Research Article Signal Processing Algorithms for Down-Stream Traffic in Next Generation 10 Gbit/s Fixed-Grid Passive Optical Networks

Similar documents
Performance Analysis of WDM RoF-EPON Link with and without DCF and FBG

RZ BASED DISPERSION COMPENSATION TECHNIQUE IN DWDM SYSTEM FOR BROADBAND SPECTRUM

Lecture 7 Fiber Optical Communication Lecture 7, Slide 1

FSK signal generation with wavelength reuse capability in 8 Gbit/s radio over fiber systems

Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion

Nonlinear mitigation using carrier phase estimation and digital backward propagation in coherent QAM transmission

Performance Analysis Of Hybrid Optical OFDM System With High Order Dispersion Compensation

PERFORMANCE ENHANCEMENT OF 32 CHANNEL LONG HAUL DWDM SOLITON LINK USING ELECTRONIC DISPERSION COMPENSATION

Research Article Output Signal Power Analysis in Erbium-Doped Fiber Amplifier with Pump Power and Length Variation Using Various Pumping Techniques

Colorless Amplified WDM-PON Employing Broadband Light Source Seeded Optical Sources and Channel-by-Channel Dispersion Compensators for >100 km Reach

Journal of Babylon University/Engineering Sciences/ No.(4)/ Vol.(25): 2017

Next-Generation Optical Fiber Network Communication

The Affection of Fiber Nonlinearity in Coherent Optical Communication System

Implementation of Dense Wavelength Division Multiplexing FBG

SIMULATIVE INVESTIGATION OF SINGLE-TONE ROF SYSTEM USING VARIOUS DUOBINARY MODULATION FORMATS

Emerging Subsea Networks

Utilizing Self-Seeding RSOA with Faraday Rotator Mirror for Colorless Access Network

Phase Modulator for Higher Order Dispersion Compensation in Optical OFDM System

Analysis of Self Phase Modulation Fiber nonlinearity in Optical Transmission System with Dispersion

1.6 Tbps High Speed Long Reach DWDM System by incorporating Modified Duobinary Modulation Scheme

ITEE Journal Information Technology & Electrical Engineering

Performance Evaluation of 32 Channel DWDM System Using Dispersion Compensation Unit at Different Bit Rates

Digital back-propagation for spectrally efficient WDM 112 Gbit/s PM m-ary QAM transmission

Implementing of High Capacity Tbps DWDM System Optical Network

Mahendra Kumar1 Navneet Agrawal2

Fiber Nonlinearity Compensation Methods (used by our group)

An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources and a Novel Bidirectional Reach Extender

All-VCSEL based digital coherent detection link for multi Gbit/s WDM passive optical networks

Performance Comparison of Pre-, Post-, and Symmetrical Dispersion Compensation for 96 x 40 Gb/s DWDM System using DCF

Mitigation of Chromatic Dispersion using Different Compensation Methods in Optical Fiber Communication: A Review

40Gb/s Coherent DP-PSK for Submarine Applications

Design of Ultra High Capacity DWDM System with Different Modulation Formats

A HIGH SPEED WDM PON FOR DOWNSTREAM DPSK ASK SIGNALS AND UPSTREAM OOK SIGNAL WITH BROADCAST CAPABILTY

Available online at ScienceDirect. Procedia Computer Science 93 (2016 )

80 GBPS DOWNSTREAM TRANSMISSION USING DQPSK AND 40 GBPS UPSTREAM TRANSMISSION USING IRZ/OOK MODULATION IN BIDIRECTIONAL WDM-PON

Analyzing the Non-Linear Effects in DWDM Optical Network Using MDRZ Modulation Format

8 10 Gbps optical system with DCF and EDFA for different channel spacing

Optical Fiber Technology

Flat Frequency Comb Generation Based on Efficiently Multiple Four-Wave Mixing Without Polarization Control

from ocean to cloud LOW COMPLEXITY BACK-PROPAGATION FOR UPGRADING LEGACY SUBMARINE SYSTEMS

SUBMARINE SYSTEM UPGRADES WITH 25 GHZ CHANNEL SPACING USING DRZ AND RZ-DPSK MODULATION FORMATS

Simulative Analysis of 40 Gbps DWDM System Using Combination of Hybrid Modulators and Optical Filters for Suppression of Four-Wave Mixing

