Cascaded Noise-Shaping Modulators for Oversampled Data Conversion

Similar documents
Cascaded Noise Shaping for Oversampling A/D and D/A Conversion Bruce A. Wooley Stanford University

Lecture 390 Oversampling ADCs Part I (3/29/10) Page 390-1

EE247 Lecture 24. EE247 Lecture 24

Oversampling Converters

INF4420. ΔΣ data converters. Jørgen Andreas Michaelsen Spring 2012

Summary Last Lecture

MASH 2-1 MULTI-BIT SIGMA-DELTA MODULATOR FOR WLAN L 2 ( ) ( ) 1( 1 1 1

EE247 Lecture 26. This lecture is taped on Wed. Nov. 28 th due to conflict of regular class hours with a meeting

EE247 Lecture 26. EE247 Lecture 26

EE247 Lecture 26. EE247 Lecture 26

Sigma-Delta ADC Tutorial and Latest Development in 90 nm CMOS for SoC

ADVANCES in VLSI technology result in manufacturing

ECEN 610 Mixed-Signal Interfaces

CHAPTER. delta-sigma modulators 1.0

Lecture #6: Analog-to-Digital Converter

Summary Last Lecture

DSP Based Corrections of Analog Components in Digital Receivers

The Case for Oversampling

A stability-improved single-opamp third-order ΣΔ modulator by using a fully-passive noise-shaping SAR ADC and passive adder

Analog-to-Digital Converters

Multirate DSP, part 3: ADC oversampling

Advanced AD/DA converters. ΔΣ DACs. Overview. Motivations. System overview. Why ΔΣ DACs

TUNABLE MISMATCH SHAPING FOR QUADRATURE BANDPASS DELTA-SIGMA DATA CONVERTERS. Waqas Akram and Earl E. Swartzlander, Jr.

Architectures and Design Methodologies for Very Low Power and Power Effective A/D Sigma-Delta Converters

EE247 Lecture 27. EE247 Lecture 27

Electronics A/D and D/A converters

THE USE of multibit quantizers in oversampling analogto-digital

Improved offline calibration for DAC mismatch in low OSR Sigma Delta ADCs with distributed feedback

A 25MS/s 14b 200mW Σ Modulator in 0.18µm CMOS

OVERSAMPLING analog-to-digital converters (ADCs)

A 98dB 3.3V 28mW-per-channel multibit audio DAC in a standard 0.35µm CMOS technology

BandPass Sigma-Delta Modulator for wideband IF signals

Design of Continuous Time Multibit Sigma Delta ADC for Next Generation Wireless Applications

Lecture 9, ANIK. Data converters 1

AN ABSTRACT OF THE DISSERTATION OF

Linearity Enhancement Algorithms for I-Q Signal Generation

Basic Concepts and Architectures

Band- Pass ΣΔ Architectures with Single and Two Parallel Paths

NPTEL. VLSI Data Conversion Circuits - Video course. Electronics & Communication Engineering.

A Multi-bit Delta-Sigma Modulator with a Passband Tunable from DC to Half the Sampling Frequency. Kentaro Yamamoto

6.976 High Speed Communication Circuits and Systems Lecture 17 Advanced Frequency Synthesizers

DESIGN OF MULTI-BIT DELTA-SIGMA A/D CONVERTERS

A 1.9GHz Single-Chip CMOS PHS Cellphone

Modulator with Op- Amp Gain Compensation for Nanometer CMOS Technologies

I-Q Signal Generation Techniques for Communication IC Testing and ATE Systems

EE247 Lecture 25. Oversampled ADCs (continued)

Performance Improvement of Delta-Sigma ADC/DAC/TDC Using Digital Technique

ECE 627 Project: Design of a High-Speed Delta-Sigma A/D Converter

Telecommunication Electronics

Low-Complexity High-Order Vector-Based Mismatch Shaping in Multibit ΔΣ ADCs Nan Sun, Member, IEEE, and Peiyan Cao, Student Member, IEEE

Oversampling Data Converters Tuesday, March 15th, 9:15 11:40

National Instruments Flex II ADC Technology The Flexible Resolution Technology inside the NI PXI-5922 Digitizer

