SPICE Simulation Program with Integrated Circuit Emphasis

Similar documents
INTRODUCTION TO CIRCUIT SIMULATION USING SPICE

HSPICE. Chan-Ming Chang

Final for EE 421 Digital Electronics and ECG 621 Digital Integrated Circuit Design Fall, University of Nevada, Las Vegas

A MOS VLSI Comparator

Introduction to Full-Custom Circuit Design with HSPICE and Laker

Chapter 19. Performing Cell Characterization

NMOS Inverter Lab ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING. NMOS Inverter Lab

Electronic CAD Practical work. Week 1: Introduction to transistor models. curve tracing of NMOS transfer characteristics

Modeling MOS Transistors. Prof. MacDonald

SPICE MODELING OF MOSFETS. Objectives for Lecture 4*

LECTURE 4 SPICE MODELING OF MOSFETS

Lossy and Lossless Current-mode Integrators using CMOS Current Mirrors

CMOS voltage controlled floating resistor

MOS Inverters Dr. Lynn Fuller Webpage:

Differential Amplifier with Current Source Bias and Active Load

Tsung-Chu Huang. Department of Electronic Engineering National Changhua University of Education /10/4-5 TCH NCUE

Introduction to LTSPICE Dr. Lynn Fuller Electrical and Microelectronic Engineering

Lecture 7: SPICE Simulation

EEEE 381 Electronics I

Mentor Graphics OPAMP Simulation Tutorial --Xingguo Xiong

Design and Simulation of RF CMOS Oscillators in Advanced Design System (ADS)

Introduction to Modeling MOSFETS in SPICE

Laboratory 1 Single-Stage MOSFET Amplifier Analysis and Design Due Date: Week of February 20, 2014, at the beginning of your lab section

DIGITAL CIRCUIT SIMULATION USING HSPICE

MOSFET Biasing Supplement for Laboratory Experiment 5 EE348L. Spring 2005

Gunning Transceiver Logic Interface Bus Design Project

NGSPICE- Usage and Examples

The default account setup for the class should allow you to run HSPICE without any further configuration. To verify this, type:

problem grade total

CHAPTER 6 DESIGN OF VOLTAGE CONTROLLED OSCILLATOR (VCO) USING 45 NM VLSI TECHNOLOGY

Experiment 2 Introduction to PSpice

WinSpice. The steps to performing a circuit simulation with WinSpice are:

The basic inverter circuit or common-source amplifier using a resistive load is shown in Figure 1. source s

THE SPICE BOOK. Andrei Vladimirescu. John Wiley & Sons, Inc. New York Chichester Brisbane Toronto Singapore

MOSFET: Mxxx nd ng ns nb modelname W=value L=value Ad As Pd Ps

Conduction Characteristics of MOS Transistors (for fixed Vds)! Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor

Topic 2. Basic MOS theory & SPICE simulation

Conduction Characteristics of MOS Transistors (for fixed Vds) Topic 2. Basic MOS theory & SPICE simulation. MOS Transistor

Simulation Using WinSPICE

Common Gate Stage Cascode Stage. Claudio Talarico, Gonzaga University

Lab 3: Circuit Simulation with PSPICE

Ota-C Based Proportional-Integral-Derivative (PID) Controller and Calculating Optimum Parameter Tolerances

Appendix 5 Model card parameters for built-in components

PSpice Simulation. The target of computer-aided analysis is to determine the circuit currents and voltages everywhere in the circuit.

Mentor Analog Simulators

MOSFET Amplifier Design

Circuit Simulation Using SPICE ECE222

Lab 6: MOSFET AMPLIFIER

Laboratory Experiment 5 EE348L. Spring 2005

1.0 Folded-Cascode OTA

SmartSpice Circuit Design Using Local and Global Optimization

ECEN3250 Lab 9 CMOS Logic Inverter

ECE520 VLSI Design. Lecture 5: Basic CMOS Inverter. Payman Zarkesh-Ha

Introduction to SwitcherCAD

Novel MOS-C oscillators using the current feedback op-amp

CMOS High Frequency/Low Voltage Fult-Wave Rectifier

Computer Exercises Manual: Device Parameters in SPICE. Interactive MATLAB Animations for Understanding Semiconductor Devices

EEEE 381 Electronics I

55:041 Electronic Circuits

HSPICE (from Avant!) offers a more robust, commercial version of SPICE. PSPICE is a popular version of SPICE, available from Orcad (now Cadence).

Design and Implementation of a Low Power

Lab 5: MOSFET I-V Characteristics

Elad Alon HW #1: Circuit Simulation EECS 141 Due Thursday, Aug. 30th, 5pm, box in 240 Cory

SPICE for Power Electronics and Electric Power

EECE 488: Short HSPICE Tutorial. Last updated by: Mohammad Beikahmadi January 2013

HDL CODE TO REALIZE ALL THE LOGIC GATES

INF4420. Outline. Switched capacitor circuits. Switched capacitor introduction. MOSFET as an analog switch 1 / 26 2 / 26.

