M1 Simulation by Varying Printing and Proofing Substrates

Similar documents
Matching Proof and Print under the Influence of OBA

Conformance to Substrate-corrected Dataset, a Case Study

Underlying Factors for Consistent Color Appearance (CCA) and developing CCA metric

The Effect of Gray Balance and Tone Reproduction on Consistent Color Appearance

Quantitative Analysis of Pictorial Color Image Difference

Substrate Correction in ISO

Determining Chromaticness Difference Tolerance of. Offset Printing by Simulation

Connecting the Dots. deas inprocesscontrol. From print buyers, printed color and printing standards to conformity assessment.

Process Control, ISO & ISO 15339

CIE TC 8-16 Consistent Colour Appearance (CCA) in a Single Reproduction Medium. Informal Workshop at RIT 1 st June 2017 W Craig Revie

Color Matching with ICC Profiles Take One

ISO/PAS Graphic technology Printing from digital data across multiple technologies. Part 1: Principles

Implementing Process Color Printing by Colorimetry

Idealliance ISO/PAS Certification Program Program Description v5 1. Introduction

How G7 Makes Inkjet Color Management Better. Jim Raffel Some slides have been adapted from and are used with permission of SGIA and MeasureColor.

Yearbook Color Management. Matthew Bernius. Rochester Institute of Technology School of Print Media

Color Preference, Printed colors, and PSA Certification. July 20, 2013 (v3)

A Statistical analysis of the Printing Standards Audit (PSA) press sheet database

Consistent Colour Appearance assessment method. CIE TC 8-16, W Craig Revie 9 th August 2017

Graphic technology Prepress data exchange Preparation and visualization of RGB images to be used in RGB-based graphics arts workflows

INFLUENCE OF THE RENDERING METHODS ON DEVIATIONS IN PROOF PRINTING

An Analysis of Illuminant Metamerism for Lithographic Substrates and Tone Reproduction

Colour Management Workflow

How to compare the deltae of two matching ColorLists. Creating pixel files in Photoshop for ColorThink.

INTERNATIONAL PRINTING STANDARDS, A VALUE-ADDED PROPOSITION*

Digital Technology Group, Inc. Tampa Ft. Lauderdale Carolinas

The Effect of Optical Brightening Agent (OBA) in Paper and Illumination Intensity on Perceptibility of Printed Colors

Color Management and Your Workflow. monaco

Predictability of Spot Color Overprints

Colour Management Course Setting up a Colour Managed Workflow

Running head: AN ANALYSIS OF ILLUMINANT METAMERISM FOR LITHOGRAPHIC SUBSTRATES AND TONE REPRODUCTION 1

ONYX Color Science Understanding Named Color Matching January 2013

Quantitative Analysis of Tone Value Reproduction Limits

Using Photoshop for Color Demonstration

G7 Master & G7 Process Control Master Pass/Fail Requirements

ISO Prin.ng from digital data across mul.ple technologies. " Mr. David McDowell

Spot Color Reproduction with Digital Printing

How to check Print Standards

A Study of High-chroma Inks for Expanding CMYK Color Gamut

Brilliant! The Very Latest in Optical Brighteners

Colour Management. ICC profiles Understood. Fotospeed

Color Management. R. Mac Holbert

1. Transfer original JPEG (.jpg ) or RAW camera file to hard drive of your choice via USB or Firewire directly from the camera or with a card reader.

An Investigation of Factors Influencing Color Tolerances

Verifying Process Ink Conformance by Means of a Graduated Gauge

Quantitative Analysis of ICC Profile Quality for Scanners

Frequently Asked Questions (FAQs) Pertaining to G7,GRACoL and ISO

What Is Color Profiling?

