Speed Transform, a New Time-Varying Frequency Analysis Technique

Similar documents
Wavelet Transform. From C. Valens article, A Really Friendly Guide to Wavelets, 1999

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi

Fault Diagnosis of Wind Turbine Gearboxes Using Enhanced Tacholess Order Tracking

SEPARATING GEAR AND BEARING SIGNALS FOR BEARING FAULT DETECTION. Wenyi Wang

Wavelet Transform. From C. Valens article, A Really Friendly Guide to Wavelets, 1999

PHASE DEMODULATION OF IMPULSE SIGNALS IN MACHINE SHAFT ANGULAR VIBRATION MEASUREMENTS

Biomedical Signals. Signals and Images in Medicine Dr Nabeel Anwar

FAULT DETECTION OF ROTATING MACHINERY FROM BICOHERENCE ANALYSIS OF VIBRATION DATA

Detection of gear defects by resonance demodulation detected by wavelet transform and comparison with the kurtogram

Cepstral Removal of Periodic Spectral Components from Time Signals

NON-SELLABLE PRODUCT DATA. Order Analysis Type 7702 for PULSE, the Multi-analyzer System. Uses and Features

Diagnostics of bearings in hoisting machine by cyclostationary analysis

Time-Frequency Enhancement Technique for Bevel Gear Fault Diagnosis

ME scope Application Note 01 The FFT, Leakage, and Windowing

PRSA method for transient detection applied to drinking water production surveillance

Theory of Telecommunications Networks

Fourier and Wavelets

APPLICATION NOTE 3560/7702. Introduction

Separation of Sine and Random Com ponents from Vibration Measurements

Guan, L, Gu, F, Shao, Y, Fazenda, BM and Ball, A

Gear Transmission Error Measurements based on the Phase Demodulation

IET (2014) IET.,

FAULT DIAGNOSIS OF SINGLE STAGE SPUR GEARBOX USING NARROW BAND DEMODULATION TECHNIQUE: EFFECT OF SPALLING

GEARBOX FAULT DETECTION BY MOTOR CURRENT SIGNATURE ANALYSIS. A. R. Mohanty

MUS421/EE367B Applications Lecture 9C: Time Scale Modification (TSM) and Frequency Scaling/Shifting

Detection of Wind Turbine Gear Tooth Defects Using Sideband Energy Ratio

Lecture 7 Frequency Modulation

Novel Technology Based on the Spectral Kurtosis and Wavelet Transform for Rolling Bearing Diagnosis

Non-stationary Analysis/Synthesis using Spectrum Peak Shape Distortion, Phase and Reassignment

Modern spectral analysis of non-stationary signals in power electronics

SINOLA: A New Analysis/Synthesis Method using Spectrum Peak Shape Distortion, Phase and Reassigned Spectrum

Standard Octaves and Sound Pressure. The superposition of several independent sound sources produces multifrequency noise: i=1

Gearbox Vibration Source Separation by Integration of Time Synchronous Averaged Signals

Novel Spectral Kurtosis Technology for Adaptive Vibration Condition Monitoring of Multi Stage Gearboxes

NOISE AND VIBRATION DIAGNOSTICS IN ROTATING MACHINERY

Lecture 2: SIGNALS. 1 st semester By: Elham Sunbu

Sound is the human ear s perceived effect of pressure changes in the ambient air. Sound can be modeled as a function of time.

VOLD-KALMAN ORDER TRACKING FILTERING IN ROTATING MACHINERY

VIBROACOUSTIC MEASURMENT FOR BEARING FAULT DETECTION ON HIGH SPEED TRAINS

speech signal S(n). This involves a transformation of S(n) into another signal or a set of signals

A simulation of vibration analysis of crankshaft

Preliminary study of the vibration displacement measurement by using strain gauge

Reading: Johnson Ch , Ch.5.5 (today); Liljencrants & Lindblom; Stevens (Tues) reminder: no class on Thursday.