A 9.35-ENOB, 14.8 fj/conv.-step Fully- Passive Noise-Shaping SAR ADC

On the Study of Improving Noise Shaping Techniques in Wide Bandwidth Sigma Delta Modulators

Design And Simulation Of First Order Sigma Delta ADC In 0.13um CMOS Technology Jaydip H. Chaudhari PG Student L. C. Institute of Technology, Bhandu

Integrated Microsystems Laboratory. Franco Maloberti

RELAXED TIMING ISSUE IN GLOBAL FEEDBACK PATHS OF UNITY- STF SMASH SIGMA DELTA MODULATOR ARCHITECTURE

A VERY HIGH SPEED BANDPASS CONTINUOUS TIME SIGMA DELTA MODULATOR FOR RF RECEIVER FRONT END A/D CONVERSION K. PRAVEEN JAYAKAR THOMAS

Pipeline vs. Sigma Delta ADC for Communications Applications

Fundamentals of Data Converters. DAVID KRESS Director of Technical Marketing

Choosing the Best ADC Architecture for Your Application Part 3:

New RF-to-Digital Architectures for Broadband Communication Systems

A Multichannel Pipeline Analog-to-Digital Converter for an Integrated 3-D Ultrasound Imaging System

Low-power Sigma-Delta AD Converters

Analog-to-Digital Converter Survey & Analysis. Bob Walden. (310) Update: July 16,1999

EE247 Lecture 26. EE247 Lecture 26

3 rd order Sigma-delta modulator with delayed feed-forward path for low-power applications

Design of Bandpass Delta-Sigma Modulators: Avoiding Common Mistakes

Analog and Telecommunication Electronics

A 100-dB gain-corrected delta-sigma audio DAC with headphone driver

Analog and RF circuit techniques in nanometer CMOS

A 102-dB-SNR mixed CT/DT ADC with capacitor digital self-calibration for RC spread compensation

A 250-kHz 94-dB Double-Sampling 61 Modulation A/D Converter With a Modified Noise Transfer Function

A Mostly Digital Variable-Rate Continuous- Time ADC Modulator

Chapter 2 Basics of Sigma-Delta Modulation

Implementation of Binary DAC and Two step ADC Quantizer for CTDS using gpdk45nm

Materials in this course have been contributed by Fernando Medeiro, José M. de la Rosa, Rocío del Río, Belén Pérez-Verdú and

MITOPENCOURSEWARE High-Speed Communication Circuits and Systems Lecture 29 Lowpass and Bandpass Delta-Sigma Modulation.

A Segmented DAC based Sigma-Delta ADC by Employing DWA

Fundamentals of Data Conversion: Part I.1

Low-Voltage Low-Power Switched-Current Circuits and Systems

ESE 531: Digital Signal Processing

A 1.55 GHz to 2.45 GHz Center Frequency Continuous-Time Bandpass Delta-Sigma Modulator for Frequency Agile Transmitters

FUNDAMENTALS OF ANALOG TO DIGITAL CONVERTERS: PART I.1

Two- Path Band- Pass Σ- Δ Modulator with 40- MHz IF 72- db DR at 1- MHz Bandwidth Consuming 16 mw

Highly Linear Noise-Shaped Pipelined ADC Utilizing a Relaxed Accuracy Front-End

BANDPASS delta sigma ( ) modulators are used to digitize

Data Conversion Techniques (DAT115)

Appendix A Comparison of ADC Architectures

Combining Multipath and Single-Path Time-Interleaved Delta-Sigma Modulators Ahmed Gharbiya and David A. Johns

Design Examples. MEAD March Richard Schreier. ANALOG DEVICES R. SCHREIER ANALOG DEVICES, INC.

Analog to Digital Conversion

ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.4

A 2.5 V 109 db DR ADC for Audio Application

D/A Resolution Impact on a Poly-phase Multipath Transmitter

ESE 531: Digital Signal Processing

Low-Power Pipelined ADC Design for Wireless LANs

Chapter 2 DDSM and Applications

AN ABSTRACT OF THE THESIS OF. Title: Effects and Compensation of the Analog Integrator Nonidealities in Dual- GAL- C. Temes

EE247 Lecture 22. Figures of merit (FOM) and trends for ADCs How to use/not use FOM. EECS 247 Lecture 22: Data Converters 2004 H. K.