Construction Features of Color Output Device Profiles

PRINTER S GUIDE TO G7

Colour accuracy assessment of the SilverFast software with the scanner Epson V750. 1x IT8.7/2 chart 1x DVD SilverFast software package

DALiM DiALOGUE EIZO CG211 - SWOP Coated #3

DALiM DiALOGUE - Apple 23 Cinema HD Display - GRACoL Coated #1

Color Management. A ShortCourse in. D e n n i s P. C u r t i n. Cover AA30470C. h t t p : / / w w w. ShortCourses. c o m

Black point compensation and its influence on image appearance

Colour expectations in modern colour workflows - Media Relative Colour Reproduction

A Study of High-Chroma Inks for Expanding CMYK Color Gamut

PRINT BUSINESS OUTLOOK CONFERENCE 2016

Paper is integral to print whether the

A Crash Course in Printing. PACC Program Wednesday, January 25, 2012 Ira Greenberg Judy Kramer Laurie Naiman

Managing Special Colours. By: STEVEN SMILEY SMILEYCOLOR & ASSOCIATES

PHOTOTUTOR.com.au Share the Knowledge

Color Management Concepts

Iam sure everyone would agree that the standards

Hidden Color Management

1. Creating a derived CPM

19 Setting Up Your Monitor for Color Management

PRINT BUSINESS OUTLOOK CONFERENCE 2016

The Technology of Duotone Color Transformations in a Color Managed Workflow

Quick Start Guide to Printing on the EPSON 9800

Printing standards: a 2010 survey report

PantoneLIVE Library Validation Study

KODAK VERIS Digital Proofing System

Andrew Rodney aka The Digital Dog

How G7 Makes Inkjet Color Management Better

Océ Color Control Suite A NEW PATH TO CONSISTENT COLOR

UPWORD. Conciliating ISO Standards and Working Practices. Elie Khoury RIT Gravure Day March (Universal Printing WOrkflows Diagram)

Achieving Great Output Quality with Your Paper. Lou Prestia, Sr. Product Line Manager

A New Approximation Algorithm for Output Device Profile Based on the Relationship between CMYK Ink Values and Colorimetric Values

Predicting Spot-Color Overprints A Quantitative Approach

Spectral data communication from prepress to press

HD Flexographic Artwork Guide Our Guarantee to the Best Reproduction of your Brand

Wisconsin Heritage Online Digital Imaging Guidelines QUICK GUIDE TO SCANNING

KODAK Q-60 Color Input Targets

1. Creating a derived CPM

Application Note #4 (Rev. a) Using PatchTool for IDEAlliance MONITOR proofing certification

What You See vs. What You Get Part 2 (Color Management) Howard Fingerhut

Color Management For Digital Photography

Copyright 2009 School of Print Media, Rochester Institute of Technology

Kodak Matchprint Inkjet Proofing Solution w/ Epson Stylus PRO 800 Printer for GRACoL Coated #1 Proofs

Color Managing for Papers Containing Optical Brightening Agents

Prinect. Color and Quality. Profile conversion using the Prinect Profile Toolbox

Case Study #1 Evaluating the Influence of Media on Inkjet Tone And Color Reproduction With the I* Metric

Calibration. Kent Messamore 7/23/2013. JKM 7/23/2013 Enhanced Images 1

Color Management Fundamentals

Perceptual Rendering Intent Use Case Issues

Kodak Veris Digital Proofer for SWOP Coated #5

Predicting Color of Overprint Solid

SWOP Off-Press Proof Application Data Sheet for Iris Realist, Iris RealistFX, Iris2PRINT, and Iris4PRINT Proofing Solutions.