DIAGNOSIS OF ROLLING ELEMENT BEARING FAULT IN BEARING-GEARBOX UNION SYSTEM USING WAVELET PACKET CORRELATION ANALYSIS

Orthonormal bases and tilings of the time-frequency plane for music processing Juan M. Vuletich *

Satellite-Induced Multipath Analysis on the Cause of BeiDou Code Pseudorange Bias

Rotating Machinery Fault Diagnosis Techniques Envelope and Cepstrum Analyses

SIMPLE GEAR SET DYNAMIC TRANSMISSION ERROR MEASUREMENTS

DIGITAL COMMUNICATIONS SYSTEMS. MSc in Electronic Technologies and Communications

Compensating for speed variation by order tracking with and without a tacho signal

TRANSFORMS / WAVELETS

Study of Improper Chamfering and Pitting Defects of Spur Gear Faults Using Frequency Domain Technique

Current-Based Diagnosis for Gear Tooth Breaks in Wind Turbine Gearboxes

Lecture on Angular Vibration Measurements Based on Phase Demodulation

Post-processing using Matlab (Advanced)!

Basic Electronics Learning by doing Prof. T.S. Natarajan Department of Physics Indian Institute of Technology, Madras

Noise-robust compressed sensing method for superresolution

Performance Evaluation of STBC-OFDM System for Wireless Communication

Research Article Vibration Sideband Modulations and Harmonics Separation of a Planetary Helicopter Gearbox with Two Different Configurations

Signal Characterization in terms of Sinusoidal and Non-Sinusoidal Components

Signals A Preliminary Discussion EE442 Analog & Digital Communication Systems Lecture 2

Chapter 3 Simulation studies

Theory and praxis of synchronised averaging in the time domain

Spectrum Analysis: The FFT Display

Vibration Analysis on Rotating Shaft using MATLAB

Congress on Technical Diagnostics 1996

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

WAVELET OFDM WAVELET OFDM

(Refer Slide Time: 3:11)

An Improved Method for Bearing Faults diagnosis

Detection and characterization of oscillatory transient using Spectral Kurtosis

Response spectrum Time history Power Spectral Density, PSD

A Parametric Model for Spectral Sound Synthesis of Musical Sounds

Introduction. Chapter Time-Varying Signals

2.1 BASIC CONCEPTS Basic Operations on Signals Time Shifting. Figure 2.2 Time shifting of a signal. Time Reversal.

On the accuracy reciprocal and direct vibro-acoustic transfer-function measurements on vehicles for lower and medium frequencies

Fundamentals of Vibration Measurement and Analysis Explained

Fourier Signal Analysis

Complex Sounds. Reading: Yost Ch. 4

BLADE AND SHAFT CRACK DETECTION USING TORSIONAL VIBRATION MEASUREMENTS PART 2: RESAMPLING TO IMPROVE EFFECTIVE DYNAMIC RANGE

Motor Modeling and Position Control Lab 3 MAE 334

Fourier Methods of Spectral Estimation

Introduction to Wavelet Transform. Chapter 7 Instructor: Hossein Pourghassem

Enayet B. Halim, Sirish L. Shah and M.A.A. Shoukat Choudhury. Department of Chemical and Materials Engineering University of Alberta

TIMA Lab. Research Reports

Analysis Of Induction Motor With Broken Rotor Bars Using Discrete Wavelet Transform Princy P 1 and Gayathri Vijayachandran 2

Presentation Outline. Advisors: Dr. In Soo Ahn Dr. Thomas L. Stewart. Team Members: Luke Vercimak Karl Weyeneth. Karl. Luke

TIME FREQUENCY ANALYSIS OF TRANSIENT NVH PHENOMENA IN VEHICLES

Effect of parameters setting on performance of discrete component removal (DCR) methods for bearing faults detection

Structure of Speech. Physical acoustics Time-domain representation Frequency domain representation Sound shaping

Extraction of Musical Pitches from Recorded Music. Mark Palenik

Introduction to Wavelets Michael Phipps Vallary Bhopatkar

I-Hao Hsiao, Chun-Tang Chao*, and Chi-Jo Wang (2016). A HHT-Based Music Synthesizer. Intelligent Technologies and Engineering Systems, Lecture Notes

Diagnostics of Bearing Defects Using Vibration Signal

Wavelet Transform for Bearing Faults Diagnosis

Extraction of tacho information from a vibration signal for improved synchronous averaging

