GPS ANTENNA WITH METALLIC CONICAL STRUC- TURE FOR ANTI-JAMMING APPLICATIONS

Similar documents
SINGLE-FEEDING CIRCULARLY POLARIZED TM 21 - MODE ANNULAR-RING MICROSTRIP ANTENNA FOR MOBILE SATELLITE COMMUNICATION

Research Article Modified Dual-Band Stacked Circularly Polarized Microstrip Antenna

A Broadband Omnidirectional Antenna Array for Base Station

A Compact Circularly Polarized Microstrip Antenna with Bandwidth Enhancement

NEW DESIGN OF COMPACT SHORTED ANNULAR STACKED PATCH ANTENNA FOR GLOBAL NAVIGA- TION SATELLITE SYSTEM APPLICATION

Compact Wide-Beam Circularly Polarized Antenna with Stepped Arc-Shaped Arms for CNSS Application

TRANSMITTING ANTENNA WITH DUAL CIRCULAR POLARISATION FOR INDOOR ANTENNA MEASUREMENT RANGE

A CORNER-FED SQUARE RING ANTENNA WITH AN L-SHAPED SLOT ON GROUND PLANE FOR GPS APPLICATION

A Compact Dual Band-Notched Ultrawideband Antenna with λ/4 Stub and Open Slots

Broadband Circular Polarized Antenna Loaded with AMC Structure

Miniature Folded Printed Quadrifilar Helical Antenna with Integrated Compact Feeding Network

COMPACT DUAL-BAND CIRCULARLY-POLARIZED AN- TENNA WITH C-SLOTS FOR CNSS APPLICATION. Education, Shenzhen University, Shenzhen, Guangdong , China

BROADBAND SERIES-FED DIPOLE PAIR ANTENNA WITH PARASITIC STRIP PAIR DIRECTOR

STUDY ON THE PLANAR CIRCULARLY POLARIZED ANTENNAS WITH SWASTIKA SLOT

A Wide-Beam Circularly Polarized Asymmetric-Microstrip Antenna

A Broadband Reflectarray Using Phoenix Unit Cell

A Compact Wideband Circularly Polarized L-Slot Antenna Edge-Fed by a Microstrip Feedline for C-Band Applications

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

A CPW-fed Microstrip Fork-shaped Antenna with Dual-band Circular Polarization

Wideband Double-Layered Dielectric-Loaded Dual-Polarized Magneto-Electric Dipole Antenna

First-Order Minkowski Fractal Circularly Polarized Slot Loop Antenna with Simple Feeding Network for UHF RFID Reader

ANALYSIS OF ELECTRICALLY SMALL SIZE CONICAL ANTENNAS. Y. K. Yu and J. Li Temasek Laboratories National University of Singapore Singapore

Research Article Circularly Polarized Microstrip Yagi Array Antenna with Wide Beamwidth and High Front-to-Back Ratio

A PERTURBED CIRCULAR MONOPOLE ANTENNA WITH CIRCULAR POLARIZATION FOR ULTRA WIDEBAND APPLICATIONS

A Compact Wideband Slot Antenna for Universal UHF RFID Reader

A WIDEBAND TWIN-DIAMOND-SHAPED CIRCULARLY POLARIZED PATCH ANTENNA WITH GAP-COUPLED FEED

Fractal-Based Triangular Slot Antennas with Broadband Circular Polarization for RFID Readers

SIZE REDUCTION AND BANDWIDTH ENHANCEMENT OF A UWB HYBRID DIELECTRIC RESONATOR AN- TENNA FOR SHORT-RANGE WIRELESS COMMUNICA- TIONS

A Beam Switching Planar Yagi-patch Array for Automotive Applications

A Novel Meander Line Microstrip Log-Periodic Dipole Antenna for Dual-Polarized Radar Systems

A Pin-Loaded Microstrip Patch Antenna with the Ability to Suppress Surface Wave Excitation

Optimized Circularly Polarized Bandwidth for Microstrip Antenna

A Fan-Shaped Circularly Polarized Patch Antenna for UMTS Band

Desktop Shaped Broadband Microstrip Patch Antennas for Wireless Communications

Electrically-Small Circularly-Polarized Quasi-Yagi Antenna

Broadband Dual Polarized Space-Fed Antenna Arrays with High Isolation

Single-Fed Low-Profile Circularly Polarized Antenna Using Quarter-Mode Substrate Integrated Waveguide with Enhanced Bandwidth