What is Color Management? Color Management Fundamentals. PIA Color 19 conference: 1/14/19. Agenda. Pointers to related sessions

Transcription:

M1 Simulation by Varying Printing and Proofing Substrates Robert Chung Keywords: ICC, printing, proofing, simulation, OBA, color, workflow Abstract ICC color management can match color, pixel by pixel, from the source color space to the destination color space. The degree of color match is limited by the repeatability of the device and color management constraints between the source and destination. This research outlines a method whereby printing and proofing can be simulated visually and quantitatively. Major findings indicate that (1) the simulation error at the device level is about 1 E00 at the 95th percentile of the sample distribution; (2) the error at the color management workflow level, except special causes, is about 2 E00 at the 95th percentile of the sample distribution; (3) gamut clipping, due to CIE-b* difference or CIE-L* difference, is a special cause that contributes to proof-to-print mismatch. Avoiding gamut clipping by choosing the proofing substrate close to the white points of the printing paper, but with more head room, is a key finding in this study. In addition, we need no fewer than two proofing stocks to choose from. This is because the OBA difference between a proof and a print is an indication of the criticalness of the M1 lighting, i.e., the match becomes more metameric when the OBA difference is high. Introduction Characterized Reference Printing Condition (CRPC) and its derived ICC profile often serve as the default source color space in a colormanaged proofing workflow. The standard proof serves as a proxy for printed color. Printers are asked to print to match the color appearance of the proof. The market does not want to standardize paper color. As print buyers choose whiter papers, the white appearance of the paper is School of Media Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA

Simulation by Varying Printing and Proofing Substrates 2 often the result of adding optical brightening agent (OBA) in the papermaking process. Consequently, color-managed proofs, made on non-brightened substrates, no longer match OBA-brightened print. CGATS.21, Printing from digital data across multiple technologies, establishes principles for the use of color characterization data as the definition of printing by specifying a number of characterized reference printing conditions. It also specifies that colorimetry should be measured according to ISO 13655 M1 with white backing. If the printing substrate has a color that differs from the characterized reference printing condition selected, the substrate correction method, as defined in ISO 13655, shall be used to adjust the data before proofing and printing. Given that color measurement and color viewing conform to M1, this research sets out to answer the following two questions: 1) What are the effect of the white point and the OBA amount of a substrate on print-to-proof color match, and 2) What are the recommended practices in achieving proof-toprint color match when both printing and proofing substrates varying in OBA amounts? Literature Review Recognizing that OBA affects printing conformance and printed color appearance, Chung and Tian studied optical brightening agents correction methods, also known as the SCCA (Advanced Materials Research, 2011). Later, Chung conducted a follow-up study on printing conformance to substrate-corrected dataset (TAGA Proceedings, 2013). Chung also tested a method to achieve proof and print visual match under the influence of OBA whereby the source ICC profile is built from the substrate-corrected dataset. Four commercial proofing solution providers were invited to participate in the study (IARIGAI, 2013). RIT conducted a psychometric experiment to study the perceptibility of color difference of color pairs, caused by OBA difference in paper substrates, and its relationship with quantitative measurement metrics (TAGA, 2015). The research utilized a four-level visual ranking scale, from no difference (0), just noticeable difference or JND (1), more than JND (2), to noticeable difference (3), to rank 27 color pairs with each pair prepared by the same colorants on two different substrates, one having OBA and the other did not. In addition to E metrics, the research specifies the metric, OBA or the

Simulation by Varying Printing and Proofing Substrates 3 OBA amount in a substrate, per ISO/FDIS 15397 (2013), as the difference between two measurements, M1 and M2 (Eq. 1). In addition, OBA is defined as the difference in OBA between a proofing substrate and a printing paper (Eq. 2). OBA = b*m2 b*m1 Eq. (1) OBA = OBAProof OBAPrint Eq. (2) The psychometric study, conducted by RIT, placed samples in edge contact and provided two anchor pairs (one with no difference and the other with noticeable difference). The results show that fluorescent agents and printed color affect the OBA metric, but its CIE-L* stays the same. The study concludes that there is a linear relationship between visual difference and E00 metric. Since OBA is the main contributor of E00, the study also concludes that there is a linear relationship between visual difference and OBA. Methodology In a color proofing workflow, color difference between proof and print can come from different substrates, including OBA amount, colorants, and ICC color management (look-up table size, mapping, and rounding error). This research devises a M1 color-managed workflow, as outlined below, to test the viability of proof-to-print color match by simulating a pictorial color (SCID) image visually and quantitatively. a) Select a CRPC or a reference dataset. b) Select three printing and three proofing conditions (varying in OBA amount). c) Study the relationship between white point and OBA amount of these substrates d) Select a SCID image. e) Simulate the SCID image, as printed, in relation to CRPC. f) Simulate the SCID image, as printed and proofed, visually. g) Simulate the SCID image, as printed and proofed, quantitatively. h) Simulate device error. Color management resources include the SCCA calculator (Excel), i1 Profiler, Adobe Photoshop, CHROMiX ColorThink, and a host Macintosh computer with a calibrated monitor. Unless otherwise noted, all measurements are M1. A step-by-step procedure to simulate a color-managed image visually and quantitatively is described below: 1) Select a reference dataset (CGATS21-2-CRPC6) and ICC profile