SPICE FOR POWER ELECTRONICS AND ELECTRIC POWER

HIP V, 10A Half Bridge Power MOSFET Array. Description. Features. Ordering Information. Symbol. Packages FN

Field Effect Transistors (FET s) University of Connecticut 136

A NEW DIFFERENTIAL CONFIGURATION SUITABLE FOR REALIZATION OF HIGH CMRR, ALL-PASS/NOTCH FILTERS

A Brief Handout for Introduction to

Circuit Simulation with SPICE OPUS

PSpice Tutorial. (usage of simulator ) (common sense) constant. L. Pacher

Differential Difference Current Conveyor Based Cascadable Voltage Mode First Order All Pass Filters

Laboratory Experiment 6 EE348L. Spring 2005

1.3 An Introduction to WinSPICE

VLSI Design I. The MOSFET model Wow!

Spring Microelectronic Devices and Circuits Prof.J.A.delAlamo. Design Project - April 20, Driver for Long Interconnect and Output Pad

dc Bias Point Calculations

Intelligent Systems Group Department of Electronics. An Evolvable, Field-Programmable Full Custom Analogue Transistor Array (FPTA)

Introduction to PSpice

Lecture 4. The CMOS Inverter. DC Transfer Curve: Load line. DC Operation: Voltage Transfer Characteristic. Noise in Digital Integrated Circuits

EEC 216 W08 Problem Set #1 Solutions

EECE 488: Short HSPICE. Tutorial. Last updated by: Mohammad Beikahmadi January Original presentation by: Jack Shiah

Chapter 8. Chapter 9. Chapter 6. Chapter 10. Chapter 11. Chapter 7

A Short SPICE Tutorial

Fundamentos de Electrónica Lab Guide

NEW ALL-PASS FILTER CIRCUIT COMPENSATING FOR C-CDBA NON-IDEALITIES

55:041 Electronic Circuits

Basic Analog Electronic Circuits Dr. Lynn Fuller


EE 230 Lab Lab 9. Prior to Lab

Simulation Program with Integrated Circuits Emphasis = SPICE

Differential Amplifier Design

ECE 532 Hspice Tutorial

Integrated Circuit Amplifiers. Comparison of MOSFETs and BJTs

Accurate active-feedback CM OS cascode current mirror with improved output swing

A brief introduction on HSPICE. Siavash Kananian Sharif University of Technology Electronics III

Yuan-Piao Lee Te-Hsiu Chen Chienkuo Technology University, ChungHua, Taiwan, ROC

Transcription:

SPICE Simulation Program with Integrated Circuit Emphasis References: [1] CIC SPICE training manual [3] SPICE manual [2] DIC textbook Sep. 25, 2004 1

SPICE: Introduction Simulation Program with Integrated Circuit Emphasis Developed by University of California at Berkeley A CAD tools to simulate circuits in steady-state, transient, and frequency domains. SBTSPICE, HSPICE, TSPICE, PSIPCE 2

HSPICE Simulation Flow Reference: CIC SPICE training manual 3

MOS SPICE Model LEVEL 1: Based on square law Long-Channel devices LEVEL 2: Velocity saturation Mobility degradation Drain-induced barrier lowering (DIBL) LEVEL 3: Semi-empirical model 4

MOS SPICE Model (cont.) BSIM3V3: Berkeley Short-Channel IGFET Model LEVEL 49 Over 200 parameters to model the 2nd-order effect 5

Netlist Structure Depend on spice model Circuit structure 6

Instance and Element Names C D E, F, G, H I J K L M Q R O, T, U V X Capacitor Diode Dependent Current and Voltage control source Current Source JFET or MESFET Mutual Inductor Scale Factors Inductor MOSFET f 1e-15 k 1e3 BJT p 1e-12 meg 1e6 Resistor n 1e-9 g 1e9 Transmission Line Voltage Source u 1e-6 T 1e12 Subcircuit Call m 1e-3 7

Device Description R1 A B 1k C1 C D 1p M1 D G S B nch l=1u w=3u +AD=3p PD=5u AS=3p PS=5u + NRS=1 NRD=1 8

Subcircuit Description and Recall Description (Ex: a inverter).subckt inv in out mp1 out in vdd vdd pch l=1u w=3u mn1 out in 0 0 nch l=1u w=1u.ends inv Recall x1 a b inv x2 c d inv 9

