Structure-related Characteristics of SiGe HBT and 2.4 GHz Down-conversion Mixer

Similar documents
4H-SiC Planar MESFET for Microwave Power Device Applications

A New SiGe Base Lateral PNM Schottky Collector. Bipolar Transistor on SOI for Non Saturating. VLSI Logic Design

A 77 GHz mhemt MMIC Chip Set for Automotive Radar Systems

Up to 6 GHz Low Noise Silicon Bipolar Transistor Chip. Technical Data AT-41400

65-GHz Receiver in SiGe BiCMOS Using Monolithic Inductors and Transformers

Normally-Off Operation of AlGaN/GaN Heterojunction Field-Effect Transistor with Clamping Diode

Surface Mount Low Noise Silicon Bipolar Transistor Chip. Technical Data AT-41411

CMOS 120 GHz Phase-Locked Loops Based on Two Different VCO Topologies

Design of low phase noise InGaP/GaAs HBT-based differential Colpitts VCOs for interference cancellation system

RFIC DESIGN EXAMPLE: MIXER

A 7-GHz 1.8-dB NF CMOS Low-Noise Amplifier

Streamlined Design of SiGe Based Power Amplifiers

Wu Lu Department of Electrical and Computer Engineering and Microelectronics Laboratory, University of Illinois, Urbana, Illinois 61801

techniques, and gold metalization in the fabrication of this device.

Lecture: Integration of silicon photonics with electronics. Prepared by Jean-Marc FEDELI CEA-LETI

Lecture 020 ECE4430 Review II (1/5/04) Page 020-1

Lecture 020 ECE4430 Review II (1/5/04) Page 020-1

A 120 GHz Voltage Controlled Oscillator Integrated with 1/128 Frequency Divider Chain in 65 nm CMOS Technology

Chapter 3 Basics Semiconductor Devices and Processing

Chapter 3: Basics Semiconductor Devices and Processing 2006/9/27 1. Topics

A 10-GHz CMOS LC VCO with Wide Tuning Range Using Capacitive Degeneration

Silicon-on-Sapphire Technology: A Competitive Alternative for RF Systems

ACTIVE phased-array antenna systems are receiving increased

A New High Performance Complementary Bipolar Technology Featuring 45GHz NPN and 20GHz PNP Devices.

Data Sheet. AT Up to 6 GHz Medium Power Silicon Bipolar Transistor. Features. Description. 100 mil Package. High Output Power:

Agilent AT Up to 6 GHz Low Noise Silicon Bipolar Transistor Data Sheet

SNR characteristics of 850-nm OEIC receiver with a silicon avalanche photodetector

An Inductor-Based 52-GHz 0.18 µm SiGe HBT Cascode LNA with 22 db Gain

VLSI Technology Dr. Nandita Dasgupta Department of Electrical Engineering Indian Institute of Technology, Madras

Modeling of the SiGe power HBT IM Distortion

Silicon Bipolar High f T Low Noise Medium Power 12 Volt Transistors

High Power Performance InP/InGaAs Single HBTs

Data Sheet. AT Up to 6 GHz Medium Power Silicon Bipolar Transistor. Description. Features. 85 Plastic Package

The Effects of Geometrical Scaling on the Frequency Response and Noise Performance of SiGe HBTs

Copyright 2001 IEEE. Reprinted from IEEE MTT-S International Microwave Symposium 2001

A Transformer Feedback CMOS LNA for UWB Application

MP 4.3 Monolithic CMOS Distributed Amplifier and Oscillator

A Single-Chip 2.4-GHz Direct-Conversion CMOS Receiver for Wireless Local Loop using Multiphase Reduced Frequency Conversion Technique

6-18 GHz MMIC Drive and Power Amplifiers

Design and optimization of a 2.4 GHz RF front-end with an on-chip balun

SSCG with Hershey-Kiss modulation profile using Dual Sigma-Delta modulators

Design of the Low Phase Noise Voltage Controlled Oscillator with On-Chip Vs Off- Chip Passive Components.