Simulation by Varying Printing and Proofing Substrates 4 The ICC profile, GRACoL2013_CRPC6.icc, downloaded from the ICC web site, has a white point (95L*/1a*/-4b*). 2) Select three printing papers varying in OBA. Calculate the substrate-corrected datasets and build the substrate-corrected ICC profiles. The three papers, varying in OBA, were selected from 13 papers in the CGATS 2010 database (Table 1). a) sccal_mccoy.icc: WP: 94.6/-1.3/3.4; OBA: 0.14 b) sccam_sterling.icc: WP: 93.7/1.2/-4.6; OBA: 4.8 c) sccah_mccoy Gloss.icc: WP: 94.5/2.1/-8.7; OBA: 8.7 Table 1. Printing papers varying in their OBA amounts CGATS,2010, M1 M2 Database LAB_L LAB_A LAB_B LAB_L LAB_A LAB_B OBA CGATS,CRPC6 95 1 24 222 222 222 222 sccal_mccoy 94.64 21.32 3.38 94.61 21.34 3.52 0.14 sccam_sterling 93.73 1.15 24.64 93.54 20.21 0.15 4.78 sccah_mccoy,glo 94.48 2.13 28.73 94.05 20.16 20.03 8.70 3) Select three proofing papers and their ICC profiles Mr. Bruce Bayne, Alder Technology, Inc., provided three proofing ICC profiles with varying OBA in this study (Table 2). a) pfl_epson205: Epson Standard Proofing Paper (WP: 93/0/-1.3; OBA: 0.7) b) pfm_eppp: Epson Proofing Paper Production (WP: 94.5/1.1/-4.8; OBA: 5.7) c) pfh_outre: Mid-States FSC 7S Paper (WP: 95/1.7/-10; OBA: 9.7) Table 2. Proofing substrates varying in their OBA amounts Substrate M1 M2 LAB_L LAB_A LAB_B LAB_L LAB_A LAB_B pfl_epson205 93.38 40.13 41.28 93.35 40.31 40.55 pfm_eppp 94.54 1.13 44.75 94.31 40.41 1.00 pfh_outre 95.45 1.69 49.86 95.03 40.92 40.12 OBA 0.73 5.75 9.74 4) Select a SCID image a) Select a pictorial reference image (ISO 12640, N4A, 300 ppi, untagged CMYK) and re-size it to 3 wide, including white borders, and save as Scene.tif in Photoshop. The 3 wide hi-res image is for visual comparison. b) Re-sample the above image into 5 ppi. The pixelated (15x12 or 180 pixels) image, representing colors of interest, is for quantitative comparison (Figure 1). c) Save the image as Scene_Pix.tif.