Bearing fault detection of wind turbine using vibration and SPM

DIAGNOSIS OF BEARING FAULTS IN COMPLEX MACHINERY USING SPATIAL DISTRIBUTION OF SENSORS AND FOURIER TRANSFORMS

1319. A new method for spectral analysis of non-stationary signals from impact tests

Fault Diagnosis of Gearbox Using Various Condition Monitoring Indicators for Non-Stationary Speed Conditions: A Comparative Analysis

Transcription:

Speed Transform, a New Time-Varying Frequency Analysis Technique Cécile Capdessus, Edgard Sekko and Jérôme Antoni Abstract Due to the periodical motions of most machinery in steady state operation, many diagnosis techniques are based on frequency analysis. This is often performed through Fourier transform. Some extensions of these techniques to the more general case of non stationary operation have been proposed. They are based on signal processing advances such as time frequency representations and adaptive filtering. The technique proposed in this paper is based on the observation that, when under non stationary operation, the vibrations of a machine are still tightly related to the speed variations. It is thus suggested to decompose the vibration signal over a set of time-varying frequency sine waves synchronized with the speed variations, instead of fixed frequency sine waves. This set of timevarying frequency sine waves is shown to be an orthonormal basis of the subspace it spans in the case of linear frequency variations. An insight to the improvement such decomposition can provide for spectral analysis, cyclostationary analysis and time frequency representation is given. Some application examples are presented over both simulated signals and real-life signals. Keywords Vibration analysis Non stationary operation Time-varying frequency sine-waves Decomposition over an orthonormal basis C. Capdessus (&) E. Sekko Laboratoire PRISME, 21 Rue Loigny-la-Bataille 28 Chartres, France e-mail: Cecile.capdessus@univ-orleans.fr E. Sekko e-mail: Edgard.Sekko@univ-orleans.fr J. Antoni Laboratory of Vibrations and Acoustics, University of Lyon (INSA), 69621 Villeurbanne Cedex, France e-mail: jerome.antoni@insa-lyon.fr G. Dalpiaz et al. (eds.), Advances in Condition Monitoring of Machinery in Non-Stationary Operations, Lecture Notes in Mechanical Engineering, DOI: 1.17/978-3-642-39348-8_2, Ó Springer-Verlag Berlin Heidelberg 214 23

24 C. Capdessus et al. 1 Introduction In rotating machinery, under varying rotation speed, the vibration signal is non-stationary and its statistic characteristics vary with time. For such a signal, conventional general harmonic analysis, performed through Fast Fourier Transform (FFT), doesn t provide accurate information for the spectrum of the signal, due to the non-constant speed. In order to overcome the limitations of this technique, appropriate methods have been dedicated to varying speed cases. The best known methods are Order Tracking analysis by short-time Fourier transform (STFT) [1], windowed Fourier transform (WFT) or angular resampling [2]. These last years, new methods such as Vold Kalman filter [3] or Gabor Order Tracking approach [4] have been introduced. The main characteristic of these methods is that they are based on resampling scheme or sampled STFT. However in many cases, all previous techniques have limited resolution or show a number of gaps [5]. For the STFT, depending on the window used, analysis quality may be affected. Regarding the angular resampling of the vibration signal, its drawback is that the resonance frequencies of the rotating machine are disturbed by the process. In order to avoid the previous shortcomings, we propose a new technique called Speed Transform (ST) when the speed varies linearly. This new approach consists in expanding the vibration signal into a series of elementary oscillatory functions, whose frequencies depend on the variation of the speed. The main advantage of the new approach is that it adapts to the vibration signal and components so that the resonance frequencies are preserved. The paper is organized as follows. In Sect. 2, ST is presented in both theoretical and practical implementation aspects. In Sect. 3, ST is applied to simulated data and in Sect. 4 it is applied to real-life data. Our conclusion is presented in Sect. 5. 2 Speed Transform, Theory and Practical Implementation Applying Fourier analysis to a signal consists in decomposing that signal over a basis of elementary oscillatory functions. The definition of the Fourier transform of a signal sðtþ is well known and is given by: þ1 SðfÞ ¼ Z 1 sðtþ e 2pjft dt where the Fourier transform of the signal sðtþ is denoted by Sðf Þ, t stands for time and f for frequency. When actually applied to vibration signals, it usually comes to a slightly different tool that can be described by: ð1þ SðfÞ ¼ 1 2T ZþT sðtþ e 2pjft dt ð2þ