Chapter 2. Modified Rectangular Patch Antenna with Truncated Corners. 2.1 Introduction of rectangular microstrip antenna

"(c) 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/

GPS/GNSS Antennas. В. Rama Rao W. Kunysz R. Fante К. McDonald ARTECH HOUSE. BOSTON LONDON artechhouse.com

Couple-fed Circular Polarization Bow Tie Microstrip Antenna

Circularly Polarized Square Patch Microstrip Antenna with Y- Shaped Slot for Wi-Max Application

DESIGN AND SIMULATION OF CIRCULAR DISK ANTENNA WITH DEFECTED GROUND STRUCTURE

The Effect of Aspect Ratio and Fractal Dimension of the Boundary on the Performance of Fractal Shaped CP Microstrip Antenna

Miniaturized GPS Antenna Array Technology and Predicted Anti-Jam Performance

CIRCULARLY POLARIZED PATCH ANTENNA WITH A STACKED SLOT-RING

Research Article A High-Isolation Dual-Polarization Substrate-Integrated Fabry-Pérot Cavity Antenna

A COMPACT UWB MONOPOLE ANTENNA WITH WIMAX AND WLAN BAND REJECTIONS

CHAPTER 7 CONCLUSIONS AND SCOPE OF FUTURE WORK

Cross Polarization Reduction of Circularly Polarized Microstrip Antenna with SRR

Coplanar capacitive coupled compact microstrip antenna for wireless communication

Stacked Configuration of Rectangular and Hexagonal Patches with Shorting Pin for Circularly Polarized Wideband Performance

Null-steering GPS dual-polarised antenna arrays

Low-Profile Wideband Circularly Polarized Patch Antenna Using Asymmetric Feeding

On the Design of CPW Fed Appollian Gasket Multiband Antenna

Research Article A Broadband Single-Feed Circularly Polarized Patch Antenna with Wide Beamwidth

DESIGN OF OMNIDIRECTIONAL HIGH-GAIN AN- TENNA WITH BROADBAND RADIANT LOAD IN C WAVE BAND

Dual Feed Microstrip Patch Antenna for Wlan Applications

Design and Simulation of a Circularly Polarized Square Horn Antenna

CREATING THREE DUAL ISOSCELES TRIANGULAR SLOTS ON THE PATCH AND BANDWIDTH ENHANCEMENT FOR SLOTTED METAMATERIAL MICROSTRIP PATCH ANTENNA

A Wideband suspended Microstrip Patch Antenna

CHAPTER 3 METHODOLOGY AND SOFTWARE TOOLS

WIDE BEAMWIDTH QUADIFILAR HELIX ANTENNA WITH CROSS DIPOLES

Small and Low Side Lobe Beam-forming Antenna Composed of Narrow Spaced Patch Antennas for Wireless Sensor Networks

A Compact Broadband Printed Circular Slot Antenna with Stair Shaped Ground Plane

Design of Low-Index Metamaterial Lens Used for Wideband Circular Polarization Antenna

Progress In Electromagnetics Research C, Vol. 9, 13 23, 2009

High gain W-shaped microstrip patch antenna

Miniature Multiband Antenna for WLAN and X-Band Satellite Communication Applications

A Compact Dual-Polarized Antenna for Base Station Application

A NOVEL DUAL-BAND PATCH ANTENNA FOR WLAN COMMUNICATION. E. Wang Information Engineering College of NCUT China

WIDEBAND CIRCULARLY POLARIZED SUSPENDED PATCH ANTENNA WITH INDENTED EDGE AND GAP- COUPLED FEED

Planar Radiators 1.1 INTRODUCTION

This article discusses an antenna

Microstrip Patch Antenna Design for WiMAX

Chapter 7 Design of the UWB Fractal Antenna

A WIDEBAND RECTANGULAR MICROSTRIP ANTENNA WITH CAPACITIVE FEEDING

The Basics of Patch Antennas, Updated

Slot Antennas For Dual And Wideband Operation In Wireless Communication Systems

International Journal for Research in Applied Science & Engineering Technology (IJRASET) Circular Microstrip Patch Antenna for RFID Application

Wide-Beamwidth Circularly Polarized Antenna and Its Application in a Sequential-Rotation Array with Enhanced Bandwidth

Performance Analysis of Different Ultra Wideband Planar Monopole Antennas as EMI sensors

Recon UWB Antenna for Cognitive Radio

Series Micro Strip Patch Antenna Array For Wireless Communication

A Stopband Control Technique for Conversion of CPW-Fed Wideband Antenna to UWB

Compact and Low Profile MIMO Antenna for Dual-WLAN-Band Access Points

Design of Z-Shape Microstrip Antenna with I- Slot for Wi-Max/Satellite Application