Simulation by Varying Printing and Proofing Substrates 5 Figure 1. A hi-res pictorial image (left) and a pixelated image (right) 5) Simulate the SCID image, as printed, in relation to CRPC a) Step 6a, as shown below, can be used to compare the SCID images, as printed, in relation to the CRPC visually. b) Step 7a, as shown below, can be used to compare the SCID images, as printed, in relation to the CRPC quantitatively. 6) Simulate the SCID image, as printed and proofed, visually a) Simulate the SCID image, as printed, visually i. Open the SCID image, Scene.tif, in Adobe Photoshop. ii. Assign a printer ICC profile, CRPC6 or sccax, where X = L, M, or H, to the image. iii. Convert the image to Adobe RGB space using absolute colorimetric rendering. iv. Save as Scenes_sccaX_adobe.tif. b) Simulate the SCID image, as proofed, visually i. Use i1 Profiler to build 9 device link profiles using the absolute colorimetric rendering intent, medium table size, TAC 320, and no purity preservation (Figure 2). Figure 2. Creating a device link profile in i1 Profiler

Simulation by Varying Printing and Proofing Substrates 6 ii. Open the SCID image, Scenes.tif, in Adobe Photoshop. iii. Convert the image via a device link profile, DL(sccaX-pfY).icc. iv. Assign the proofer profile, pfy.icc, to the converted image. v. Convert the above image from pfy space to Adobe RGB space using absolute colorimetric rendering. vi. Save as Scenes_sccaX-pfY_adobe.tif. c) Place the simulated print (step 6a), and the simulated proof (step 6b) in edge contact in Microsoft PowerPoint. Add legends, and a neutral background. 7) Simulate the SCID image, as printed and proofed, quantitatively a) Simulate the SCID image, as printed, quantitatively i. Open the Scene_Pix.tif (step 4c) in ColorThink. ii. Assign a printer profile, sccax.icc, in absolute colorimetric rendering intent. iii. Custom sample the image (15x12=180) and save the list as a Scene_List(sccaX).txt (Figure 3). Figure 3. Creating a color list in CHROMiX ColorThink b) Simulate the SCID image, as proofed, quantitatively i. Open the SCID image, Scene_Pix.tif (Step 4c), in Adobe Photoshop. ii. Convert the image via a device link profile, DL(sccaXpfY).icc (step 6b). iii. Assign the proofer profile, pfy.icc, to the converted image.

Simulation by Varying Printing and Proofing Substrates 7 iv. Save it as Scene_Pix(sccaX-pfY).tif. v. Open the Scene_Pix(sccaX-pfY).tif in ColorThink. Sample the pixels (15 x 12=180), using the pfy.icc, in absolute colorimetric rendering. vi. Save the list as a Scene_List(sccaX-pfY).txt. c) Compare color difference ( E00) between the color list from a pictorial print, and the color list from a color-managed proof. 8) Simulate device errors a) Open a CIELAB list (step 7a) in ColorThink. b) Assign a printer or proofer profile, sccax.icc or pfy.icc, in absolute colorimetric rendering intent. c) Assign the same printer or proofer profile, again in absolute colorimetric rendering intent. d) Custom sample the image (15x12=180) and save the list as a RoundTrip.txt. e) Compare color difference ( E00) between the two color-lists in step (a) and step (d). 1) Device error Results Device error is estimated by the round-trip error of the device ICC profiles. By assigning a printer or proofer ICC profile twice (step 8), we can compare the color difference between the initial and the round-trip color list. Overall, the device error is 1 E00 at the 95 th percentile of the sample distribution (Figure 4). 1.0# 0.9# 0.8# 0.7# 0.6# CRF$ 0.5# 0.4# 0.3# 0.2# 0.1# Hi/key_PapL_RoundTrip# Hi/key_PapM_RoundTrip# Hi/key_PapH_RoundTrip# 0.0# 0# 1# 2# 3# 4# 5# 6# 7# 8# E00$ Figure 4. Simulation error at the device level

Simulation by Varying Printing and Proofing Substrates 8 2) Print simulation visually and quantitatively Figure 5 is the visual simulation of N4A in CRPC6 (upper center) and the three substrate-adjusted printing conditions (low OBA, medium OBA, and high OBA). In this case, the visual differences, e.g., color appearance of the border and the image, due to substrate difference, are intentional. Figure 5. Visual simulation of the three printing conditions Figure 6 illustrates the quantitative color differences between each of the three substrate-corrected printing conditions and the CRPC6. We can see that E00 at the 95 th percentile of the sample distribution is a reasonable predictor of the pictorial color match between the sample and the reference. Specifically, the medium OBA (Sterling) printing condition, having the smallest color difference, visually matches the reference printing condition the best. Next, the high OBA (McCoy Gloss) printing condition has more color difference with blue appearance in the highlight. Finally, the low OBA (McCoy) printing condition has the largest color difference (more than 7 E00 at the 95 th percentile of the sample distribution) with yellow appearance in the highlight.