Speed Transform 25 It thus consists in evaluating the closeness of the signal sðtþ to a set of elementary oscillatory functions e 2pjft over a finite time interval T, or in other terms, evaluating a mean contribution of each of these e 2pjft functions to the signal over that interval. In what follows, this practical tool will be considered as Fourier transform. The tool described by Eq. (2) exhibits a nice asymptotic property. Let us evaluate the closeness of two functions of the basis e 2pjf1t and e 2pjf2t when the time interval tends to infinity, i.e.: 1 ZþT lim e 2pjf1t e þ2pjf2t for f dt ¼ 1 2 ð3þ T!þ1 2T 1 for f 1 ¼ f 2 This is equal to zero for f 1 6¼ f 2 (cross terms) and equal to one for f 1 6¼ f 2 (auto terms). This property allows to evaluate the contribution of any e 2pjft function to the signal by applying Eq. (2), provided that the time interval is long enough to ensure that the cross-terms vanish. This tool is thus well fitted to the physical nature of vibration signals under stationary operation. Indeed, the periodical movements of machinery generate periodical components within the temporal moments of the signals. Due to the nice property described by Eq. (3) these periodical components produce spectral lines through Fourier analysis. Under non stationary operation, Fourier analysis keeps its nice mathematical properties but does not fit any more to the physical model of the data. Indeed, many components of the vibration signal follow the speed variations, so that they are not any more periodic. All the components that are tied to the rotation frequency of the machine spread over a frequency band. Retrieving their amplitude or even detecting them through Fourier analysis thus becomes difficult. This is why we propose to use a basis of elementary oscillatory functions whose frequencies follow the speed variations. This would allow preserving the main advantage of frequency analysis, which is to fit to the physical model of the data. But what about the mathematical properties of the decomposition over such a time-varying basis? More precisely, do a set of e 2pjR t Df ðuþ du functions, whose frequencies ndf ðtþ follow the speed variations, still exhibit the property described by Eq. (3)? We showed (see appendix) that provided the variations of ndfðþare t linear versus time, that mathematical property still holds. Let us give some specifications for this new analysis tool that will be called speed transform: first, the frequencies of the basis functions should all be proportional to the speed variations, their frequencies must always be smaller than the Nyquist frequency, they should be equi-spaced over the analysis band, in terms of proportion of the rotation speed, rather than in terms of frequency band, they should be equi-spaced with such step DfðÞthat t no component tied to the rotation speed could be missed in the analysis interval.

26 C. Capdessus et al. In order to satisfy these specifications, let us first define some expressions: rt ðþ will stand for the rotation speed in Hertz and T ¼ NT e for the duration of the vibration signal, with N the total number of samples and f e the sampling period. The different parameters used to generate the basis are shown on Fig. 1. The rotation frequency (in green) and the basis functions frequencies (blue) are represented versus the number of samples in reduced frequency. The example is given for a N ¼ 64 samples base, with speed variations in reduced frequency given by rt ðþ¼:1 þ :1 t. The green plot represents the rotation frequency variation rt ðþ and the red one represents the time-varying frequency resolution DfðÞof t the speed transform. It is proportional to rt ðþand the proportionality coefficient is an integer value k such that rt ðþ¼kdfðþ t and maxfdfðþ t g 1 T in order to have a sufficient resolution not to miss any component. The basis B is composed of N 2 þ 1 ¼ 33 oscillatory functions b nðþcalculated t as follows: h i B ¼ b n ðþ¼e t 2pjnR t Dfðu Þdu ; n N=2 ð4þ On Fig. 2 is displayed the modulus of the basis correlation matrix. As expected from theory, it is a diagonal matrix with unitary diagonal terms. The non diagonal terms should be zero but some side effects appear due to the fact that the basis functions are finite length. These side effects can be minimized by applying an apodisation window, such as Hamming window, as shown on Fig. 3. As usual, the shape of the main lobe and side-lobes depends on the apodisation window. The width of the main lobe and the maximum speed resolution maxfdfðþ t g are both related to the inverse of the length of the signal. This ensures that one of the calculated samples at least will be located on the main lobe. This prevents any component whose variations are not a integer multiples of DfðÞfrom t not being detected. In order to improve the amplitude estimation of these components some interpolation can be applied, as in classical spectral analysis. Fig. 1 Frequencies of the basis functions Reduced frequency (without unity).5.45.4.35.3.25.2.15.1.5 1 2 3 4 5 6 7 Sample number

