INSPECTION OF THERMAL BARRIERS OF PRIMARY PUMPS WITH PHASED ARRAY PROBE AND PIEZOCOMPOSITE TECHNOLOGY

Similar documents
CIRCULAR PHASED ARRAY PROBES FOR INSPECTION OF SUPERPHOENIX STEAM GENERATOR TUBES

Table 1 The wheel-set security system of China high-speed railway

Optimized Semi-Flexible Matrix Array Probes for Large Rotor Shafts and DGS Sizing Diagram Simulation Tool

Transducer product selector

ULTRASONIC GUIDED WAVES FOR AGING WIRE INSULATION ASSESSMENT

CIRCULAR LAMB AND LINEAR SHEAR HORIZONTAL GUIDED WAVE ARRAYS FOR STRUCTURAL HEALTH MONITORING

Basic functions of the universal flaw detector GEKKO

1. Introduction. 2. Mobile Ultrasonic Inspection System MUSE

Application of Ultrasonic Guided Waves for Characterization of Defects in Pipeline of Nuclear Power Plants. Younho Cho

Development of Under-Sodium Inspection Technique Using Ultrasonic Waveguide Sensor. FR13 4 ~ 7 Mar Paris, France

Developments in Ultrasonic Phased Array Inspection III

Passive Polymer. Figure 1 (a) and (b). Diagram of a 1-3 composite (left) and a 2-2 composite (right).

An Overview Algorithm to Minimise Side Lobes for 2D Circular Phased Array

DESIGN & VALIDATION OF A SEMI-FLEXIBLE PAUT PROBE FOR THE MANUFACTURING INSPECTIONS OF LARGE FORGED ROTORS

DACON INSPECTION SERVICES. Phased Array Ultrasonic Testing

Generation Laser Scanning Method for Visualizing Ultrasonic Waves Propagating on a 3-D Object

Principles and Applications of Air-Coupled Ultrasonics. Joe Buckley, Sonatest Plc

12/26/2017. Alberto Ardon M.D.

A PHASED ARRAY ULTRASONIC TESTING OF A MANUAL THICK AUSTENITIC WELD FEEDBACK

Easy Ultrasonic Phased Array Inspection of Corrosion - Resistant Alloys and Dissimilar Weld Materials

Keywords: Ultrasonic Testing (UT), Air-coupled, Contact-free, Bond, Weld, Composites

High-Resolution Corrosion Monitoring for Reliable Assessment of Infrastructure

Phased Array&TOFD Probes

Abstract. 1 Introduction. 1.2 Concept. 1.1 Problematic. 1.3 Modelling

ULTRASONIC GUIDED WAVE ANNULAR ARRAY TRANSDUCERS FOR STRUCTURAL HEALTH MONITORING

ISO INTERNATIONAL STANDARD. Non-destructive testing Ultrasonic thickness measurement

CONTACT LASER ULTRASONIC EVALUATION OF CONSTRUCTION MATERIALS

Testing of Buried Pipelines Using Guided Waves

Ultrasonic Guided Waves for NDT and SHM

Ultrasonic Linear Array Medical Imaging System

Penn State University ESM Ultrasonics R&D Laboratory Joseph L. Rose Research Activities

Ultrasonic Guided Wave Testing of Cylindrical Bars

EMAT Application on Incoloy furnace Tubing Ramamohan Reddy M (ASNT Level III UT, PCN Level III UT,PAUT&TOFD)

Professor Emeritus, University of Tokyo, Tokyo, Japan Phone: ;

Equipment for Attenuation and velocity of ultrasound in solid state materials (transmission), experimental set-up

Ultrasonic Guided Wave Applications

Considerations on Linear Phased Array transducers with Circular Crystals ECNDT Prague 2014

Attenuation and velocity of ultrasound in solid state materials (transmission)

A Breakthrough in Sputtering Target Inspections: Ultra-High Speed Phased Array Scanning with Volume Focusing

High Frequency Ultrasonic Systems with Frequency Ranges of 35 to 200 MHz

A New Lamb-Wave Based NDT System for Detection and Identification of Defects in Composites

Fig. 1 Feeder pipes in the pressurized heavy water reactor.

Ultrasound Beamforming and Image Formation. Jeremy J. Dahl

Design, Development and Characterization of. Wideband Polymer Ultrasonic Probes. for Medical Ultrasound Applications. A Thesis

Ultrasound Redefined. Ultrasonic Transducers

ULTRASONIC GUIDED WAVE FOCUSING BEYOND WELDS IN A PIPELINE

Piezoelectric Fiber Composite Ultrasonic Transducers for Guided Wave Structural Health Monitoring

Multiple crack detection of pipes using PZT-based guided waves

Ultrasonic sensors in subsea oil & gas production current use and opportunities

Virtual ultrasound sources

Lesson 02: Sound Wave Production. This lesson contains 24 slides plus 11 multiple-choice questions.