Simulation by Varying Printing and Proofing Substrates 9 1.0# 0.9# 0.8# 0.7# 0.6# CRF$ 0.5# 0.4# 0.3# 0.2# 0.1# 0.0# 0# 1# 2# 3# 4# 5# 6# 7# 8# E00$ Figure 6. Quantitative color differences between each of the three printing conditions and CRPC6 3) Proof-to-print simulation visually and quantitatively Due to the choice of printing paper, each printing condition (low OBA, medium OBA, and high OBA) represents an actual printing condition. This means that we have three use cases to study proof-to-print color match when the printing condition varies from low OBA print (sccal), moderate OBA print (sccam), to high OBA print (sccah). Case 1: Low OBA print as the reference N4A_List_sccaL# N4A_List_sccaM# N4A_List_sccaH# By simulating the printing and proofing workflow according to the methodology, the low OBA print substrate and the three proofing substrates show large OBA and E00 variations (Table 3). Table 3. Proof and print (low OBA) substrate comparison Substrate M1 M2 LAB_L LAB_A LAB_B LAB_L LAB_A LAB_B sccal_mccoy 94.64 21.32 3.38 94.61 21.34 3.52 pfl_epson205 93.38 20.13 21.28 93.35 20.31 20.55 pfm_eppp 94.54 1.13 24.75 94.31 20.41 1.00 pfh_outre 95.45 1.69 29.86 95.03 20.92 20.12 OBA E00F (sccal_mccoy) OBAFF (sccal_mccoy) 0.14 222 222 0.73 4.78 0.59 5.75 8.29 5.61 9.74 12.21 9.60 Figure 7 shows the appearance of N4A in the low OBA print (upper center) and the three color-managed proofing conditions (pfl, pfm, pfh). In this case, the visual similarity or difference is the results of color management and proofing substrates with varying OBA.

Simulation by Varying Printing and Proofing Substrates 10 Figure 7. Visual simulation of proof-to- low OBA print match Figure 8 illustrates the quantitative color differences between each of the three color-managed proofing conditions and the low OBA (McCoy) printing condition. We can see that E00 at the 95 th percentile of all three distributions is about 2 E00 or less. 1.0# 0.9# 0.8# 0.7# 0.6# CRF$ 0.5# 0.4# 0.3# 0.2# 0.1# N4A_List(sccaL7pfL)# N4A_List(sccaL7pfM)# N4A_List(sccaL7pfH)# 0.0# 0# 1# 2# 3# 4# 5# 6# 7# 8# E00$ Figure 8. Quantitative color differences between each of the three proofs and the low OBA print Case 2: Medium OBA print as the reference The medium OBA print substrate and the three proofing substrates show less OBA and E00 variations than Case 1 (Table 4).