DESIGN AND DEVELOPMENT OF MICROSTRIP PATCH ANTENNA

International Journal of Engineering Trends and Technology (IJETT) Volume 11 Number 5 - May National Institute of Technology, Warangal, INDIA *

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

Radiation Performance of an Elliptical Patch Antenna with Three Orthogonal Sector Slots

A Broadband Crossed-Slot Circularly Polarized Antenna with Stable Phase Center for GNSS Applications

A circularly polarized harmonic-rejecting antenna for wireless power transfer applications

A Pattern Reconfigurable Antenna for WLAN and WiMAX Systems

Jae-Hyun Kim Boo-Gyoun Kim * Abstract

QUADRI-FOLDED SUBSTRATE INTEGRATED WAVEG- UIDE CAVITY AND ITS MINIATURIZED BANDPASS FILTER APPLICATIONS

DESIGN OF TRI-BAND PRINTED MONOPOLE ANTENNA FOR WLAN AND WIMAX APPLICATIONS

High-Performance Dual-Circularly Polarized Reflector Antenna Feed

Design of Small CRPA Arrays with Circular Microstrip Loops for Electromagnetically Coupled Feed

Design of a Novel Compact Cup Feed for Parabolic Reflector Antennas

Transcription:

Progress In Electromagnetics Research C, Vol. 37, 249 259, 2013 GPS ANTENNA WITH METALLIC CONICAL STRUC- TURE FOR ANTI-JAMMING APPLICATIONS Yoon-Ki Cho, Hee-Do Kang, Se-Young Hyun, and Jong-Gwan Yook * Department of Electrical and Electronic Engineering, Yonsei University, 134 Shinchon-dong, Sudaemoon-gu, Seoul, Republic of Korea Abstract This paper presents a cost effective and simple antijamming method for global positioning system (GPS) antennas in the GPS L1 (1.563 1.587 GHz) band. The proposed structure is composed of a metallic conical structure with a microstrip patch antenna, which is selected as the basic element. To overcome intentional jamming signals coming from low elevation angles, the structure is applied around the low profile patch antenna. It is found that the maximum antijamming performance is achieved when the lower diameter (l), height (h), and upper diameter (d) of the structure are 90, 190, and 380 mm, respectively. The experimental results show that the peak gain in the horizontal plane for the jamming signal decreases by about 6.2 db from 6.16 to 12.36 dbic, while the peak gain in the vertical plane for the GPS signal increases by about 5.58 db from 1.32 to 6.9 dbic. Moreover, it is shown that an improvement in the circular polarization (CP) characteristics is also obtained with the proposed structure. The measured fractional bandwidth is about 3.7% (1.561 1.62 GHz). 1. INTRODUCTION The global positioning system (GPS) signals transmitted from GPS satellites are in a relatively low signal level state, and as a result the signal is very susceptible to accidental or intentional interferences, such as unwanted in-band interference or jamming signals [1]. In particular, in many GPS timing based systems, the intentional jamming signal renders the GPS receiver inaccurate and ineffective. In most cases, these interference signals come from low elevation angles when the receiver is mounted in the horizontal plane, because the jammer Received 3 January 2013, Accepted 27 February 2013, Scheduled 28 February 2013 * Corresponding author: Jong-Gwan Yook (jgyook@yonsei.ac.kr).