The Development of Laser Ultrasonic Visualization Equipment and its Application in Nondestructive Inspection

Adhesive Thickness Measurement on Composite Aerospace Structures using Guided Waves

Structural Integrity Monitoring using Guided Ultrasonic Waves

NDI Techniques Supporting Steel Pipe Products

Time Reversal FEM Modelling in Thin Aluminium Plates for Defects Detection

Novel Approach to Make Low Cost, High Density PZT Phased Array and Its Application in Structural Health Monitoring

Developments in Electromagnetic Inspection Methods I

University of Warwick institutional repository: A Thesis Submitted for the Degree of PhD at the University of Warwick

DEFECT SIZING IN PIPE USING AN ULTRASONIC GUIDED WAVE FOCUSING TECHNIQUE

SonaFlex. Set of Portable Multifunctional Equipment for Non-contact Ultrasonic Examination of Materials

Investigation of interaction of the Lamb wave with delamination type defect in GLARE composite using air-coupled ultrasonic technique

MultiScan MS Tube Inspection System. Multi-technology System Eddy Current Magnetic Flux Leakage Remote Field IRIS Ultrasound

MultiScan MS Tube Inspection System. Multi-technology System Eddy Current Magnetic Flux Leakage Remote Field IRIS Ultrasound

LASER GENERATION AND DETECTION OF SURFACE ACOUSTIC WAVES

3. Ultrasound Imaging(2)

A Wire-Guided Transducer for Acoustic Emission Sensing

Application of Ultrasonic Guided Wave to Heat Exchanger Tubes Inspection

Measurement of phase velocity dispersion curves and group velocities in a plate using leaky Lamb waves

Curved arrays for improved horizontal sizing in small pipe welds

Simulation of Ultrasonic Testing of Rail Wheel Face using Phased Array and DDF technique

GUIDELINES FOR THE APPLICATION OF TIME-OF-FLIGHT DIFFRACTION (TOFD) AND PHASED ARRAY ULTRASONIC TESTING (PAUT) TECHNIQUES

PIEZOELECTRIC WAFER ACTIVE SENSORS FOR STRUCTURAL HEALTH MONITORING STATE OF THE ART AND FUTURE DIRECTIONS

Properties of Interdigital Transducers for Lamb-Wave Based SHM Systems

Piezoelectric transducer excitation for guided waves propagation on pipeline with flexural wave modes

IMAGING OF DEFECTS IN CONCRETE COMPONENTS WITH NON-CONTACT ULTRASONIC TESTING W. Hillger, DLR and Ing. Büro Dr. Hillger, Braunschweig, Germany

THE ANALYSIS OF ADHESIVE BONDS USING ELECfROMAGNETIC

GOOCH & HOUSEGO NOVEL OPTICAL COMPONENTS FOR THE IR

Developments in Ultrasonic Phased Array Inspection I

An Investigation into the Performance of Complex Plane Spilt Spectrum Processing Ultrasonics on Composite Materials

18th World Conference on Nondestructive Testing, April 2012, Durban, South Africa. Joanna X.Qiao 1, Matthias Jobst 2

Guided wave based material characterisation of thin plates using a very high frequency focused PVDF transducer

Operation and Sound Field of an Ultrasonic Biplane-Array

PRIMARY LOOP ACOUSTIC EMISSION PROCEDURE: AN UPGRADED METHOD AND ITS CONSEQUENCES ON THE IN-SERVICE-INSPECTION

Air Coupled Ultrasonic Inspection of Steel Rubber Interface

Long Range Guided Wave Monitoring of Rail Track

The Application of TOFD Technique on the Large Pressure Vessel

Simulation of ultrasonic guided wave inspection in CIVA software platform

Random Thinning of Segmented Annular Arrrays

New Multi-Technology In-Line Inspection Tool For The Quantitative Wall Thickness Measurement Of Gas Pipelines

Linear arrays used in ultrasonic evaluation

DEEP PENETRATING EDDY CURRENT for DETECTING VOIDS in COPPER

Sonotron NDT 4, Pekeris str., Rabin Science Park, Rehovot, 76702, Israel. Portable Ultrasonic Phased Array Flaw Detector and Recorder