Simulation by Varying Printing and Proofing Substrates 11 Table 4. Proof and print (medium OBA) substrate comparison Substrate M1 M2 LAB_L LAB_A LAB_B LAB_L LAB_A LAB_B sccam_sterling 93.73 1.15 84.64 93.54 80.21 0.15 pfl_epson205 93.38 80.13 81.28 93.35 80.31 80.55 pfm_eppp 94.54 1.13 84.75 94.31 80.41 1.00 pfh_outre 95.45 1.69 89.86 95.03 80.92 80.12 OBA E00G (sccam_sterling) OBAG (sccam_sterling) 4.78 888 888 0.73 3.43 4.05 5.75 0.50 0.97 9.74 4.11 4.96 Figure 9 shows the appearance of N4A in the medium OBA print (upper center) and the three color-managed proofing conditions (pfl, pfm, pfh). While smaller OBA and E00 mean less color management challenges, highlight clipping is visible between the low OBA proof and the medium OBA print. Figure 9. Visual simulation of proof-to-medium OBA print match Figure 10 illustrates the quantitative color differences between each of the three color-managed proofing conditions and the medium OBA printing condition. We can see that E00 at the 95 th percentile of all three distributions is less than 2 E00. 1.0# 0.9# 0.8# 0.7# 0.6# CRF$ 0.5# 0.4# 0.3# 0.2# 0.1# N4A_List(sccaM8pfL)# N4A_List(sccaM8pfM)# N4A_List(sccaM8pfH)# 0.0# 0# 1# 2# 3# 4# 5# 6# 7# 8# E00$ Figure 10. Quantitative color differences between each of the three proofs and the medium OBA print

Simulation by Varying Printing and Proofing Substrates 12 Case 3: High OBA print as the reference The high OBA print substrate and the three proofing substrates show larger OBAS and E00 variations than Case 2 (Table 5). Table 5. Proof and print (high OBA) substrate comparison Substrate M1 M2 LAB_L LAB_A LAB_B LAB_L LAB_A LAB_B sccah_mccoyglo 94.48 2.13 68.73 94.05 60.16 60.03 pfl_epson205 93.38 60.13 61.28 93.35 60.31 60.55 pfm_eppp 94.54 1.13 64.75 94.31 60.41 1.00 pfh_outre 95.45 1.69 69.86 95.03 60.92 60.12 OBA E00H OBAH (sccah_mccoyg) (sccah_mccoyg) 8.70 666 666 0.73 6.69 7.98 5.75 3.21 2.95 9.74 1.25 1.04 Figure 11 shows the color appearance of the N4A image in the high OBA printing condition (upper center) and the three colormanaged proofs (pfl, pfm, pfh). The low OBA and low L* proof is not able to match the white border of the high OBA print. Figure 11. Visual simulation of proof-to-high OBA print match Figure 12 illustrates the quantitative color differences between each of the three color-managed proofing conditions and the high OBA (McCoy Gloss) printing condition. Gamut clipping, due to low L*and low OBA of the proof, causes color mismatch between proof and print.

Simulation by Varying Printing and Proofing Substrates 13 1.0# 0.9# 0.8# 0.7# 0.6# CRF$ 0.5# 0.4# 0.3# 0.2# 0.1# N4A_List(sccaH8pfL)# N4A_List(sccaH8pfM)# N4A_List(sccaH8pfH)# 0.0# 0# 1# 2# 3# 4# 5# 6# 7# 8# E00$ Figure 12. Quantitative color differences between each of the three proofs and the high OBA print Discussion and Conclusion This research uses simulation to test limited use cases where OBA amount of the printing and proofing substrates vary widely (0.6~10), and CIE-L* vary to some degree (93~95). The following issues are of interest for further discussion. 1) E00, OBA, and pictorial color matching E00 metric, in the form of a distribution, is indicative of the pictorial color difference between two color images. There is no visual difference when E00 at the 95 th percentile of the distribution is 1 E00. As E00 value at the 95 th percentile of the distribution increases, the probability of the visual difference increases. Many assignable causes, e.g., the scene of the image, color mapping, gamut clipping, and measurement uncertainties, contribute to the color difference. Both L* and b* between two substrates cause gamut clipping that contribute to the E00 magnitude and influence the visual match between a proof and a print. The experimental findings indicate that high OBA proofs can match low OBA prints quantitatively, but low OBA proof or low L* proof cannot match high OBA and high L* print due to gamut clipping. Figure 13 shows that the gamut of the high OBA printer color space (solid) is outside of the low OBA proofer color space (wireframe). In this instance, the proofer is unable to render the bluish white point of the printing paper and light cyan section of the printer color space.