Transcription:

Cascaded Noise-Shaping Modulators for Oversampled Data Conversion Bruce A. Wooley Stanford University B. Wooley, Stanford, 2004 1

Outline Oversampling modulators for A/D conversion Cascaded noise-shaping architectures Embedded quantization Distributed noise shaping zeros Bandpass cascaded modulator Digital cascaded modulators with semi-digital reconstruction for D/A conversion B. Wooley, Stanford, 2004 2

Analog-to-Digital Conversion 00001011 11000011 01001000 Digital Processor Filtering Sampling Quantization Processing Quantization Model: e Q [n] p(e Q ) Σ 1/ - /2 /2 B. Wooley, Stanford, 2004 3

Noise Shaping N B S Q (f) -f S /2 -f B f B f S /2 Quantizer resolution increased by 3 db per octave of OVERSAMPLING N B S Q (f) Quantizer resolution increased through NOISE SHAPING -f S /2 -f B f B f S /2 B. Wooley, Stanford, 2004 4

Oversampling Modulators Embed quantizer in a feedback loop to achieve larger improvement in resolution with increasing M Feedback used for PREDICTION ( Modulation) or NOISE SHAPING (Σ Modulation) Noise shaping modulators are more robust and easier to implement than predictive modulators B. Wooley, Stanford, 2004 5

Sigma-Delta (Delta-Sigma) Modulation E Q (z) Integrator X(z) Σ z -1 1 z -1 A/D Y(z) D/A Yz ( ) = z 1 Xz ( ) ( 1 z 1 )E Q ( z) B. Wooley, Stanford, 2004 6

Σ Modulator Response (w/ 1-bit Quantization) 0.6 Modulator Input, Quantizer Output 0.4 0.2 0-0.2-0.4-0.6 0 50 100 150 200 250 Time (t/t) B. Wooley, Stanford, 2004 7

Noise Shaping Noise Shaping Function Ideal Digital Lowpass Filter First-Order Noise Shaping f B f N f S /2 Frequency B. Wooley, Stanford, 2004 8

Noise Differencing Modulators (of order L) Yz ( ) = z 1 Xz ( ) ( 1 z 1 ) L E Q ( z) Noise Shaping LP Filter L=3 L=2 L=1 f B f N f S /2 Frequency B. Wooley, Stanford, 2004 9

Sigma-Delta Modulator Dynamic Range 140 120 Dynamic Range (db) 100 80 60 40 L=3 L=2 L=1 20 0 4 8 16 32 64 128 256 512 Oversampling Ratio B. Wooley, Stanford, 2004 10

Higher-Order Noise Shaping Modulators The order of the noise shaping can be increased using either or Single quantizer modulators Multi-loop noise differencing Single-loop with multi-order filter Cascaded (multistage) modulators B. Wooley, Stanford, 2004 11

Single-Quantizer Σ Modulation E(z) X(z) A(z) Y(z) F(z) Yz ( ) = H X ( z)xz ( ) H E ( z)ez ( ) where and H X ( z) Az ( ) Az ( ) = ---------------------------------, H 1 A( z)fz ( ) E ( z) H X ( z) = ---------------, Fz ( ) H E ( z) = = 1 H E ( z) ------------------------ H X ( z) 1 --------------------------------- 1 A( z)fz ( ) B. Wooley, Stanford, 2004 12

Noise Differencing Modulators Class of modulators where: H X ( z) = z 1 and H E ( z) = ( 1 z 1 ) L L = 1: H E ( z) = ( 1 z 1 ) Az ( ) L = 2: H E ( z) = ( 1 z 1 ) 2 Az ( ) = Fz ( ) = 1 = z 1 ----------------- 1 z 1 z 1 ------------------------- ( 1 z 1 ) 2 Fz ( ) = 2 z 1 ( 1 ) B. Wooley, Stanford, 2004 13