250 Cho et al. is usually located near the horizontal plane [2]. Thus, to keep the GPS signal level above the noise floor, minimizing susceptibility and maximizing tolerance of the jamming signals are the important requirements for the GPS receiver. For this reason, it is necessary to provide anti-jamming techniques to enhance GPS signal reception probability in noisy environments. Many studies have searched for ways to implement robust GPS receivers: isolation of the jamming signal using a temporal filter [3], space-time adaptive processing (STAP) [4], space-frequency adaptive processing (SFAP) [5], modified GPS arrays [6], and non-planar type spherical cap adaptive antennas [7]. However, these anti-jamming methodologies require systematic approaches, including additional hardware and/or software implementations, even though they provide considerable enhancement against jamming signals. This paper presents and analyzes a low cost and simple antijamming GPS antenna that operates in the GPS L1 (1.563 1.587 GHz) band. The proposed anti-jamming structure consists of a microstrip patch antenna and metallic conical structure. By applying the structure, anti-jamming performance can be enhanced for the jamming signal incident to the GPS antenna. In addition, with optimization of the proposed anti-jamming structure, the signal strength of the jamming signal is minimized, while the peak gain for the GPS signal is maximized, so that maximum anti-jamming performance is achieved. 2. DESIGN CHALLENGES AND SPECIFICATIONS In general, because most GPS antennas are required to receive signals from all the GPS satellites for good positioning performance, the radiation pattern needs to be nearly hemispherical. However, to suppress the interference signals mainly coming from the low elevation angles, a very sharp slope of the radiation pattern is desirable near the horizon. For this reason, a high-precision GPS antenna should have a very broad and uniform radiation pattern from zenith down to the low elevation angle which is moving higher toward zenith due to increasingly higher interference noises near horizon. Moreover, it should suppress the interference signal below the low elevation angle for any azimuth angle [8]. It is very difficult to obtain these two requirements concurrently. In this paper, by applying the metallic conical structure in jamming environments, the proposed GPS antenna has more directional radiation pattern in elevation angle compared to without the structure. Therefore, it is possible to limit the detection of the signal from GPS satellites. To clarify this problem, the design

Progress In Electromagnetics Research C, Vol. 37, 2013 251 Table 1. Design specifications of the proposed anti-jamming GPS antenna. Operating frequency 1.575 GHz Bandwidth 1.563 1.587 GHz Polarization RHCP Axial ratio 3 db Minimum gain within coverage 6 dbic in RHCP Minimum beamwidth within coverage 84 degree specifications for this anti-jamming GPS application are listed in Table 1. It is assumed that the minimum gain within coverage for the GPS signal is about 6 dbic in RHCP (right-handed circular polarization) [9]. And also, the minimum beamwidth within coverage is 84 degree since a minimum of four GPS satellites is needed to compute the information among the satellites. The degree of 84 is calculated assuming that the number of GPS satellites is 32 and all satellites are uniformly distributed [8]. These specifications ensure operation of the GPS receiver sufficiently, which do not provide a high-precision GPS performance, though. 3. PROPOSED GPS ANTENNA CONFIGURATIONS AND ANTI-JAMMING CHARACTERISTICS 3.1. Design of the GPS Antenna and the Concept of the Metallic Conical Structure Figure 1(a) shows the configuration of a microstrip patch antenna that is selected as a GPS receiver operating at the center frequency of L1 (1.575 GHz) band [10]. The size of the antenna is 60 60 mm 2. A corner-truncated radiating element, having a length of 45.6 mm, is printed on an FR-4 substrate with a relative permittivity (ε r ) and loss tangent (tan δ d ) of 4.2 and 0.02, respectively. The length of the truncated corner for implementing RHCP characteristics is 7.5 mm. The ground of the antenna is located in the horizontal plane (X- Y plane), and a coaxial probe, having a distance of 15.7 mm along +x-direction between the feed point and the center of the radiating element, is used to excite the antenna. The proposed GPS anti-jamming structure is presented as shown in Figure 1(b). To suppress the jamming signal impinging from the low elevation angle and enhance the GPS signal from the higher angle, the metallic conical structure is proposed. The length of the lower diameter

252 Cho et al. (a) (b) Figure 1. Proposed anti-jamming GPS structure. (a) Microstrip patch antenna for the GPS receiver. (b) Metallic conical structure. (l) of the structure is chosen to be 90 mm to allow the patch antenna to be enclosed by the lower circle of the structure. In addition, the height (h) is fixed at 190 mm, which is about one wavelength at 1.575 GHz, considering the fact that the characteristics of the proposed structure are similar with that of a conical horn antenna [11]. It is found that the impedance matching characteristics becomes worse if the length of the upper diameter (d) is similar than one wavelength and the resonant frequency variation is very sensitive. 3.2. Jamming Susceptibility of the GPS Antenna Figure 2 shows the simulated reflection coefficient of the patch antenna without and with the metallic conical structure as a function of the upper diameter. As can be seen, good impedance matching in the L1 band is achieved for the patch antenna, referred to the 10 db bandwidth. Because the GPS signal received by the antenna is very weak, most GPS antennas need good impedance matching characteristics [12]. Moreover, the metallic conical structure does not significantly affect the impedance matching and resonant frequency of the GPS antenna as long as the upper diameter (d) is greater than 1λ 0. Therefore, the structure can be used with the planar GPS antenna to enhance anti-jamming performance. In addition to the impedance matching characteristics, it is important that the overall structure has a high gain for the GPS signal, while it renders a minimum gain for the jamming signal. Figure 3 shows the simulated radiation patterns of the patch antenna without the structure at 1.575 GHz. For the patch antenna without the conical structure, the horizontal plane (X-Y plane) has an almost constant gain of 7.1 dbic, and in the vertical plane (X-Z plane) it