CHAPTER 5 SPECTRAL EFFICIENCY IN DWDM

Vol. 6, No. 9 / September 2007 / JOURNAL OF OPTICAL NETWORKING 1105

Eye-Diagram-Based Evaluation of RZ and NRZ Modulation Methods in a 10-Gb/s Single-Channel and a 160-Gb/s WDM Optical Networks

Chirped Bragg Grating Dispersion Compensation in Dense Wavelength Division Multiplexing Optical Long-Haul Networks

Performance Analysis of Direct Detection-Based Modulation Formats for WDM Long-Haul Transmission Systems Abstract 1.0 Introduction

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 29, NO. 21, NOVEMBER 1, Impact of Channel Count and PMD on Polarization-Multiplexed QPSK Transmission

Proposal of A Star-16QAM System Based on Intersymbol Interference (ISI) Suppression and Coherent Detection

Four-wave mixing in O-band for 100G EPON John Johnson

Performance Evaluation of Hybrid (Raman+EDFA) Optical Amplifiers in Dense Wavelength Division Multiplexed Optical Transmission System

Effects of Polarization Tracker on 80 and 112 Gb/s PDM-DQPSK with Spectral Amplitude Code Labels

Lecture 8 Fiber Optical Communication Lecture 8, Slide 1

Optimisation of DSF and SOA based Phase Conjugators. by Incorporating Noise-Suppressing Fibre Gratings

Signal Conditioning Parameters for OOFDM System

Performance of A Multicast DWDM Network Applied to the Yemen Universities Network using Quality Check Algorithm

Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber

Density and Guard Band in Migration Scenarios to Coherent Ultra-Dense WDM

COHERENT DETECTION OPTICAL OFDM SYSTEM

Non-linear compensation techniques for coherent fibre transmission

from ocean to cloud EFFICIENCY OF ROPA AMPLIFICATION FOR DIFFERENT MODULATION FORMATS IN UNREPEATERED SUBMARINE SYSTEMS

Performance Analysis Of An Ultra High Capacity 1 Tbps DWDM-RoF System For Very Narrow Channel Spacing

Comparative Analysis Of Different Dispersion Compensation Techniques On 40 Gbps Dwdm System

Next Generation Optical Communication Systems

from ocean to cloud THE FUTURE IS NOW - MAXIMIZING SPECTRAL EFFICIENCY AND CAPACITY USING MODERN COHERENT TRANSPONDER TECHNIQUES

Analytical Estimation in Differential Optical Transmission Systems Influenced by Equalization Enhanced Phase Noise

Research Article Compact Dual-Band Dipole Antenna with Asymmetric Arms for WLAN Applications

PERFORMANCE ANALYSIS OF OPTICAL TRANSMISSION SYSTEM USING FBG AND BESSEL FILTERS

FWM Suppression in WDM Systems Using Advanced Modulation Formats

Single channel and WDM transmission of 28 Gbaud zero-guard-interval CO-OFDM

40 Gb/s and 100 Gb/s Ultra Long Haul Submarine Systems

WDM Transmitter Based on Spectral Slicing of Similariton Spectrum

Table 10.2 Sensitivity of asynchronous receivers. Modulation Format Bit-Error Rate N p. 1 2 FSK heterodyne. ASK heterodyne. exp( ηn p /2) 40 40

DESIGN OF BIDIRECTIONAL PASSIVE OPTICAL NETWORK USING DIFFERENT MODULATIONS

Research Article A New Kind of Circular Polarization Leaky-Wave Antenna Based on Substrate Integrated Waveguide

Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise

A Novel Design Technique for 32-Channel DWDM system with Hybrid Amplifier and DCF

Compensation of Dispersion in 10 Gbps WDM System by Using Fiber Bragg Grating

Key Features for OptiSystem 14

Implementation and analysis of 2 Tbps MDRZ DWDM system at ultra narrow channel spacing

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING. FINAL EXAMINATION, April 2017 DURATION: 2.5 hours

Performance Analysis of Gb/s DWDM Metropolitan Area Network using SMF-28 and MetroCor Optical Fibres

from ocean to cloud Fraunhofer Institute for Telecommunications, Heinrich-Hertz-Institut, Einsteinufer 37, D-10587, Berlin, Germany

A WDM passive optical network enabling multicasting with color-free ONUs

A review on optical time division multiplexing (OTDM)

The Reduction of FWM effects using Duobinary Modulation in a Two-Channel D-WDM System

