ELEC 2210 EXPERIMENT 7 The Bipolar Junction Transistor (BJT)

Similar documents
EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT

ELEC 2210 EXPERIMENT 8 MOSFETs

ECE 334: Electronic Circuits Lecture 2: BJT Large Signal Model

Chapter 3: Bipolar Junction Transistors

.dc Vcc Ib 0 50uA 5uA

Exercises 6.1, 6.2, 6.3 (page 315 on 7 th edition textbook)

Lecture 24: Bipolar Junction Transistors (1) Bipolar Junction Structure, Operating Regions, Biasing

Experiment 9 Bipolar Junction Transistor Characteristics

Bipolar Junction Transistors

Communication Microelectronics (W17)

7. Bipolar Junction Transistor

COE/EE152: Basic Electronics. Lecture 5. Andrew Selasi Agbemenu. Outline

Başkent University Department of Electrical and Electronics Engineering EEM 214 Electronics I Experiment 8. Bipolar Junction Transistor

STATIC CHARACTERISTICS OF TRANSISTOR

The collector terminal is common to the input and output signals and is connected to the dc power supply. Common Collector Circuit

Electronics EECE2412 Spring 2017 Exam #2

Physics of Bipolar Transistor

ชาว ศวกรรมคอมพ วเตอร คณะว ศวกรรมศาสตร มหาว ทยาล ยเทคโนโลย ราชมงคลพระนคร

Lecture 12. Bipolar Junction Transistor (BJT) BJT 1-1

ECE321 Electronics I Fall 2006

Early Effect & BJT Biasing

C H A P T E R 6 Bipolar Junction Transistors (BJTs)

The Common Emitter Amplifier Circuit

Chapter 3. Bipolar Junction Transistors

Laboratory #5 BJT Basics and MOSFET Basics

Bipolar Junction Transistors (BJTs)

Bipolar Junction Transistors (BJTs) Overview

ET215 Devices I Unit 4A

Chapter 4 DC Biasing BJTs. BJTs

Concepts to be Covered

Analog Circuits Prof. Jayanta Mukherjee Department of Electrical Engineering Indian Institute of Technology - Bombay

Lab 3: BJT Digital Switch

EXPERIMENT 6 REPORT Bipolar Junction Transistor (BJT) Characteristics

Analog Electronics. Electronic Devices, 9th edition Thomas L. Floyd Pearson Education. Upper Saddle River, NJ, All rights reserved.

ELEC 2210 EXPERIMENT 12 NMOS Logic

Lab 2: Discrete BJT Op-Amps (Part I)

4.1.3 Structure of Actual Transistors

Some frequently used transistor parameter symbols and their meanings are given here.

Chapter 5 Transistor Bias Circuits

Chapter 3 Bipolar Junction Transistors (BJT)

PHY405F 2009 EXPERIMENT 6 SIMPLE TRANSISTOR CIRCUITS

Figure1: Basic BJT construction.

Laboratory 4: Biasing of Bipolar Transistors Laboratory Exercises

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 2 (CONT D - II) DIODE APPLICATIONS

Transistor Biasing and Operational amplifier fundamentals. OP-amp Fundamentals and its DC characteristics. BJT biasing schemes

Dr. Charles Kim ELECTRONICS I. Lab 5 Bipolar Junction Transistor (BJT) I TRADITIONAL LAB

Chapter 6: Transistors and Gain

Introduction PNP C NPN C

5.25Chapter V Problem Set

ECEN 325 Lab 7: Characterization and DC Biasing of the BJT

BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING. Analog Electronics: Bipolar Junction Transistors

Bipolar Junction Transistor (BJT)

ELEG 309 Laboratory 4

BJT Characteristics & Common Emitter Transistor Amplifier

The Bipolar Junction Transistor- Small Signal Characteristics

ITT Technical Institute. ET215 Devices 1. Unit 6 Chapter 3, Sections

14. Transistor Characteristics Lab

The George Washington University School of Engineering and Applied Science Department of Electrical and Computer Engineering ECE 20 - LAB