2-6 GHz GaN HEMT Power Amplifier MMIC with Bridged-T All-Pass Filters and Output-Reactance- Compensation Shorted Stubs

Indium Phosphide and Related Materials Selectively implanted subcollector DHBTs

Evaluation of the Radiation Tolerance of Several Generations of SiGe Heterojunction Bipolar Transistors Under Radiation Exposure

V-band Self-heterodyne Wireless Transceiver using MMIC Modules

A COMPACT WIDEBAND MATCHING 0.18-µM CMOS UWB LOW-NOISE AMPLIFIER USING ACTIVE FEED- BACK TECHNIQUE

High Conversion Gain Q-band Active Sub-harmonic Mixer Using GaAs PHEMT

1-13GHz Wideband LNA utilizing a Transformer as a Compact Inter-stage Network in 65nm CMOS

2.8 - CMOS TECHNOLOGY

A Spline Large-Signal FET Model Based on Bias-Dependent Pulsed I V Measurement

AT Up to 6 GHz Medium Power Silicon Bipolar Transistor. Data Sheet

Resume. Research Experience Research assistant of electron-beam lithography system in inter-university semiconductor research center SNU)

22. VLSI in Communications

Updates on THz Amplifiers and Transceiver Architecture

Silicon Bipolar Low Noise Microwave Transistors

Characteristics of InP HEMT Harmonic Optoelectronic Mixers and Their Application to 60GHz Radio-on-Fiber Systems

A design of 16-bit adiabatic Microprocessor core

Up to 6 GHz Medium Power Silicon Bipolar Transistor. Technical Data AT Plastic Package

Integrated diodes. The forward voltage drop only slightly depends on the forward current. ELEKTRONIKOS ĮTAISAI

Analysis of 1=f Noise in CMOS Preamplifier With CDS Circuit

20 MHz-3 GHz Programmable Chirp Spread Spectrum Generator for a Wideband Radio Jamming Application

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 41, NO. 2, FEBRUARY A Regulated Charge Pump With Small Ripple Voltage and Fast Start-Up

High Performance Lateral Schottky Collector Bipolar Transistors on SOI for VLSI Applications

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination

PHYSICS OF SEMICONDUCTOR DEVICES

THE RAPID growth of wireless communication using, for

Gallium nitride (GaN)

In this lecture we will begin a new topic namely the Metal-Oxide-Semiconductor Field Effect Transistor.

Matched wideband low-noise amplifiers for radio astronomy

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY (DEEMED UNIVERSITY)

Cascadable Silicon Bipolar MMIC Amplifier. Technical Data MSA-0686

A UHF CMOS Variable Gain LNA with Wideband Input Impedance Matching and GSM Interoperability

Design of THz Signal Generation Circuits Using 65nm CMOS Technologies

A Triple-Band Transceiver Module for 2.3/2.5/3.5 GHz Mobile WiMAX Applications

Wafer-scale 3D integration of silicon-on-insulator RF amplifiers

Education on CMOS RF Circuit Reliability

Technology Overview. MM-Wave SiGe IC Design

A Millimeter-Wave LC Cross-Coupled VCO for 60 GHz WPAN Application in a 0.13-μm Si RF CMOS Technology

AN1509 APPLICATION NOTE A VERY HIGH EFFICIENCY SILICON BIPOLAR TRANSISTOR

An Oscillator and a Mixer for 140-GHz Heterodyne Receiver Front-End based on SiGe HBT Technology

THE positive feedback from inhomogeneous temperature

ISSCC 2006 / SESSION 11 / RF BUILDING BLOCKS AND PLLS / 11.9

Silicon Photonics in Optical Communications. Lars Zimmermann, IHP, Frankfurt (Oder), Germany

A Triple-Band Voltage-Controlled Oscillator Using Two Shunt Right-Handed 4 th -Order Resonators

4196 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 63, NO. 11, NOVEMBER 2016

N50. 1 GHz Low Noise Silicon MMIC Amplifier. Technical Data INA SOT-143 Surface Mount Package

M. Jagadesh Kumar and C.L. Reddy

WITH advancements in submicrometer CMOS technology,

Design of High Performance Lateral Schottky Structures using Technology CAD

WIDE-BAND circuits are now in demand as wide-band

Time Table International SoC Design Conference

WITH mobile communication technologies, such as longterm

A 16-GHz Ultra-High-Speed Si SiGe HBT Comparator

RECENTLY, the demand for millimeter-wave and monolithic. Wide-Tuning Range Si Bipolar VCO s Based on Three-Dimensional MMIC Technology

Gigahertz Ambipolar Frequency Multiplier Based on Cvd Graphene

CMOS Digital Integrated Circuits Lec 2 Fabrication of MOSFETs

THERE is currently a great deal of activity directed toward

Power Bipolar Junction Transistors (BJTs)

Evaluation of the Radiation Tolerance of SiGe Heterojunction Bipolar Transistors Under 24GeV Proton Exposure

Transcription:

114 SANG-HEUNG LEE et al : STRUCTURE-RELATED CHARACTERISTICS OF SIGE HBT AND 2.4 GHZ DOWN-CONVERSION MIXER Structure-related Characteristics of SiGe HBT and 2.4 GHz Down-conversion Mixer Sang-Heung Lee, Sang-Hoon Kim, Ja-Yol Lee, Hyun-Cheol Bae, Seung-Yun Lee, Jin-Yeong Kang, and Bo Woo Kim Abstract In this paper, the effect of base and collector structures on DC, small signal characteristics of SiGe HBTs fabricated by RPCVD was investigated. The structure of SiGe HBTs was designed into four types as follows: SiGe HBT structures which are standard, apply extrinsic-base SEG selective epitaxial growth (SEG), apply selective collector implantation (SCI), and apply both extrinsic-base SEG and SCI. We verified the devices could be applied to the fabrication of IC chip through a fully integrated 2.4 GHz down-conversion mixer. Index Terms SiGe, HBT I. INTRODUCTION Device characteristics of SiGe heterostructure bipolar transistor (HBT) such as cutoff frequency (f T ), maximum oscillation frequency (f max ) and minimum noise figure (NF min ) decisively depend on the base and collector structures as well as the process technique [1-6]. In general ultra high vacuum CVD (UHVCVD) process has been adopted for the SiGe research because of the purity-assisted improvement of device characteristics. However, low throughput and high cost of the UHVCVD becomes a barrier to be overcome at an industrial point of view, giving a chance to reduced pressure CVD (RPCVD) as an alternative. It also is well known that the base and collector structures of SiGe HBT influences the device characteristics to a great extent [7-9]. Thus we came to investigate the effects of the base and collector structures on the DC and characteristics of self-aligned SiGe HBTs fabricated by RPCVD. We verified the devices could be Manuscript received Apr. 15, 06; revised Jun. 7, 06. IT Conversion & Components Laboratory Electronics and Telecommunications Research Institute Daejon, Republic of Korea 5-0 E-mail : shl@etri.re.kr applied to the fabrication of IC chip through a fully integrated 2.4 GHz down-conversion mixer. II. STRUCTURED-BASED DESIGN AND FABRICATION OF SIGE HBT The SiGe HBT was shown in Fig. 1. Briefly, the buried layer was formed by implant and collector epitaxy. After buried layer formation, the active regions were delimited by field oxide () isolation and collectors were formed by implants. Successively, the p+ base and n- emitter were grown using our standard Epsilon One rapid thermal chemical vapor deposition (RPCVD) system. The thicknesses of the different epitaxial layers were determined by simulation, so as to avoid boron out-diffusion of the SiGe layer and formation of parasitic barriers during thermal annealing. And conventional titanium salicidation was adopted as an interconnection process for the sake of the reduction of contact resistance and in turn parasitic components. The structure of SiGe HBT was designed into N+ poly Si TiSix P+ Ex- N- N+ P+ SiGe (a) N- N+ Ion-imp. (c) N+ N- N+ Ex- SEG Ex- SEG (b) N- N+ N+ Ion-imp. (d) Fig. 1. Schematic view of SiGe HBT. (a) Structure-A (standard), (b) Structure-B (extrinsic-base SEG), (c) Structure-C (SCI), and (d) Structure-D (extrinsic-base SEG & SCI).

JOURNAL OF SEMICONDUCTOR TECHNOGY AND SCIENCE, VOL.6, NO.2, JUNE, 06 115 R5 VO4 VO5 R6 I B step = μa I B I C & I B Q8 Q9 Q10 Q11 V V Match Match Balun Balun Q6 L3 L4 Q7 0 0 0 0 0 5 β = 272, = 3μA 0.4 0.6 0.8 0 Fig. 2. Double-balanced mixer with matching and active balun circuits. four types as shown in Fig. 1. SiGe HBTs of Fig. 1 are standard structure (structure-a), structure applying extrinsic-base selective epitaxial growth (SEG) (structure-b) for improvement of f max, structure applying selective collector implantation (SCI) (structure-c) for improvement of f T, and structure applying both extrinsic-base SEG and SCI (structure-d) for improvement of f T and f max. We prepared 1-finger SiGe HBTs with the emitter size of x 6.0 μm 2. To make the most of the device, we designed and tested a fully integrated doubled-balanced mixer using Structure-A device, as shown in Fig. 2 [7]. Making use of HP 4145B parameter analyzer and HP 8510C network analyzer, we analyzed DC characteristics such as I-V curve and Gummel plots and small signal characteristics with scattering parameter, respectively. We evaluated the characteristics of fabricated IC chip using two power sources HP836B, HP83752B, and a spectrum analyzer HP8563E. III. RESULTS AND DISCUSSION All the structure showed an ideal I-V curve as shown in Fig. 3 where the BV CEO of Structure-A and -B was more than 3.3 volts while that of Structure-C and -D (including SCI) was 2.3 volts. Also typical Gummel plots were obtained with the current gain of 272, 463, 394, and 443 at Structure-A, -B, -C, and -D, respectively, as shown in Fig. 3. d on the measured scattering parameters, f T and f max of each structure were derived at several bias points as shown in Fig. 3. f T was higher at Structure-C (67 GHz) and -D (71 GHz) adopting SCI, because the critical current occuring Kirk effect was shifted toward high current. On the other hand f max was current I B step = μa I B 0 5 0.4 0.6 0.8 0 β = 463, = 589μA 0 0 0 I B step = μa 0 5 0 β = 394, = 228μA 0 0 0 (a) (b) (c) current I B 0.4 0.6 0.8 current 0 0 & I B & I B