Performance Analysis of dispersion compensation using Fiber Bragg Grating (FBG) in Optical Communication

Performance Analysis of 112 Gb/s PDM- DQPSK Optical System with Frequency Swept Coherent Detected Spectral Amplitude Labels

System Impairments Mitigation for NGPON2 via OFDM

Research Article Novel Design of Microstrip Antenna with Improved Bandwidth

Simulation of Negative Influences on the CWDM Signal Transmission in the Optical Transmission Media

SHF Communication Technologies AG

Performance Analysis of Optical Time Division Multiplexing Using RZ Pulse Generator

Current Trends in Unrepeatered Systems

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

Suppression of Four Wave Mixing Based on the Pairing Combinations of Differently Linear-Polarized Optical Signals in WDM System

Investigation of Influence of Mixed

Link optimisation for DWDM transmission with an optical phase conjugation

COMPARISON OF PRE, POST AND SYMMETRICAL DISPERSION COMPENSATION SCHEME WITH 10 GB/S NRZ LINK FOR SCM SYSTEM

REDUCTION OF CROSSTALK IN WAVELENGTH DIVISION MULTIPLEXED FIBER OPTIC COMMUNICATION SYSTEMS

Transcription:

OptoElectronics, Article ID 296781, 4 pages http://dx.doi.org/10.1155/2014/296781 Research Article Signal Processing Algorithms for Down-Stream Traffic in Next Generation 10 Gbit/s Fixed-Grid Passive Optical Networks Rameez Asif, Rabeea Basir, and Ramshah Ahmad Telecommunication Department, University of and Technology (UET), Taxila 47050, Pakistan Correspondence should be addressed to Rameez Asif; dr.rameezasif@outlook.com Received 28 March 2014; Revised 20 May 2014; Accepted 3 June 2014; Published 22 June 2014 Academic Editor: Jayanta K. Sahu Copyright 2014 Rameez Asif et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We have analyzed the impact of digital and optical signal processing algorithms, that is, Volterra equalization (VE), digital backpropagation (BP), and optical phase conjugation with nonlinearity module (OPC-NM), in next generation 10 Gbit/s (also referred to as XG) DP-QPSK long haul WDM (fixed-grid) passive optical network (PON) without midspan repeaters over 120 km standard single mode fiber (SMF) link for downstream signals. Due to the compensation of optical Kerr effects, the sensitivity penalty is improved by 2 db by implementing BP algorithm, 1.5 db by VE algorithm, and 2.69 db by OPC-NM. Moreover, with the implementation of NL equalization technique, we are able to get the transmission distance of 126.6 km SMF for the 1 : 1024 split ratio at 5 GHz channel spacing in the nonlinear region. 1. Introduction Due to the increasing demand of bandwidth and capacity requirements from enterprises and households, the data rates of broadband access network will be required over 10 Gbit/s for each customer. Several passive optical network (PON) architectures have been proposed, that is, G-PON, E-PON, TDM-PON, and so forth, in order to remove the capacity bottleneck. Recently, the 10 Gbit/s long haul wavelength-division multiplexed- (WDM-) PON system has been demonstrated with coherent detection; this configuration represents a significant improvement with a receiver sensitivity of 5 dbm (25 photons/bit) [1]. With the implementation of advanced modulation formats,thatis,qpsk,qam,andsoforth,andmultiplexing techniques, that is, dual-polarization and so forth, the system performance is limited due to fiber linear and nonlinear effects [2]. These effects are very much dominant at higher signal launch powers and in WDM systems with narrow channel spacing [3]. Rosenkranz and vonhoyningen-huene presented the results of nonlinearity compensation in access networks; however, the results are limited to the transmitters where optical field is derived from the modulation current with the directly modulated laser (DML) rate equations; thus modulation nonlinearity and chirp are included [4]and are detected by direct detection method. In this paper, we have numerically analysed the transmission characteristics and the nonlinear equalization techniques by employing BP, VE, and OPC-NM in 10 Gbit/s DP-QPSK long haul WDM- PON transmission with coherent receivers, for downstream signals. Furthermore; the impact of nonlinear equalization algorithm on the transmission distance and split ratio factor is investigated. 2. Nonlinear Equalization Methods In this section, we will briefly discuss the nonlinear equalization techniques implemented in this paper. 2.1. Digital Backpropagation (BP). The joint compensation of linear and nonlinear transmission impairments is implemented by inversely solving the nonlinear Schrodinger equation (NLSE), as in (1). This method is termed as digital backpropagation (BP) [2, 5 12],and it is a topic of high interest in recent years. We have implemented BP algorithm by using the