Speed Transform 27 Fig. 2 Modulus of the correlation matrix of the basis 1.8.6.4.2 4 3 2 1 1 2 3 4 Fig. 3 Modulus of the correlation matrix of the basis computed with apodisation 1.5 1.5 4 3 2 1 1 2 3 4 3 Application to Simulated Data We first applied this technique to the analysis of simulated toothed gearing vibrations. The features of the simulated experiment are the following ones: the two wheels are respectively 2 and 22 toothed ones, the rotation frequency of the 2 toothed wheel is variable and given by f 2 ðþ t ¼ 16 þ 3t, the gearing frequency by f eng ðþ¼2f t 2 ðþand t the 22 toothed wheel frequency by f 22 ðþ¼f t eng ðþ=22. t the vibration signal is given by st ðþ¼s eng ðþs t ð 2 ðþþs t 22 ðþ t Þ with: s eng ðþ¼cos t 2p Rt f engðuþduðþt t þ u eng where ueng is a random phase

28 C. Capdessus et al. s 2 ðþ¼ t P8 cos 2pm Rt f 2ðuÞdu þ u 2;m with u2;m random (resp. s 22 ðþ, t f 22 ðþ t m¼1 and u 22;m ). the total number of available samples is N ¼ 2, i. e. a 1s time interval. The amplitude spectrum of this simulated signal is displayed on Fig. 4. It was calculated by applying a 65,536 sample Fourier transform over the whole signal, with a Hamming apodisation window. Due to the speed variation, the energy of the gearing fundamental and its sidebands spread over several frequency channels. Only the lowest frequencies, corresponding to the inferior sidebands of the 36 toothed wheel modulation, can be separated. This comes from the fact that their frequencies are varying slower than that of the higher frequency components. Nevertheless, though they can be separated, the amplitude displayed on the spectrum is erroneous, since the energy of each sideband is spread over several neighboring frequency channels. This problem cannot be totally overcome by the use of time frequency distributions. Two spectrograms were calculated with different frequency resolutions. The spectrogram displayed on Fig. 5 was computed over slices of 1,24 samples,.25 Amplitude spectrum.2.15.1.5 1 2 3 4 5 6 7 Fig. 4 Amplitude spectrum of the simulated toothed gearing vibration signal 7 6 5 4 3 2 1.1.2.3.4.5.6.7.8.9 Time (s) Fig. 5 Spectrogram of the vibration signal computed over 124 sample slices

Speed Transform 29 6 5 4 3 2 1.2.3.4.5.6.7 Time (s) Fig. 6 Spectrogram of the vibration signal computed over 8192 sample slices Hamming windowing and a of a slice overlap. The frequency resolution is thus Df ¼ 19:53 Hz and the temporal resolution Dt ¼ :5 s, which would be enough to follow the temporal variations of the speed but does not allow separating the sidebands. Whereas the second spectrogram (Fig. 6), calculated the same way but over 8,192 sample slices, not only fails to follow the temporal variations (Dt ¼ :4 s) but cannot either separate the sidebands, despite a better frequency resolution (Df ¼ 2:44 Hz), because the sidebands spread over neighboring frequency channels. Whereas the speed transform of the signal, displayed on Fig. 7, succeeds in separating all the sidebands and estimating their amplitude. Instead of being represented versus frequency, it is represented versus the proportion of the speed signal that was used to build the speed transform basis. Here the speed signal was that of the 2 toothed wheel, so that all the sidebands corresponding to that wheel appear at harmonic positions of the speed signal. The transform was computed over the whole signal with Hamming windowing and interpolated by 8..5.45.4.35.3.25.2.15.1.5 5 1 15 2 25 3 Proportion of the 2 toothed wheel rotation frequency Fig. 7 Speed transform (in black) displayed versus the proportion of the 2 toothed wheel rotation frequency. Green lines are the true 22 toothed sidebands and red ones the true gearing fundamental and true 2 toothed sidebands