Second-Order Implementation X Σ Σ z 1 A(z) Σ z 1 E Σ Y F(z) Σ Σ z 1 E X Σ Σ z 1 Σ Σ z 1 Σ Y Unity Transfer Function z 1 Σ Σ z 1 B. Wooley, Stanford, 2004 14

B. Wooley, Stanford, 2004 15 X Y E Σ Σ Σ z 1 Σ z 1 Σ 2 X Y E Σ Σ Σ z 1 Σ 2 1 Σ z 1 2 Second-Order Σ Modulator

Second-Order Noise Differencing Σ Modulator (with 1-bit quantization) Can scale only w/ 1-bit quantizer x(nt) Σ 1 2 INTEGRATOR 1 Σ DELAY Σ 1 2 INTEGRATOR 2 Σ DELAY QUANTIZER 1-bit A/D y(nt) q(nt) D/A Key building block for cascaded modulators B. Wooley, Stanford, 2004 16

Cascaded Σ Modulators Quantizer error quantized by subsequent stage and then filtered and subtracted digitally Cancellation of lower-order noise shaping terms depends on matching of analog and digital paths No potential instability B. Wooley, Stanford, 2004 17

Cascaded Oversampling ADC Analog In x Σ e y Delay Σ Digital Out ADC Digital Difference Matches noise shaping of quantization error in first stage B. Wooley, Stanford, 2004 18

Maximum Dynamic Range Improvement 80.0 Dynamic Range Improvement (db) 60.0 40.0 20.0 0.0 0.01 Simulation Closed form equation Independent of OSR 0.1 1 10 Coefficient Mismatch (%) B. Wooley, Stanford, 2004 19

Third-Order (2-1) Cascaded Modulator x 2 nd order Σ y 1 Error Cancellation y e 1 1 st order Σ y 2 Y 1 =z 2 X (1 z 1 ) 2 E 1 Y 2 =z 1 E 1 (1 z 1 ) E 2 Y=z 1 Y 1 (1 z 1 ) 2 Y 2 =z 3 X (1 z 1 ) 3 E 2 B. Wooley, Stanford, 2004 20

Matching Error in 2-1 Cascade 10 Loss in Dynamic Range (db) 8 6 4 2 0 Calculated Simulated -2-10 -5 0 5 10 Matching Error (%) B. Wooley, Stanford, 2004 21

2-1 Spectrum with Mismatch 0 Spectral Power (db) -50-100 -150-200 0 5 10 15 20 25 Frequency (khz) B. Wooley, Stanford, 2004 22

Advantages of 2-1 Cascade Low sensitivity to precision of analog path Suppression of spurious noise tones resulting from correlation of quantization noise with input Considerable design flexibility No potential instability B. Wooley, Stanford, 2004 23

Digitizing MHz-Bandwidth Signals Oversampling modulators dominate precision A/D conversion at modest signal bandwidths e.g. digital audio exploit large oversampling ratios Challenge is to digitize signals where the oversampling ratio is constrained by technology (MHz bandwidths) Possible approaches based on cascade architectures include multibit quantization in second stage merged quantization distributed noise shaping zeros multilevel quantization with digital linearization B. Wooley, Stanford, 2004 24

Lowpass Cascade Architecture X(z) 0.4 z 1 z 1 0.5 1 z 1 1 z 1 Y 1 (z) Y 2 (z) ADC Y 1 (z) Y 2 (z) Digital Error Cancellation Y(z) B. Wooley, Stanford, 2004 25

Embedded Quantization * X(z) 0.4 z -1 z -1 0.5 1 z -1 1 z -1 1-bit DAC Y(z) ADC X(z) 0.4 z -1 z -1 0.5 1 z -1 m bit ADC Y(z) 1 z -1 1-bit DAC * A. Tabatabaei, 99 VLSI Ckt Symp B. Wooley, Stanford, 2004 26

Model of Merged Quantizer Modulator Y 2 (z) X(z) 0.4 z 1 z 1 0.5 1 z 1 1 z 1 Y 1 (z) B. Wooley, Stanford, 2004 27