116 SANG-HEUNG LEE et al : STRUCTURE-RELATED CHARACTERISTICS OF SIGE HBT AND 2.4 GHZ DOWN-CONVERSION MIXER Fig. 3. I-V characteristics, Gummel plots, current gain, and ft & fmax. (a) Structure-A (standard), (b) Structure-B (extrinsic-base SEG), (c) Structure-C (SCI), and (d) Structure-D (extrinsic-base SEG & SCI). higher at Structure-B (51 GHz) and -D (51 GHz) adopting extrinsic-base SEG, because increase of base thickness leaded to decrease of base resistance. Both f T and f max was higher at Structure-D adopting both SCI and extrinsic-base SEG. For (d) IF high-frequency /microwave operation, the design must be optimized so that f max as well as f T are as high as possible. Therefore, it can be said that the Structure-D is more effective to improve high frequency characteristics of SiGe HBT. To make the most of the device, for example we fabricated and tested a fully integrated 2.4 GHz doubled-balanced mixer shown in Fig. 2. Fig. 4 shows chip microphotograph of the fabricated mixer with 1.9 mm 1.2 mm, where is local oscillator input, is radio frequency input, and IF is intermediate frequency output. We obtained conversion gain of 13.1 db as shown in Fig. 5 when power of - dbm (with 2.45 GHz) and power of 0 dbm (with 2.35 GHz) were applied. Also, we obtained about IIP3 of 3.3 dbm as shown in Fig. 6 when two-tone input frequencies of 2.45 GHz and 2.46 GHz and input frequency of 2.35 GHz with power of 0 dbm was fixed and input frequencies were swept in the range of - dbm ~ +2 dbm. We verified the SiGe HBT could be used to design and fabricate IC chip. IF Output Power [dbm] 10 0-10 - - - - - Fundamental IM3 - Fig. 4. Chip microphotograph of the fabricated mixer. -80-35 - -25 - -15-0 5 10 Input Power [dbm] Fig. 6. 3rd intercept point characteristics of mixer. IV. CONCLUSIONS Fig. 5. Output spectrum of mixer. In this paper, the effect of base and collector structures on DC, small signal characteristics of SiGe HBTs fabricated by RPCVD was investigated. Both f T and f max was higher at Structure-D adopting both SCI and extrinsic-base SEG. Therefore, it can be said that the Structure-D is more effective to improve high frequency characteristics of SiGe HBT. Also, we fabricated and evaluated a fully integrated 2.4 GHz SiGe HBT mixer. From the measured result of the fabricated chip, we verified the SiGe HBT designed could be used to design and fabricate IC chip.