DC Analysis Type DC sweep & DC small signal anysis.dc sweep for power supply, temp., param...op specify time (s) at which operating point is to be calculated..tf calculate DC small-signal transfer function..pz performs pole/zero analysis Example:.dc vin 0 5 0.25 10

AC Analysis Type AC sweep & small signal analysis.ac calculate frequency-domain response.noise noise analysis Example:.ac dec 10 1k 100meg sweep Rl dec 2 5k 15k 11

Transient Analysis Type.tran calculate time-domain response.four fourier analysis.fft fast fourier transform Example:. tran 1n 100n 12

Pulse Voltage and Current Source Vin in 0 pulse (0V 5V 10ns 10ns 10ns 40ns 100ns) Sinusoidal Vin in 0 sin (0V 1V 100Meg 2ns 5e7) Piecewise Linear Source Vin in 0 pwl (60n 0V, 120n 0V, 130n 5V, 170n 5V +180n 0V, R 0) 13

Input control Statements.data.tran 1 n 100n sweep data=d1.data D1 width Length VDD Cap 10u 100u 2V 5p 50u 600u 10V 10p 50u 600u 10V 10p...enddata.alter.del lib XXX.lib TT.lib XXX.lib FF.alter.temp -50 0 50 Rl 1 2 1k.param Wval=100u.end 14

.option list Output Format produces an element summary listing of the data to be printed..option node prints a node connection table..option acct reports job accounting and run-time statistics at the end of output listing..option opts prints the current settings of all control options..option nomod suppress the printout of model parameters. 15

Output Statement.print print numeric analysis results.probe allows save output variables only into the graph data files.meas print numeric results of measured specifications Example:.print Vdb(vout) V(node) par( V(out)/V(in) ).meas tran tprop trig V(in) val=2.5 rise=1 targ V(out) val=2.5 fall=1 xxx.ms# xxx.ma# xxx.mt# 16

Simulation step 17

AvanWaves (1) 18

AvanWaves (2) 19

AvanWaves (3) 20

AvanWaves (4) 21

AvanWaves (5) 22

AvanWaves (6) 23

Design Example Output buffer (inverter) Supply voltage 2.5 V VDD Output load 10 pf Operation frequency 500 MHz Rise time and fall time < 0.2 nsec Used the 1.2 µm CMOS process Vin Vout C L 24

Design Example (cont.) NMOS C V OX th0 = 1.75 10 = 0.74 V 7 2 cm V µ 0 = 656 sec 1 T = = 2 nsec 500 MHz T tf = 2.2τ = 0.1 = 0.1 nsec 2 τ = R C = 0.04545 nsec on L F cm 2 R I on Dsat W L W L 3 VDD = 4.5445 4 IDsat = 412.6 ma nmos nmos = = 2320.5556 2785 µ 1.2 µ 25

Design Example (cont.) ***** IO *****.MODEL NMOS NMOS LEVEL=2 LD=0.15U TOX=200.0E-10 VTO=0.74 KP=8.0E-05 + NSUB=5.37E+15 GAMMA=0.54 PHI=0.6 U0=656 UEXP=0.157 UCRIT=31444 + DELTA=2.34 VMAX=55261 XJ=0.25U LAMBDA=0.037 NFS=1E+12 NEFF=1.001 + NSS=1E+11 TPG=1.0 RSH=70.00 PB=0.58 + CGDO=3.4E-10 CGSO=4.3E-10 CJ=0.0003 MJ=0.66 CJSW=8.0E-10 MJSW=0.24.MODEL PMOS PMOS LEVEL=2 LD=0.15U TOX=200.0E-10 VTO=-0.74 KP=2.70E-05 + NSUB=4.33E+15 GAMMA=0.58 PHI=0.6 U0=262 UEXP=0.324 UCRIT=65720 + DELTA=1.79 VMAX=25694 XJ=0.25U LAMBDA=0.061 NFS=1E+12 NEFF=1.001 + NSS=1E+11 TPG=-1.0 RSH=121 PB=0.64 + CGDO=4.3E-10 CGSO=4.3E-10 CJ=0.0005 MJ=0.51 CJSW=1.35E-10 MJSW=0.24 26

Design Example (cont.).temp 25 M0 Vout Vin VDD VDD pmos w=94u L=1.2u m=90 M1 Vout Vin 0 0 nmos W=94u L=1.2u m=30 Cl vout 0 10pF VDD VDD 0 2.5V Vin Vin 0 pulse(0 2.5 1n 0.1n 0.1n 0.9n 2n).op.option post.tran 1n 30n.probe V(vout).meas tran tr trig V(vout) val=0.25 rise=2 targ V(vout) val=2.25 rise=2.meas tran tf trig V(vout) val=2.25 fall=2 targ V(vout) val=0.25 fall=2.meas tran rms_power RMS power.end 27

Design Example (cont.) Clock feedthrough 28