2 OptoElectronics simplest symmetric split-step Fourier method (SSFM) with constant step-size method [7], as in (2). Consider E z = ( N D) E, (1) y 1,k FFE 11 z 1,k DFE 11 FFE 21 DFE 21 â 1,k E (z+h,t) = exp ( h D 2 ) exp (h N) exp ( h D 2 ) E(z, t), (2) FFE 12 DFE 12 â 2,k whereas D and N are the linear and nonlinear operators, respectively, to solve the inverse NLSE. 2.2. Volterra Equalization (VE). Another alternative approach for joint compensation of linear and nonlinear effects is the Volterra equalization (VE) method [4, 13], as in Figure 1. This method is an expansion of a linear feed forward equalizer (FFE) and decision feedback equalizer (DFE) of higherorder combinations of the delayed signal. The joint FFE- DFE algorithm is applied in order to process the I- and Q-tributaries to avoid intersymbol-interference (ISI). The optimal coefficients are calculated for the equalizer according to the minimum mean squared error (MMSE) criterion and are given by the well-known Wiener solution for the joint FFE-DFE algorithm [14]. These two methods, that is, BP and VE, are the postprocessing methodologies implemented with coherent receivers. We have also implemented an all-optical signal preprocessing method for nonlinear equalization, which is termed as optical phase conjugation with nonlinearity module (OPC-NM) [15]. 2.3. All-Optical Signal Preprocessing. This module, as in Figure 2, contains highly nonlinear fiber (HNLF) and optical phase conjugation (OPC) module [15, 16]. The nonlinear stage is implemented by 19 km of SMF with input launch power P m tuned by an erbium doped fiber amplifier (EDFA). The OPC stage uses the four-wave mixing of the signal with a CW laser as the pump in a 120 m long HNLF. The generated signal is passed through band-pass filter, amplified, and launched into the passive fiber link. The parameters of this module, that is, fiber length L m,signalpowerp m, and nonlinear coefficient γ m, are adjusted along with OPC module so that it produces negative nonlinear phase shift of ( Δφ m ),canceling the original (Δφ m ) from fiber transmission link. 3. Numerical Model The architecture, as in Figure 3, consists of optical line terminal (OLT) having 3 CW lasers, which are individually modulatedwithdp-qpsksignalandmultiplexedtogether (with 50 GHz, 10 GHz, and 5 GHz channel spacing) resulting in 10 Gbit/s WDM DP-QPSK signal per wavelength. The applied pattern was a pseudorandom bit sequence (PRBS) of length 2 15-1 and RZ pulse shaping is used. An EDFA at the OLT adjusts the signal input launch power into the fiber backhaul and passive optical splitters are used to distribute the signal to the optical network units (ONUs). Moreover, narrow optical filtering is used at the transmitter to compensate the spectral overlapping. The standard single mode fiber is used y 2,k FFE 22 z 2,k DFE 22 Figure 1: Numerical model of Volterra-based nonlinear FFE-DFE equalizer. HNLF OPC Figure 2: Basic architecture of optical phase conjugation with nonlinearity module (OPC-NM). Optical line termination (OLT) Optical network unit (ONU) Single mode fiber (80 120 km). Passive distribution network Coherent receiver Digital signal processing Figure 3: Architecture of coherent 10 Gbit/s long haul WDM-PON employing DP-QPSK downstream signals. to transmit over a distance of 120 km. The physical parameters of SMF fiber are attenuation α = +0.2 db/km, dispersion D = +16.75 ps/(nm-km), and nonlinear coefficient γ = +1.3(km 1 W 1 ). No midspan repeaters are used in the transmission link. For our investigations, all the ONUs are considered at the same transmission distance and having the same power budget. The signal is detected with a phase and polarization diverse coherent receiver. At the receiver, the channels can be selected through the tunable local oscillator (LO) laser source. The transmission performance of the middle channel of the WDM grid is monitored and is quantified by the biterror-ratio (BER). The FEC threshold limit corresponds to the BER level of 3.8 10 (as indicated by the dashed line in graphs). As we are investigating the deterministic impairments (linear and nonlinear effects) of fiber transmission, we have considered the effect of polarization mode dispersion (PMD) and laser line width negligible in these numerical analyses [8]. The model is implemented by using OptiSystem v.12 and DSP modules are implemented in Matlab.