3 C. Capdessus et al. 4 Application to Real-Life Data Here the speed transform is applied to the vibration signal of a diesel engine. In order to build the basis functions b n ðþ¼e t 2pjnR t rðuþ K du we first need to estimate from the tachometer signal the function gt ðþ¼2p Rt ru ðþdu, i.e. the angular position of the shaft, if we suppose that it is zero for t ¼. This can be easily done based on the following properties: gt ðþmust be an order 2 polynomial It must be such that sinðgðþ t Þ ¼ at each tick of the tachometer signal A curve is built by associating an integer multiple of 2p to each tick time and a curve fitting procedure allows finding the order 2 polynomial fitted to that curve. The coefficients of this polynomial are then used to compute the value of gt ðþat any time t. The speed transform has first been computed on the time interval between 3.6 and 32 s, where the rotation frequency is stationary and equal to 75 Hz (see Fig. 8), in order to compare the result to Fourier transform. The amplitude spectrum and the speed transform calculated on that interval are displayed on Figs. 9 and 1. This confirms that the usual Fourier transform is actually a particular case of the proposed speed transform. Note however a slight improvement of the latter as compared to the former due to the compensation of small speed fluctuations. The technique has then been applied between 25 and 3 s, i.e., on a time interval where the speed is linearly increasing. The amplitude spectrum and speed transform are displayed on Figs. 11, 12 and 13. The capability of the speed transform to adjust to linear speed variations is clearly demonstrated, even in the high frequency range. Whereas one can only distinguish the H2 harmonic (firing frequency of the engine) in the Fourier transform, all multiples of the H1 (crankshaft rotation) and H1/2 (thermodynamic cycle) are visible in the speed transform. This opens a valuable perspective for order tracking at virtually no cost Régime en Hz en fonction du temps 7 6 5 4 3 2 5 1 15 2 25 3 Time (s) Fig. 8 The rotation speed of the diesel engine estimated from the tachometer signal

Speed Transform 31.5.45.4.35.3.25.2.15.1.5 Amplitude spectrum 1 2 3 4 5 6 7 8.5.45.4.35.3.25.2.15.1.5 Speed transform 1 2 3 4 5 6 7 8 9 1 Proportion of the rotation speed Fig. 9 The Amplitude spectrum and speed transform calculated between 3.6 and 32 s x 1-4 Amplitude spectrum 12 1 8 6 4 2 68 7 72 74 76 78 8 x 1-3 Speed transform 2 1.5 1.5 9 92 94 96 98 1 12 14 16 18 Fig. 1 Zoom on the high frequencies Proportion of the rotation speed

32 C. Capdessus et al. 7 6 5 4 3 2 1 x 1-3 Amplitude spectrum 1 2 3 4 5 6 7 8 Speed transform.3.25.2.15.1.5 1 2 3 4 5 6 7 8 9 1 11 Proportion of the rotation speed Fig. 11 The Amplitude spectrum and speed transform calculated between 25 s and 3 s x 1-3 Amplitude spectrum 7 6 5 4 3 2 1 5 1 15 2 25 Speed transform.3.25.2.15.1.5 5 1 15 2 25 3 35 4 Fig. 12 Zoom on the low frequencies Proportion of the rotation speed