JOURNAL OF SEMICONDUCTOR TECHNOGY AND SCIENCE, VOL.6, NO.2, JUNE, 06 117 REFERENCES [1] John D. Cressler, SiGe HBT technology: a new contender for Si-based and microwave circuit applications, IEEE Trans. on Microwave Theory and Techniques, vol. 46, no. 5, pp.572~589, May 1998. [2] Baojun Li, et al., Silicon-germanium microphotonic switches, Journal of the Korean Physical Society, vol. 46, no. 5, pp.s19~s23, May 05. [3] Jonathan P. Comeau, et al., An 8.4-1 GHz downconversion mixer implemented in SiGe technology, IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in Systems, pp. 13-16, Sept. 04. [4] Guofu Nui, et al., Noise modeling and SiGe profile design tradeoffs for applications, IEEE Trans. on Electron Devices, vol. 47, no. 11, pp.37~44, Nov. 00. [5] Jong-Min Lee, et al., Design and fabrication of wideband transimpedance amplifier by using InGaAs/InP HBT technology, Journal of the Korean Physical Society, vol. 45, no. 12, pp.s906~s908, Dec. 04. [6] Ja-Yol Lee, et al., Fully differential 5-GHz LC-tank VCOs with improved phase noise and wide tuning range, ETRI Journal, vol. 27, no. 5, pp.473~483, Oct. 05. [7] Sang-Heung Lee, et al., Monolithic SiGe up-/downconversion mixers with active baluns, ETRI Journal, vol. 27, no. 5, pp.569~578, Oct. 05. [8] Hyung S. Yoon, DC and characteristics of InAlAs/InGaAs/InP pseudomorphic HEMTs recessed by succinic acid/h 2 O 2, Journal of the Korean Physical Society, vol. 45, no. 12, pp.s594~s597, Dec. 04. [9] William E. Ansley, et al., -profile optimization for minimum noise figure in advanced UHV/CVD SiGe HBTs, IEEE Trans. on Microwave Theory and Techniques, vol. 46, no. 5, pp. 653-6, May 1998. Sang-Heung Lee received the B.S., M.E., and Ph. D. degrees in department of electronics engineering from Chung nam National University, Daejon, Korea, in 1988, 1992, and 1998, respectively. From 1998 to 1999, he held a position as a post-doctorial researcher at Electronics and Telecommunications Research Institute, Korea. Since July 1999, he has been working as a senior member of research staff at Electronics and Telecommunications Research Institute, Korea. His research interests include radio frequency integrated circuits design and high speed digital communication circuits design, semiconductor device modeling, and SPICE parameter extraction and optimization. He is a member of IEEK, KICS, and KEES. At present, he is a director of SiGe circuit team. Sang-Hoon Kim received his B.S. and M.S. degrees from Hong-ik University, Seoul, Korea in 1995 and 00 respectively, both in material science engineering. Since 00, as a Member of Engineering Staff, he has been with SiGe circuit team at the Electronics and Telecommunications Research Institute (ETRI). His current research interests include Si/SiGe epitaxy technology by CVD, BiCMOS process integration, and Si/SiGe terahertz quantum cascade emitter. Ja-Yol Lee received the B.E. degree from Konkuk university, Seoul, Korea, in 1998, and the M.E. and Ph. D. degrees in electronics engineering from Chungnam National Univerity, Daejeon, Korea, in 00 and 05, all in electronics engineering. Since 01, he has been with ETRI, where he has been working as & analog circuit designer. His research interests are PLL, IC and OEIC design, semiconductor device modeling, and SPICE parameter extraction and optimization. He is a member of KICS and KEES. Hyun-Cheol Bae received the B.E., M.S. degrees from Dongguk university, Seoul, Korea, in 1999 and 01, respectively. He joined the Electronics and Telecom munications Research Institute (ETRI) at Daejeon in 01. He has been working on the development of SiGe devices and circuits. His current interests are SiGe BiCMOS IC design and passive devices.

118 SANG-HEUNG LEE et al : STRUCTURE-RELATED CHARACTERISTICS OF SIGE HBT AND 2.4 GHZ DOWN-CONVERSION MIXER Seung-Yun Lee received the B.S., M.S., and Ph.D degrees in materials science and engineering from Korea Advanced Institute of Science and Technology, Daejeon, Korea, in 1994, 1996, and 1999, respectively. Since September 1999, he has been working as a senior member of research staff at Electronics and Telecommunications Research Institute, Korea. His research interests include fabrication and characterization of SiGe devices, Cu metallization process for interconnects, deposition methods of thin films, and universal thin film phenomena. Jin-Yeong Kang received the M.E. and Ph. D. degrees in Physics from Korea Advanced Institute of Science and Technology, in 1979 and 1991, respec tively. He joined the Electronics and Telecommunications Research Institute (ETRI) at Daejeon in 1979. He has been working on the development of SiGe devices and processes. Bo Woo Kim received the B.S. and M.S. degrees in physics from Busan National University, in 1975 and 1978, respect tively. From 1978 to 1981, he served as a Research Engineer at Samsung Semiconductor Inc., Korea, where he worked on process integration and characterization of MOS devices. Since 1981, he has been with the Electronics and Telecommunications Research Institute (ETRI), Korea. He worked on the development of high-density MOS technology, high-speed bipolar technology, and BiCMOS technology. Also, he has been responsible for developing the unit and modular process to improve small-geometry devices, and played a leading role in the development of advanced process and equipment for VLSI devices. His research interests are thinfilm characterization and hot-carrier effect phenomena. From July 1989 to 1987, he researched an evaluation method of electron and hole traps in dielectric film at Tokyo University, Japan, as a foreign researcher.