Simulation by Varying Printing and Proofing Substrates 14 Figure 13. Gamut clipping between the low OBA proofer space and the high OBA print space 2) OBA and the viewing illumination The M1 simulation assumes that the fluorescent effect, detected by the measurement and seen in the viewing light source, are equal. In reality, the match between high OBA proof and low OBA print depends more on the viewing light source than the match between low OBA proof and low OBA print. Therefore, OBA (between a proof and a print) is indicative of the criticalness of the M1 lighting, i.e., the match becomes more metameric when OBA increases. 3) Below is the guideline for implementing the M1 workflow to match OBA-loaded prints: a) Viewing and color measurement are in M1 compliance. b) Printing is calibrated to the substrate-corrected dataset. c) Proofing system has adequate selection of proofing substrates and capable of proofing to the substratecorrected dataset. In addition, the proofing substrate has adequate head room to avoid gamut clipping, i.e., a proofing substrate should have a slightly larger L* value (no higher than 2 L*) and a larger OBA value (no higher than 5 OBAS) than the printing paper (Figure 14).

Simulation by Varying Printing and Proofing Substrates 15 Figure 14. Proofing substrate selection criteria Further Research Printing and proofing require resources (ink, paper, plate, press). It takes time and effort to reproduce the output. Yet, there is no guarantee that they can be reproduced dead centered at the bull s eye. When printing and proofing are simulated, it saves resources and simulates the results accurately. While simulation is an effective approach to study proof-to-print color match, it assumes that the opacity, gloss, and surface texture of the substrates are the same. It is recommended that the simulation techniques be used to test more use cases and verified by actual printing and proofing systems. Quantitative simulation of printing and proofing conditions may be improved if the pixelated image contains scene-dependent colors and information regarding color gamut of the device. It is recommended that the first row of the pixelated image be replaced with the following 15 color patches: C100, M100, Y100, K100, R, G, B, Paper, C50, M50, Y50, K50, C50M40Y40, C25M19Y19, and TAC400 (Figure 15). Figure 15. A pixelated image with gamut patches

Simulation by Varying Printing and Proofing Substrates 16 The simulation, based multiple application software packages (Adobe Photoshop, CHROMiX ColorThink Pro 3, Microsoft Excel, and Microsoft PowerPoint), is manual and tedious. Automation is highly desired when testing more substrate conditions and SCID images. Acknowledgments The author wishes to acknowledge Mr. Bruce Bayne, Alder Technology, Inc., OR, for providing the proofer ICC profiles with varying OBA to support the research; Mr. Steve Upton, CHROMiX, for providing ColorThink Pro 3 software. He also wishes to thank Mr. Mike Rodriguez for his advice and review of the manuscript. References CGATS.21-1 (2013) Graphic technology Printing from digital data across multiple technologies Part 1: Principles CGATS.21-2 (2013) Graphic technology Printing from digital data across multiple technologies Part 2: Reference characterization data-2012 Chung, Robert and Tian, Quanhui, A Study of Optical Brightening Agents (OBA) Correction Methods, Advanced Materials Research, Vol. 174, 2011, pp 346-349 Chung, Robert, Conformance to Substrate-corrected Dataset, a Case Study, TAGA Proceedings, 2013, pp. 89-99 Chung, Robert, Matching Proof and Print Under the Influence of OBA, Proceedings of the 40th IARIGAI Research Conference, Advances in Printing and Media Technology, Vol. XL, 2013, pp. 275-282 ISO 12640 (1995) Graphic technology - Prepress digital data exchange - Standard colour image data (SCID) ISO/FDIS 15397 (2013) Graphic Technology Communication of graphic paper properties Yu, Changlong, Chung, Robert, and Myers, Bruce (2015). The Effect of OBA in Paper and Illumination Level on Perceptibility of Printed Colors, TAGA Proceedings, 2015 (to be published)