Speed Transform 33 3.5 x 1-4 Amplitude spectrum 3 2.5 2 1.5 1.5 6 62 64 66 68 7 72 74 76 78 8 x 1-4 15 Speed transform 1 5 85 9 95 1 15 11 115 Proportion of the rotation speed Fig. 13 Zoom on the high frequencies as compared to other techniques, such as those based on time-varying filters or angular resampling preconditioning. 5 Conclusion Fourier analysis plays a prominent role in the vibration analysis of rotating machines. Strictly speaking, it applies only to the situation where the machine is rotating at exactly constant speed. The extension of Fourier analysis to non-stationary operation is a current and active field of research. Whereas valuable solutions exist, for instance based on angular resampling, this paper proposed a new speed transform which inherits all the properties of the Fourier transform in particular the orthonormality of its functional basis when applied to linear speed variations. This not only has the advantage of simplicity, but it also returns properly scaled results. The speed transform has potential in several applications, and in particular in order tracking. Due to its resemblance to Fourier analysis, it opens a bunch of signal processing possibilities dedicated to non-stationary signals, such as non-stationary demodulation, non-stationary envelope analysis, cyclo-non-stationary analysis, etc. A short-time version of the speed transform is also conceivable to track arbitrary speed variations that can be approximated as piece-wise linear.

34 C. Capdessus et al. Appendix We are interested in: where: lim IT ð Þ T!1 IT ð Þ ¼ 1 2T Z T e 2pj ð f 1ðÞ f t 2 ðþ t Þt dt Let us suppose that the variations of f 1 ðþand t f 2 ðþare t linear. In this case, there exist a et b such that: Which leads to: IT ð Þ ¼ 1 2T IT ð Þ ¼ 1 2T Z T f 1 ðþ f t 2 ðþ¼2at t þ b e 2pj ð at2 þbtþ dt Z T e 2pj a ð tþ b 2aÞ 2 b2 4a dt ¼ 1 b 2 2T e 2pj 4a The variable is changed from t to x: x ¼ t þ b 2a dt ¼ dx þ b 2a x T þ b 2a Which leads to: IT ð Þ ¼ 1 b 2 2T e 2pj 4a Tþ b Z 2a þ b 2a e 2pjax2 dx The integral can be decomposed into three parts: ð Þ 2 Z T e 2pj a tþ b 2a dt Tþ b Z 2a þ b 2a e 2pjax2 dx ¼ I 1 þ I 2 þ I 3

Speed Transform 35 with: I 1 ¼ R e 2pjax2 dx þ b 2a I 2 ¼ R e 2pjax2 dx Tþ b I 3 ¼ R 2a e 2pjax2 dx T The integrals I 1 et I 3 are finite so that the only problem is to calculate: Let JðTÞ ¼ RT e 2pjat2 dt 1 b lim 2 T!1 2T e 2pj 4a I2 T þ1 ð Þ lim JT ð Þ ¼ J 1 ¼ Z e 2pjat2 dt T!þ1 1 p Let us change variable t to: u ¼ ffiffiffiffiffiffiffiffi 2pa t The expression becomes: J 1 ¼ ffiffiffiffiffiffiffiffi 1 þ1 Z p e ju2 du ¼ 1 þ1 pffiffiffiffiffiffiffiffi 2 Z e ju2 du 2pa 2pa 1 Which is proportional to the well known Fresnel integral: So that J 1 ¼ p 1 ffiffiffi e jp 4 2a This proves that lim IT ð Þ ¼ whenever f 1ðÞ f t 2 t T!1 If f 1 ðþ f t 2 ðþ¼, t it is easy to show that IT ðþ6¼ þ1 R e ju2 du ¼ ð Þ ¼ 1 for any value of T. p ffiffi p 2 ejp 4 References 1. Meltzer G, Ivanov YY (23) Fault detection in gear drives with non-stationary rotational speed part II: the time frequency approach, mechanical systems and signal processing, 17, pp 133 147 2. André H, Daher Z, Antoni J (21) Comparison between angular sampling and angular resampling methods applied on the vibration monitoring of a gear meshing in non stationary conditions, ISMA 3. Pan MC, Lin YF (26) Further exploration of Vold Kalman filtering order tracking with shaft speed information-(i) theoretical part, numerical implementation and parameter investigations. Mech Syst Sign Process 2(5):1134 1154 4. Hui S, Wei J, Qian S (23) Discrete gabor expansion for order tracking, will appear in IEEE trans of instrumentation and measurements 5. Bandhopadhyay DK, Griffiths D (1995) Methods for analyzing order spectra, SAE paper 951273

http://www.springer.com/978-3-642-39347-1