I C I E =I B = I C 1 V BE 0.7 V

Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Department of Mechanical Engineering

Experiment #6: Biasing an NPN BJT Introduction to CE, CC, and CB Amplifiers

Experiment # 4: BJT Characteristics and Applications

The shape of the waveform will be the same, but its level is shifted either upward or downward. The values of the resistor R and capacitor C affect

Laboratory 6 Diodes and Transistors

Electronic Troubleshooting

UNIVERSITY OF UTAH ELECTRICAL ENGINEERING DEPARTMENT

PHYS 3152 Methods of Experimental Physics I E2. Diodes and Transistors 1

b b Fig. 1 Transistor symbols

6.3 BJT Circuits at DC

Experiment No. 6 Output Characteristic of Transistor

CHAPTER 3: BIPOLAR JUNCION TRANSISTOR DR. PHẠM NGUYỄN THANH LOAN

5.1 BJT Device Structure and Physical Operation

Chapter Two "Bipolar Transistor Circuits"

Field Effect Transistors

ESE319 Introduction to Microelectronics BJT Intro and Large Signal Model

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING III SEMESTER EC 6304 ELECTRONIC CIRCUITS I. (Regulations 2013)

Lecture 3: Transistors

Transistors and Applications

BJT. Bipolar Junction Transistor BJT BJT 11/6/2018. Dr. Satish Chandra, Assistant Professor, P P N College, Kanpur 1

Analog Circuits Part 2 Semiconductors

Bipolar Junction Transistor (BJT) Basics- GATE Problems

Lecture (09) Bipolar Junction Transistor 3

Experiment #8: Designing and Measuring a Common-Collector Amplifier

Electronics II Lecture 2(a): Bipolar Junction Transistors

Lecture 9 Transistors

Physics 481 Experiment 3

Experiment No. 9 DESIGN AND CHARACTERISTICS OF COMMON BASE AND COMMON COLLECTOR AMPLIFIERS

Lecture Note on Switches Marc T. Thompson, 2003 Revised Use with gratefulness for ECE 3503 B term 2018 WPI Tan Zhang

ANALYSIS OF AN NPN COMMON-EMITTER AMPLIFIER

EIE209 Basic Electronics. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: T ransistor devices

Carleton University ELEC Lab 1. L2 Friday 2:30 P.M. Student Number: Operation of a BJT. Author: Adam Heffernan

Tutorial 2 BJTs, Transistor Bias Circuits, BJT Amplifiers FETs and FETs Amplifiers. Part 1: BJTs, Transistor Bias Circuits and BJT Amplifiers

Bipolar junction transistors.

Mechatronics and Measurement. Lecturer:Dung-An Wang Lecture 2

ECE 310 Microelectronics Circuits

การไบอ สทรานซ สเตอร. Transistors Biasing

UNIT-1 Bipolar Junction Transistors. Text Book:, Microelectronic Circuits 6 ed., by Sedra and Smith, Oxford Press

ELECTRONICS LAB. PART 3

Emitter base bias. Collector base bias Active Forward Reverse Saturation forward Forward Cut off Reverse Reverse Inverse Reverse Forward

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

Transcription:

ELEC 2210 EXPERIMENT 7 The Bipolar Junction Transistor (BJT) Objectives: The experiments in this laboratory exercise will provide an introduction to the BJT. You will use the Bit Bucket breadboarding system to build and test several DC transistor circuits. The objectives of this experiment include the following: Reinforce basic principles of BJTs from ELEC 2210 Gain an understanding of BJT switching circuits Gain more experience with the Bit Bucket breadboarding system Continue to develop professional lab skills and written communication skills. Introduction A thorough treatment of BJTs can be found in Chapter 5 of the ELEC 2210 textbook, Microelectronics Circuit Design by R.C. Jaeger. The acronym BJT stands for Bipolar Junction Transistor. BJTs are circuit elements that allow control of a working current by applying a control voltage. They are used primarily in switching circuits and amplifiers. This experiment will focus on the switching applications. BJTs can be npn or pnp type. The BJT studied in this experiment is the 2N3904, which is an npn BJT with a maximum working current of 200 ma and a maximum power dissipation of 625 mw. The standard circuit symbol and notation for this type of transistor is shown in Fig. 1(a). The PSPICE circuit symbol is shown in Fig. 1(b). E (a) B (b) i B C i E i C Figure 1. Circuit symbols and nomenclature for BJTs. (a) npn (b) pnp. Current conventions shown are those used in the textbook. However, PSPICE uses a different convention in which all currents are defined to be entering the device terminals. There are three terminals indicated on the circuit symbols: C = collector, E = emitter, and B = base. 1

The commonly-used models of the npn BJT (not including breakdown or leakage currents) for the three most common operating regions are given in Table 1: Table 1. Models of the npn BJT. Region Condition(s) Equation(s) Cutoff Both junctions reversebiased ic = ie = ib = 0 V v T 1 CE ic = ISe + V EBJ forward biased* A Forward Active CBJ reverse biased* ic v where 1 CE ib = βf = βfo + βf VA ie = ic + ib = ib(1 + βf) vbe 0.75 V, vbc 0.70 V, vce 0.05 V Both junctions forward- Saturation i biased β C forced < βf ib *EBJ = emitter-base junction, CBJ = collector-base junction In these equations, there are three device parameters: I S is the saturation current, which is proportional to the cross-sectional area of the base region. β Fo is the forward current gain parameter. This is commonly denoted h FE on data sheets. V A is the Early voltage. It determines the slope of the BJT output curves in the forward active region. For an ideal device, V A is infinity. The output characteristics of a BJT with β Fo = 25 and V A = are shown in Fig. 2. v BE Figure 2. Example npn BJT output characteristics and operating regions. 2

For each curve, the forward active region is the region to the right of the knee, i.e., the nearly flat part. The region to the left of the knee is the saturation region. For switching applications, the BJT is most like a closed switch when it is in the saturation region, where v CE is small. It is most like an open switch when it is in cutoff, with i C = 0. A BJT is often used as a current-controlled switch, as illustrated in Fig. 3 Load V CC i IN + v BE i C + v CE Figure 3. BJT switching circuit. When the input current is sufficiently large, the BJT saturates, and current flows through the load. When the input current is zero, the BJT is in cutoff, and no current flows. For most switching applications, the BJT is operated in the saturation region when it is conducting current. In this region, the voltage drop across the BJT collector-emitter terminals is small, as desired. The amount of load current in this case is determined by the value of V CC and the load characteristics, and is essentially independent of i IN or the BJT characteristics. Pre-Lab: (1) Obtain the data sheet for the 2N3904 MOSFET from the class web site, or from http://www.fairchildsemi.com/ds/2n/2n3904.pdf Use this to determine the maximum allowed values of the collector current, the collectoremitter voltage, and the power dissipation. Also determine the range of values of forward current gain (β Fo, also known as h FE ). (2) From the data you found in (1), what is the maximum allowed collector current if V CE = 15 V? If V CE = 5 V? Express your results in ma. What are the smallest and largest values of expected base current if the BJT is operating in the forward active region with I C = 10 ma. Express your answers in μa. (Prelab continues on next page) 3