Progress In Electromagnetics Research C, Vol. 37, 2013 253 Figure 2. Simulated reflection coefficient of the patch antenna without and with the metallic conical structure as the variation of the upper diameter from 1 to 3λ 0. (a) (b) Figure 3. Simulated radiation patterns of the patch antenna without the metallic conical structure at 1.575 GHz. (a) X-Y plane (horizontal). (b) X-Z plane (vertical). has 1.05 dbic. Therefore, the received GPS signal is susceptible to the jamming signal incident from the horizontal direction having more than 8 db power. Therefore, in this work the metallic conical structure is optimized to obtain the maximum anti-jamming performance for a given patch antenna.

254 Cho et al. (a) (b) Figure 4. Simulated peak gains of the proposed GPS antenna as the variation of the upper diameter. (a) Peak gain in the vertical and horizontal planes. (b) Gain difference between two planes. 3.3. Effect of the Upper Diameter of the Conical Structure The previous section described a metallic conical structure along with a planar microstrip antenna. To investigate the optimum structural dimensions, the effect of the upper diameter on the gain characteristics was thoroughly studies. Note that only the upper diameter (d) of the structure is varied whereas the height (h) and lower opening (l) remain constant. The peak gain in the vertical and the horizontal plane are analyzed as a function of the upper diameter as shown in Figure 4(a), respectively. As shown in Figure 4(a), the proposed GPS antenna in the vertical plane has a maximum value of 9.69 dbic when the length of the upper diameter of the structure is 2.4λ 0. On the other hand, the gain in the horizontal plane has a minimum value of 13.51 dbic at 1.2λ 0. It is clear that the anti-jamming performance is not only due to maximizing the peak gain in the vertical plane for the GPS signal; minimizing the gain in the horizontal plane also has to be achieved at the same time. Thus, it is reasonable to maximize the difference between them as shown in Figure 4(b). It is clear that the maximum anti-jamming performance is achieved when the length of the upper diameter is 2λ 0, which reveals the maximum gain difference between the vertical and horizontal planes. 4. EXPERIMENTAL RESULTS For experimental verification, the GPS antenna and the proposed conical structure are fabricated as shown in Figure 5. From the previous section, it is known that the optimal dimensions of the

Progress In Electromagnetics Research C, Vol. 37, 2013 255 Figure 5. Photographs of the proposed GPS antenna structure. Figure 6. Measured reflection coefficients of the proposed antijamming GPS antenna structure. structure are d = 380 mm, h = 190 mm, and l = 90 mm. Figure 6 depicts the simulated and measured reflection coefficients of the proposed anti-jamming GPS antenna structure based on the optimal configurations. Excellent agreement between simulation and measurement results is obtained. The measured 10 db fractional bandwidth is about 3.7% (1.561 1.62 GHz), which is enough to cover the whole GPS L1 band. The measured radiation patterns of the antenna with the proposed conical structure at 1.575 GHz is shown in Figure 7 in the horizontal and vertical planes. It is clear that the gain in the horizontal plane decreases several db with the conical structure, while the gain in the normal direction increases considerably. Specifically, the maximum gain for the jamming signal is suppressed by about 6.2 db from 6.16 to 12.36 dbic, while the peak gain for the GPS signal is enhanced by about 5.58 db from 1.32 to 6.9 dbic. Therefore, the measured gain

256 Cho et al. (a) (b) Figure 7. Measured radiation patterns of the proposed anti-jamming GPS antenna structure at 1.575 GHz. (a) X-Y plane (horizontal). (b) X-Z plane (vertical). Table 2. Simulated and measured peak gains of the proposed antijamming GPS antenna structure. Simulation Measurement Plane X-Y (horizontal) X-Z (vertical) X-Y (horizontal) X-Z (vertical) w/o cone (dbic) w/ cone (dbic) Improvement (db) 7.1 12.45 5.35 1.05 8.84 7.79 6.16 12.36 6.2 1.32 6.9 5.58 difference between two orthogonal directions is greater than 19 db, which is a significant improvement over the normal GPS antenna. The simulated and measured peak gains of the proposed anti-jamming GPS antenna are summarized and compared in Table 2. Figure 8 shows the measured axial ratio (AR) of the proposed GPS antenna without and with the metallic cone in the normal direction, showing 3.36 db and 1.97 db at 1.575 GHz, respectively. In terms of the circular polarization (CP) characteristics, the patch antenna with the anti-jamming structure is better than the original antenna in