A Turnkey Weld Inspection Solution Combining PAUT & TOFD

ULTRASONIC IMAGING of COPPER MATERIAL USING HARMONIC COMPONENTS

Application of Guided Wave Technology to Tube Inspection

NEW LASER ULTRASONIC INTERFEROMETER FOR INDUSTRIAL APPLICATIONS B.Pouet and S.Breugnot Bossa Nova Technologies; Venice, CA, USA

PVP PVP

Modelling Probe Wedge and Pipe Geometry as Critical Parameters in Pipe Girth Weld Ultrasonic Inspections Using Civa Simulation Software

Spectral Distance Amplitude Control for Ultrasonic Inspection of Composite Components

Transcription:

INSPECTION OF THERMAL BARRIERS OF PRIMARY PUMPS WITH PHASED ARRAY PROBE AND PIEZOCOMPOSITE TECHNOLOGY J. Poguet Imasonic S.A. France E. Abittan EDF-GDL France Abstract In order to meet the requirements of thermal barrier inspection applications on primary pumps devised for nuclear power plants, a phased array transducer has been specially designed. It implements innovative solutions. The aim is to use focusing and electronic deflection to scan the whole potential defect area in the best possible resolution conditions, while simplifying as much as possible the mechanical motions of the probe that will be installed in a difficulty accessible area. The sensor especially uses an original active part that is shaped so as to focus through a very pronounced toric interface as well as a wedge in elastomer material, allowing outstanding coupling with the part to be inspected and easier implementation. Thanks to their acoustical and mechanical properties Piezo-composite materials are the basis of this multi-element transducer. Introduction Several thermal fatigue cracks appeared on some thermal barriers of primary pumps of 900 MW nuclear pressurised light water reactor, and Electricite de France (EDF) decided to define a global maintenance strategy.

The defects had to be detected and sized from the cylinder-torus interface in a narrow space between flange and motor bearing (see figure 1). The feasibility study has shown that ultrasonic inspection with the hydraulics remaining in place was possible, without removing the impeller and the whole bearing and gaskets. In this stage, materials, accessibility and shape of the flange, single crystal transducers as well as phased arrays were taken into account and tested. figure 1. cracks to be detected Inspection technique For the inspection of the fitting zone, a pulse Echo technique with 0 longitudinal waves (LW) was chosen. Two movements were necessary to cover the whole inspection zone (360 circumferential and 13 radial sweep) and to produce some UT-imaging. (see figure 2) The zone to be inspected is of austenitic forged materials and can also includes anisotropic parties which can generate some dispersion on the echo-dynamic curves. The flange material is an austenitic forged steel with good homogeneity. But due to the heavy thickness we have observed on some components a local anisotropy than can modify the propagation of ultrasonic waves and need different echo-dynamic curves. Considering the features of this inspection, a phased array transducer has been developed by IMASONIC.

The necessary radial sweep θ (see figure 2) for the inspection is electronically performed with a Phased Array transducer. In this way, we obtain a scanning angle that is larger than with mechanical scanning, while simplifying the complex mechanical device to be positioned in the available space. Circumferential scanning φ is a mechanical scanning process. The Phased Array technique also offers the possibility to focus at different depths for the detection of defects in different areas (see figure 1). Better steering of the beam can also compensate some effects due to the anisotropy of materials. figure 2. scanning angles The piezocomposite technology The phased array probe is designed including a piezocomposite material.

figure 6. Schematic representation of a piezo-composite plate with a 1-3 structure - After W.A. SMITH The structure of these materials, illustrated on figure 6, is made up of thin ceramic rods (which present a mechanical continuity following one dimension of the space) embedded into a polymer matrix (which presents a mechanical continuity following three dimensions of the space). Used as plates and equipped of electrodes on their main sides, these materials have many advantages compared to piezo-electrical transducers generally used in the field of Non Destructive Testing. Beyond the properties and characteristics described in table 1 below, piezo-composite materials feature mechanical properties that allow them to be shaped so as to generate focused ultrasonic beams or allowing them to withstand high mechanical or thermal constraints. table 1.Comparative chart of the electroacoustical properties for different piezoelectrical materials Material Lead metanobiate PZT Lead zirco-titanate PVDF PVDF TrFE 1-3 composite Acoustical impedance (Mray) 20 30-32 4.5 8-12 Coupling coefficient 0.3 0.45-0.5 0.2-0.3 0.5-0.7 Dielectric constant Density (g/cm3) 300 250-2000 6 200-600 6.2 7.8 2 3.5-4