Implementation of Embedded ADC m-bit DAC z -1 1 z -1 m-bit ADC Noise Shaped Error e z -1 B. Wooley, Stanford, 2004 28

Lowpass Modulator with Embedded ADC * 4-bit DAC z -1 1 1 - z -1 0.4 0.5 1 z -1 z -1 1 - z -1 4-bit ADC 1-bit DAC Delay unaltered Stability maintained by 4-bit quantization B. Wooley, Stanford, 2004 29

2-2 Cascaded Modulator Analog input Quantization noise Lowpass Σ Modulator Lowpass Σ Modulator Digital output Quantization Error Cancellation Input 2.5 Σ Σ 1-bit output Σ Quantization noise B. Wooley, Stanford, 2004 30

Noise Transfer Function for 2-2 Lowpass Cascade 0 Signal Band NTF (db) 40 OSR = 16 80 f s /32 0 f s /32 NTF for a two-stage lowpass cascade (2-2): NTF = N 1 N 2 = (N LP ) 2 NTF > 0 db for OSR < 8 B. Wooley, Stanford, 2004 31

Distribute Zeros Across the Signal Band 0 Signal Band NTF (db) 40 80 f s /32 0 f s /32 Cascade lowpass and bandpass stages: Reduces inband noise NTF = N 1 N 2 = N LP N BP B. Wooley, Stanford, 2004 32

Lowpass-Bandpass Cascaded Modulator * X(n) NTF (db) 0 20 40 Lowpass Σ Modulator Y 1 (n) NTF (db) 0 40 80 f s /32 0 f s /32 fs/32 0 f s /32 Q(n) Bandpass Σ Modulator Y 2 (n) Digital Error Cancellation Y(n) = 0 NTF (db) 40 80 f s/32 0 f s/32 * A. Tabatabaei, JSSC 12/00 B. Wooley, Stanford, 2004 33

Bandpass Second Stage ω s cos ------- nt 2M s ω s cos ------- nt 2M s Lowpass Σ Modulator Lowpass Filter ω s sin ------- nt 2M s ω s sin ------- nt 2M s Lowpass Σ Modulator Lowpass Filter 0 Analog Digital -40-80 -fs/32 0 f s /32 B. Wooley, Stanford, 2004 34

2-2-2/2 Lowpass Modulator Analog input 2nd-order Σ 1-bit Output Quantization noise 2nd-order Σ ω s sin ------- nt 2M s ω s cos ------- nt 2M s 2nd-order Σ 2nd-order Σ B. Wooley, Stanford, 2004 35

Bandpass Stage Mixer Φ1 f LO = f s /32 CK8 CK8 Φ2 Φ2 C8 Vcm Φ1 Φsin CK1 Φ2 C1 Vin Φsin CK1 Φ2 Φ2 Vcm Vout Φsin CK1 Φ2 Φ2 Φsin CK1 Φ2 C1 Vcm Φ1 Φ1 CK8 Φ2 CK1 CK2 CK3 CK8 Φ2 C8 Φ1 CK8 Φsin B. Wooley, Stanford, 2004 36

f s /4 Two-Path Bandpass Modulator IF signal Φ 1 Φ 2 1, 1,1, 1,... 1, 1,1, 1,... 2nd-order Σ 2nd-order Σ 2nd-order Σ 2nd-order Σ ω s sin ------- nt 2M s ω s cos ------- nt 2M s ω s sin ------- nt 2M s 2nd-order Σ 2nd-order Σ 2nd-order Σ 2nd-order Σ B. Wooley, Stanford, 2004 37

Chip Micrograph Third Stage (I) Third Stage (Q) First Stage Second Stage Mixers Clock generator Second Stage Mixers First Stage Third Stage (I) Third Stage (Q) B. Wooley, Stanford, 2004 38

Measured SNR and SNDR 80.0 Signal-to-NoiseDistortion (db) 60.0 40.0 20.0 SNR SNDR 0.0-80.0-60.0-40.0-20.0 0.0 Input Signal Level (db) B. Wooley, Stanford, 2004 39