OptoElectronics 3 At 3 dbm signal power 2 0 1 channel 10 GHz spacing 50 GHz spacing 5 GHz spacing Volterra equalizer OPC-NM Digital backpropagation Figure 4: sensitivity measurements for single channel and WDM transmission with different channel spacings. Figure 5: Performance analysis at 5 GHz channel spacing for 3 dbm signal launch power using BP, VE, and OPC-NM. 4. Results and Discussion Figure 4 shows the back-to-back receiver sensitivity and the impact of channel spacing on WDM-PON. At 50 GHz channel spacing, there is no significant nonlinear penalty observed at the FEC threshold limit. As the narrow channel spacing is used,thatis,10ghzand5ghz,wehaveobservedapenalty of 0.75 db and 1.1 db, respectively, at a BER level of 3.8 10. The results depict that, for long haul transmission in PONs, nonlinearities are the major degrading factors with narrow channelspacing.wehavefurtherinvestigatedtheimpact of nonlinearities and their compensation on the receiver sensitivity. As narrow channel spacing, that is, 5 GHz channel spaced transmission, has dominant multichannel nonlinear impairments, that is, cross-phase modulation (XPM), we have investigated this scenario for different signal launch powers and resultant impact of using NL equalization techniques. Figure 5 shows the performance of 5 GHz channel spaced WDM-PON transmission over 120 km SMF link. At 3 dbm signal launch power, the incurred penalty is less than 2 db. The NL equalization methods, that is, BP and VE, show efficient and improved transmission performance. The incurred penalty is reduced to 1.51 db with the postprocessing of data bybpandve.whilewehavenotobservedanyprominent improvement in system performance by employing OPC- NM around the region of 3.8 10 BER, at higher launch power, that is, 6 dbm, nonlinear impairments dominate and the system performance is degraded, as in Figure 6.Wehave observed a penalty of 4 db with respect to back-to-back transmission. The results of NL equalization show significant improvement in performance reducing the penalty to 2 db by BP algorithm, 1.5 db by VE algorithm, and 2.69 db by OPC- NM technique. By virtue of this performance, the system can be operated at higher transmission powers and physical transmission distance for the ONUs can be increased. Furthermore, we have investigated the number of ONUs (network subscribers) for maximum split ratio, that is, Volterra equalizer At 6 dbm signal power 2 0 OPC-NM Digital backpropagation Figure 6: Performance analysis at 5 GHz channel spacing for 6 dbm signal launch power using BP, VE, and OPC-NM. 1 : 1024, with respect to obtainable transmission distance, as in Figure 7. As we are emphasizing on the nonlinear compensation, we plotted the graph for the system with 5 GHz channel spacing at 6 dbm signal launch power. The maximum transmission distance for 5 GHz channel spaced system after a 1 : 1024 split ratio is found to be 92.06 km, whereas, by employing VE algorithm, we are able to get the transmission distance of 126.6 km for the same split ratio. 5. Conclusion To summarize, special focus is given to compensate fiber nonlinear transmission impairments and their interplay between transmission distance and split ratio. We have numerically evaluated the nonlinear equalization algorithms in 10 Gbit/s DP-QPSK long haul WDM-PON over 120km fiber link without midspan repeaters. The results of NL equalization,