The various performance results shown above are used for designing and manufacturing the phased array probe that is described below. Multi-element probe definition The phased array probe has had to be designed to take into account various performance objectives and a certain number of constraints. Inspection resolution The defects to be detected and sized are located at approximately 200 mm from the area that is accessible to the probe. A crack must be detected systematically if it is longer than 5 mm in the radial plane of the flange, and it must extend up to at least 20 mm (more if possible) with a 5-mm accuracy. Taking into account the sound path and the materials to be inspected (austenitic forged materials), a maximum operating frequency of 2 MHz is defined. At this frequency, and given that little space is available for the probe, the largest possible active part should be used to reach the resolution objectives. In addition, as the inspection operation will be done through a toric interface with a highly defocusing effect (r=50mm & R=400mm), an aspheric active part should be used, that was made up for this purpose. The probe uses an active part with approximate dimensions of 50x55 mm, that mechanically focuses through the toric interface at a depth of 200 mm and axially at 20 mm from the starting point of the cracks to be detected (see figure 4).

figure 4. Aspherical active surface In such conditions, the simulated lateral resolution is 13 mm in the radial plane and 15 mm in the circumferential plane. The defect scanning area, in good conditions, spreads up to 40 mm from their starting point. The piezo-composite technology used has been used to directly shape the active part. Inspection sensitivity Given the distance between the probe and the defects, in a material that does not facilitate the transmission of ultrasounds, it is essential that maximum energy be transmitted from the probe to the part to be inspected. This energy is maximised at various levels. The electro-acoustical efficiency of the probe itself has been maximised thanks to the performance level of the piezo-composite material selected and the electrical adaptation of impedance, that could be built into the probe s body. The power transmission has also been studied by maximising the coupling solution on the part to be inspected. For this purpose, the probe incorporates a wedge in soft elastomer material that perfectly matches the toric profile of the inspection area. In addition, this material has an acoustical impedance that is close to that of water,

which reduces the influence of potential thickness irregularities on the water film between the wedge and the part. Signal to noise ratio The high electroacoustical output of the active piezo-composite part helps to obtain the good signal-to-noise ratio that is required for inspection. To restrict as much as possible the structure noise resulting from the materials to be inspected, the probe s damping has also been maximised in order to reduce the length of emitted impulses as much as possible. Electronic beam steering figure 5.Delay laws calculation software Given the electronic environment in which the probe should be built, the number of elements has been set to 16. As the active part should the widest possible so as to reach the lateral resolution objectives, its size has dictated the inter-element pitch dimension. Given the operating frequency, the environment to be inspected and the probe s interelement pitch, we could anticipate the presence of grating lobes in the part to be inspected. In order restrict as much as possible the level of these lobes and reach the electronic deflection objectives in good conditions, the probe was designed so as to have the widest possible bandwidth. As the active part geometry is complex, a software program was developed with the probe in order to calculate the delay laws required for the electronic steering of the probe.

Transducer characterisation In order to validate the coherence between the sensor s inherent performance and the performance level that was simulated during the design stage, it has been characterised element by element in a first stage. The centre frequency, bandwidth and pulse length were measured in emission/reception on a infinite plane target in water. The inter-element coupling and impedance were measured using a network analyser. The following results were obtained: Centre frequency : 2 MHz Pulse length (-20dB) : 1.3 µs Bandwidth in T/R mode (-6dB) : 70% Cross coupling : -35 to 40 db Overall performance Then the sensor was characterised on a scale-1 model of the part to be inspected. The results obtained were recorded, all elements being excited in parallel, without applying any delay laws: The beam profile is quasi-cylindrical. At the mechanical focal distance, i.e. 200 m, the lateral resolution is: 12 x 13 mm. At the acoustical focal distance, measured at 170 mm, the lateral resolution is: 11 x 12 mm. The sensor being then steered with the appropriate delay laws, all defects that were looked for could be detected. Its implementation and use without mechanical scanning turned out to be fast and easy. Conclusion The results obtained were satisfactory and are coherent with simulations. The targeted improvements for the next probes concern signal-to-noise ratio and lateral resolution to size smaller defects. A second inspection technique is also considered with Symmetrical Tandem TOFD.

References 1. W.Arden Smith. Piezo-composite materials for acoustical imaging transducers. 21st International symposium on acoustical imaging, March 1994 2. E.Abittan, EDF GDL. A. Dochy, Jeumont Industries. T.Allart, Framatome. H Malletguy,CTE Nordest. Ultrasonic Inspection of the primary pump thermal barrier flange. ECNDT CongresS, May 1998.