S2-7 297 Fig. B.2.144 Comparison of Spectrum : Case#S2-7 298 Fig. B.2.145 Comparison of Spectrum : Case#S2-7 299 Fig. B.2.146 Comparison of Spectrum : Case#S2-7 300 Fig. B.2.147 Comparison of Spectrum : Case#S2-7 301 Fig. B.2.148 Comparison of Spectrum : Case#S2-7 302 Fig. B.2.149 Comparison of Spectrum : Case#S2-7 303 Fig. B.2.150 Comparison of Spectrum : Case#S2-8 304 Fig. B.2.151 Comparison of Spectrum : Case#S2-8 305 Fig. B.2.152 Comparison of Spectrum : Case#S2-8 306 Fig. B.2.153 Comparison of Spectrum : Case#S2-8 307 Fig. B.2.154 Comparison of Spectrum : Case#S2-8 308 Fig. B.2.155 Comparison of Spectrum : Case#S2-8 309 Fig. B.2.156 Comparison of Spectrum : Case#S2-8 310 Fig. B.2.157 Comparison of Spectrum : Case#S2-8 311 Fig. B.2.158 Comparison of Spectrum : Case#S2-9 312 Fig. B.2.159 Comparison of Spectrum : Case#S2-9 313 Fig. B.2.160 Comparison of Spectrum : Case#S2-9 314 Fig. B.2.161 Comparison of Spectrum : Case#S2-9 315 Fig. B.2.162 Comparison of Spectrum : Case#S2-9 316 Fig. B.2.163 Comparison of Spectrum : Case#S2-9 317 Fig. B.2.164 Comparison of Spectrum : Case#S2-9 318 Fig. B.2.165 Comparison of Spectrum : Case#S2-9 319 Fig. B.2.166 Comparison of Spectrum : Case#S3-7 320 Fig. B.2.167 Comparison of Spectrum : Case#S3-7 321 Fig. B.2.168 Comparison of Spectrum : Case#S3-7 322 - XH -

JNC TN9400 99-060 List of Figures (Cont'd) Fig. B.2.169 Comparison of Spectrum : Case#S3-7 323 Fig. B.2.170 Comparison of Spectrum : Case#S3-7 324 Fig. B.2.171 Comparison of Spectrum : Case#S3-7 325 Fig. B.2.172 Comparison of Spectrum: Case#S3-7 326 Fig. B.2.173 Comparison of Spectrum : Case#S3-7 327 Fig. B.2.174 Comparison of Spectrum : Case#S3-8 328 Fig. B.2.175 Comparison of Spectrum : Case#S3-8 329 Fig. B.2.176 Comparison of Spectrum : Case#S3-8 330 Fig. B.2.177 Comparison of Spectrum : Case#S3-8 331 Fig. B.2.178 Comparison of Spectrum : Case#S3-8 332 Fig. B.2.179 Comparison of Spectrum : Case#S3-8 333 Fig. B.2.180 Comparison of Spectrum : Case#S3-8 334 Fig. B.2.181 Comparison of Spectrum : Case#S3-8 335 Fig. B.2.182 Comparison of Spectrum : Case#S3-9 336 Fig. B.2.183 Comparison of Spectrum : Case#S3-9 337 Fig. B.2.184 Comparison of Spectrum : Case#S3-9 338 Fig. B.2.185 Comparison of Spectrum : Case#S3-9 339 Fig. B.2.186 Comparison of Spectrum : Case#S3-9 340 Fig. B.2.187 Comparison of Spectrum : Case#S3-9 341 Fig. B.2.188 Comparison of Spectrum : Case#S3-9 342 Fig. B.2.189 Comparison of Spectrum : Case#S3-9 343

JNC TN9400 99-060 List of Photos Photo 2.2.1 Common-deck Model on DST 25 XIV -