4 OptoElectronics Number of ONUs (network subscribers) 10,000 1000 100 10 1 : 1024 split ratio With NL equalization 80 100 120 140 160 180 200 220 240 Transmission distance (km) Figure 7: Performance analysis for number of ONUs (network subscribers) versus maximum transmission distance. with 5 GHz channel spacing and at 6 dbm signal launch power, show significant improvement in system performance reducing the penalty to 2 db by BP algorithm, 1.5 db by VE algorithm, and 2.69 db by OPC-NM technique at the BER level of 3.8 10. Moreover, the maximum transmission distance after a 1 : 1024 split ratio is improved by 35.4 km by VE algorithm, which is the optimal NL equalization technique. From the over-all results, we conclude that NL equalization techniques are beneficial for PONs. They compensate the impairments to a considerable extent and will be helpful in the next generation networks where higher-order modulation formats, that is, m-ary QAM, will be implemented at access network level. Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper. Acknowledgments The authors would like to thank Professor Dr.-Ing. Bernhard Schmauss and Dr.-Ing. Chien-Yu Lin for their everlasting support during the research tenure at University of Erlangen- Nuremberg, Germany. References [1] D.Lavery,M.Ionescu,S.Makovejs,E.Torrengo,andS.J.Savory, A long-reach ultra-dense 10 Gbit/s WDM-PON using a digital coherent receiver, Optics Express, vol. 18, no. 25, pp. 25855 25860, 2010. [2] X. Li, X. Chen, G. Goldfarb et al., Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing, Optics Express,vol.16, no. 2, pp. 880 888, 2008. [3]J.D.Reis,D.M.Neves,andA.L.Teixeira, Analysisofnonlinearities on coherent ultradense WDM-PONs using Volterra series, Lightwave Technology, vol.30,no.2,article ID6112703,pp.234 241,2012. [4] W. Rosenkranz and J. von Hoyningen-Huene, Nonlinearity compensation and equalization in access networks, in Proceedings of the 17th Opto-Electronics and Communications Conference (OECC 12), pp. 459 460, Busan, Republic of Korea, July 2012. [5] E. Ip and J. M. Kahn, Compensation of dispersion and nonlinear impairments using digital backpropagation, IEEE Lightwave Technology,vol.26,no.20,pp.3416 3425, 2008. [6] D.S.Millar,S.Makovejs,C.Behrensetal., Mitigationoffiber nonlinearity using a digital coherent receiver, IEEE Journal on Selected Topics in Quantum Electronics, vol.16,no.5,pp.1217 1226, 2010. [7] R. Asif, C. Lin, M. Holtmannspoetter, and B. Schmauss, Multispan digital non-linear compensation for dual-polarization quadrature phase shift keying long-haul communication systems, Optics Communications, vol. 285, no. 7, pp. 1814 1818, 2012. [8] R. Asif, C. Lin, and B. Schmauss, Impact of channel baudrate on logarithmic digital backward propagation in DP-QPSK system with uncompensated transmission links, Optics Communications,vol.284,no.24,pp.5673 5677,2011. [9] R. Asif, C. Y. Lin, M. Holtmannspoetter, and B. Schmauss, Optimized digital backward propagation for phase modulated signals in mixed-optical fiber transmission link, Optics Express, vol. 18, no. 22, pp. 22796 22807, 2010. [10] R. Asif, C. Lin, M. Holtmannspoetter, and B. Schmauss, Lowcomplexity logarithmic step-size-based filtered digital backward propagation algorithm for compensating fiber transmission impairments, in Next-Generation Optical Communication: Components,Sub-Systems,andSystems,vol.8242ofProceedings of SPIE, San Francisco, Calif, USA, January 2012. [11] R. Asif, M. Usman, C. Lin, and B. Schmauss, Application of a digital non-linear compensation algorithm for evaluating the performance of root-raised-cosine pulses in 112Gbits 1 DP- QPSK transmission, Optics,vol.14,no.9,ArticleID 095402, 2012. [12] R. Asif, C. Y. Lin, and B. Schmauss, Logarithmic versus modified digital backward propagation algorithm in 224 Gb/s DP-16QAM transmission over dispersion uncompensated fiber links, Optical,vol.51,no.4,ArticleID045007,2012. [13] H. Chin, M. Forzati, and J. Mrtensson, Volterra based nonlinear compensation on 224 Gb/s PolMux-16QAM optical fibre link, in Proceedings of the Optical Fiber Communication Conference, OSA Technical Digest, Optical Society of America, paper JW2A.61, 2012. [14] T. Freckmann and J. Speidel, Linear and nonlinear electronic feed-forward equalizers for DQPSK, in Proceedings of the 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS 07),PaperMP4,pp.145 146,October2007. [15] M. D. Pelusi and B. J. Eggleton, Tunable all-optical precompensation of fiber Kerr effect on multi-format DPSK signals using a nonlinearity module, in Proceedings of the Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC 12), pp.1 3, March 2012. [16] R. Asif, H. Shahid, F. Arshad, and R. Saleem, Scalable nonlinear equalization in high-bit-rate optical transmission systems, Photonics Research,vol.1,p.135,2013.

Rotating Machinery The Scientific World Journal Distributed Sensor Networks Sensors Control Science and Civil Submit your manuscripts at Electrical and Computer Robotics VLSI Design OptoElectronics Navigation and Observation Chemical Active and Passive Electronic Components Antennas and Propagation Aerospace Modelling & Simulation in Shock and Vibration Acoustics and Vibration