Progress In Electromagnetics Research C, Vol. 37, 2013 257 Figure 8. Measured axial ratio of the proposed anti-jamming GPS antenna structure in the normal direction. Figure 9. Measured CP radiation pattern of the proposed antijamming GPS antenna structure at 1.575 GHz in X-Z plane (vertical). the measured frequency range. This might due to the fact that the lower and upper circles of the metallic cone have a completely circular geometry. To clarify the radiation pattern for circular polarization, the measured CP radiation pattern of the proposed GPS antenna with cone is presented as shown in Figure 9. It is found that these experimental results meet the above specifications. 5. CONCLUSION A cost effective and simple anti-jamming technique for GPS receiver antennas is proposed in this paper. The anti-jamming performance of the microstrip patch antenna is enhanced using a metallic conical structure that is located around the antenna. By varying the geometrical parameters of the cone, the peak gain in the vertical and horizontal planes of the patch antenna can be controlled. The optimal dimensions of the structure corresponds to d = 380 mm, h = 190 mm, and l = 90 mm, rendering the maximum gain difference between the horizontal and vertical plane gains. The peak gain in the horizontal plane where the jamming signal impinges is decreased by about 6.2 db, while the maximum gain in the normal direction is increased by about 5.6 db. Moreover, the axial ratio is improved. Therefore, it is possible to use the metallic conical structure in GPS antennas in severe jamming environments.

258 Cho et al. ACKNOWLEDGMENT This research was supported by the KCC (Korea Communications Commission), Korea, under the R&D program supervised by the KCA (Korea Communications Agency) (KCA-2012-12-911-01-108). REFERENCES 1. Kaplan, E. D. and C. J. Hegarty, Understanding GPS: Principles and Applications, 2nd Edition, Artech House, MA, 2005. 2. Gupta, I. J., T.-H. Lee, K. A. Griffith, C. D. Slick, C. J. Reddy, M. C. Bailey, and D. DeCarlo, Non-planar adaptive antenna arrays for GPS receivers, IEEE Antennas and Propagation Magazine, Vol. 52, No. 5, 35 51, Oct. 2010. 3. Dimos, G., T. Upadhyay, and T. Jenkins, Low-cost solution to narrowband GPS interference problem, IEEE Proceedings of the National Aerospace and Electronics Conference, Vol. 1, 145 153, May 1995. 4. Fante, R. L. and J. J. Vaccaro, Wideband cancellation of interference in a GPS receiver array, IEEE Transactions on Aerospace and Electronic Systems, Vol. 36, No. 2, 549 564, Apr. 2000. 5. Gupta, I. J. and T. D. Moore, Space-frequency adaptive processing (SFAP) for interference suppression in GPS receivers, Proceedings of the 2001 National Technical Meeting of the Institute of Navigation, 377 385, Jan. 2001. 6. Zhou, Y., C. C. Chen, and J. L. Volakis, A single-fed element antenna for tri-band anti-jamming GPS arrays, IEEE Antennas and Propagation Society International Symposium, 1 4, Jul. 2008. 7. Lambert, J., C. A. Balanis, and D. DeCarlo, Spherical cap adaptive antennas for GPS, IEEE Transactions on Antennas and Propagation, Vol. 57, No. 2, 406 413, Feb. 2009. 8. Wang, J. J. H., Antennas for global navigation satellite system (GNSS), Proceedings of the IEEE, Vol. 100, No. 7, 2349 2355, Jul. 2012. 9. Lopes, A. R., GPS landing system reference antenna, IEEE Antennas and Propagation Magazine, Vol. 52, No. 1, 104 113, Feb. 2010. 10. Cho, Y. K., H. D. Kang, S. Y. Hyun, and J. G. Yook, Gain improvement topology using conical structure for jamming resilient GPS antennas, 2012 IEEE International Symposium on Antennas and Propagation, 1 2, Jul. 2012.

Progress In Electromagnetics Research C, Vol. 37, 2013 259 11. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Edition, Wiley, New York, 2005. 12. Scire-Scappuzzo, F. and S. N. Makarov, A low-multipath wideband GPS antenna with cutoff or non-cutoff corrugated ground plane, IEEE Transactions on Antennas and Propagation, Vol. 57, No. 1, 33 46, Jan. 2009.