(3) In which region should the BJT be operating when it is a closed switch? Why? In which region should it be operating when it is an open switch? Why? Lab Exercise: There are 3 parts. Have your GTA sign off on each part before proceeding to the next one. (1) Curve tracer measurement of transistor β. Obtain a 2N3904 BJT, a 330 Ω, ¼-Watt resistor, and a 200 kω, ¼-Watt resistor. Measure the resistor values using a DMM. Using the data sheet as a guide, identify the collector, base, and emitter terminals of the transistor. Measure the β of your transistor using the curve tracer. Take a digital photograph of the curve tracer display to include in your report. (2) I C vs. V CE for constant base current Connect the circuit shown in Fig. 4 to measure I C vs. V CE with I B held constant. Proceed as follows: Set the Variable DC source to the Minimum position. Set the DMM to the ma position, and be sure to use the correct input jacks. Turn on the Bit Bucket power. Use the DVM on the Bit Bucket to measure the voltage drop across R B, and thereby determine I B. This value will not change during Part 1. Reconnect the DVM to measure V CE (+ input to collector, input to emitter). Increase the Variable DC source (V CC ) slowly up to its maximum, while observing I C on the DMM. The value of I C should reach a maximum in the range of 3 ma to 6 ma and V CE should reach about 13 to 14 V when the Variable DC source is turned all the way up. If your readings are not in this range, stop, check your connections, and if necessary ask for help. With V CC still at its maximum value, temporarily reconnect the the DVM to measure both transistor junction voltages, V BE and V BC. Record these values. Do they agree with your expectations? (See Table 1. Hints the BJT is in the forward active region. This is an npn transistor. A forward-biased p-n junction will have about 0.40 to 0.80 volts across it, measured from the p-side to the n-side. A reversebiased p-n junction will have a lower voltage, including zero or negative values, measured from the p-side to the n-side 1.) 1 The term "reverse-biased" is often used somewhat loosely in electronics to refer to a junction that is not forward biased and thus not carrying significant current. 4

With V CC still at its maximum value, calculate and record the dc current gain, h FE = I C / I B. Compare this to the value measured in Part 1 on the curve tracer. Reconnect the DVM to measure V CE. Record I C vs. V CE for a number of data points over the full range of V CC. Start at the maximum value and work your way down, incrementally reducing V CC. At some relatively low value of V CE, there will be a very rapid drop-off of current ( knee ), as shown in Fig. 2. This knee is the transition from the forward active region to the saturation region. Try to capture enough data to get a good smooth plot, including this knee point. When you are fairly certain you have rounded the knee and entered saturation (V CE 0.1 V), use the DVM to once again measure the junction voltages and compare with your expectations. Are both junctions now forward-biased? DMM (ma) R B 200 kω I C R C 330 Ω V BB 5 V I B 2N3904 V CC Variable DC source 0~+15V Figure 4. Circuit for measuring I C vs. V CE. (3) BJT Switching Circuits Connect a switching circuit in which the load is each of the following: (a) A red LED. Construct the circuit shown in Fig. 5. Measure and record the values of each resistor before placing them in the circuit. Use a Pulse Switch on the Bit Bucket to provide the control voltage, V BB. Press the switch to verify that the LED comes on, and draws about 9 ma of current. Measure and record in a table the values of V CE, V BE, V BC, I B and I C when the LED is on and when it is off. In order to determine I B, measure the voltage drop across R B using the onboard DVM, and use Ohm s law to calculate the base current. From the description of the operating regions given in Table 1, can you confirm that the BJT is in saturation when the LED is on, and in cutoff when the LED is off? (Hint: In 5

saturation, both junctions should be forward biased. In cutoff, both junctions should be reverse biased.) Calculate the forced beta (ratio of I C to I B ) when the LED is on. Does this confirm that the transistor in saturation? (Hint: see Table 1. If β forced < β F, the BJT is saturated. You measured β F, also known as h FE, in Part 1.) (b) A 5V DC fan. Remove the LED and the 330 Ω resistor in Fig. 5, and in their place connect the provided fan. Observe the fan polarity (black wire should be connected to the collector of the BJT, red to the DMM). Measure and record V CE, V BE, V BC, I B and I C when the fan is on and when it is off, and calculate β forced when the fan is on. Does the transistor still saturate when the fan is on? R C 330 Ω Pulse Switch R B 10 kω V BB Red LED + V CE I C DMM (ma) 5 V DC Figure 5. Circuit for switching an LED. 6