Measured Output Spectrum First Two Stages All Stages Output Spectrum (db) Output Spectrum (db) 0-50 -100 0-50 -100 40 db Quantization Noise Mirror Input Signal -2.8 db @ 16.2 MHz -1-0.5 0 0.5 1 Frequency (MHz) B. Wooley, Stanford, 2004 40

Performance Summary Sampling rate Passband Oversampling ratio Dynamic range Max SNDR Power supply Power dissipation Technology Area 64 MS/s 2 MHz centered at 16 MHz 16 75 db 70 db 2.5 V 140 mw 0.24-µm, 5-metal CMOS 2 mm 1.7 mm B. Wooley, Stanford, 2004 41

Bandpass Oversampling D/A Conversion * Consider the use of bandpass oversampling D/A conversion in wireless communications transmitters Move IF into the digital domain to eliminate dc offset I & Q mismatch Merge D/A conversion, noise shaping, reconstruction and IF mixing Explore the use of cascaded digital noise shaping for D/A conversion * D. Barkin, 03 VLSI Ckt Symp B. Wooley, Stanford, 2004 42

Traditional Transmitter Architecture cos ωt I M FIR/ROM DAC LPF Out Q M FIR/ROM DAC LPF sin ωt Digital Analog B. Wooley, Stanford, 2004 43

Cascaded Bandpass Oversampling DAC cos(ωt) = [ 1, 0, -1, 0,... ] I M Noise Shaping DAC Filtering Analog IF Output Q M Noise Shaping Digital Analog sin(ωt) = [ 0, 1, 0, -1,... ] Mix to IF (at f s /4) following cascaded noise shapers Error cancellation performed at IF B. Wooley, Stanford, 2004 44

Lowpass Cascaded Noise Shaping Digital Input 2 nd Order Σ Modulator 1 Signal Stage 1 Error 3 rd Order Σ Modulator Noise Estimate 4 (1 - z -1 ) 2 2 nd order differentiator matches noise shaping in first stage B. Wooley, Stanford, 2004 45

DAC Architecture I Cascaded Σ Modulator 1 4 (1 - z -1 ) 2-1,1 φ 1 φ 1 DAC Filtering Q Cascaded Σ Modulator 1 4 (1 - z -1 ) 2 1,-1 φ 2 φ 2 f s /2 f s I & Q modulators operate at f s /2, saving power B. Wooley, Stanford, 2004 46

Discrete Time Continuous Time Interface Signal 1-1,1 Semi-Digital Filter Noise Estimate -1,1 Digital (1 - z -1 ) Filter 2 4 11 6 Control 1 2 64 Digital Analog Semi-digital filtering for reconstruction of signal Digital filter reduces out-of-band quantization noise Digital filter transfer function matches that of semi-digital filter B. Wooley, Stanford, 2004 47

Semi-Digital Filter * Digital Input 1 z -1 z -1 z -1 a 1 a 2 a N Mismatch among current sources alters the transfer function but doesn t introduce nonlinearity Area limits number of taps and precision of coefficients Analog Output Good for 1-bit signal path but not multi-bit noise estimation path * D.Su, et al., JSSC, 1993 B. Wooley, Stanford, 2004 48

Bandpass Data Weighted Averaging 1 Semi-Digital Filter -1,1-1,1 Digital (1 - z -1 ) 2 4 Filter 11 6 BP DWA Pointer Calc Control 1 2 64 f s /2 Notch f s /4 Notch I & Q pointer calculations are independent 7 5 3 8 2 I 7 5 3 8 2 Q 6 4 2 6 3 Time --> * T. Shui, et al., ISCAS, 1998 B. Wooley, Stanford, 2004 49

Bandpass DAC Die Photo Noise Shapers Digital Filters Decoder Current Source Array Semi-digital Bias B. Wooley, Stanford, 2004 50

DAC Output Spectrum Power Spectral Density (db) 0-50 2-3 (4 bit) Digital Noise Shaper Output Measured DAC Output 46 db -100 0 20 40 60 80 100 Frequency (MHz) B. Wooley, Stanford, 2004 51

SNDR and SFDR 100 SFDR & SNDR (db) 80 60 40 20 0 Measured SFDR Measured SNDR -20-100 - 80-60 - 40-20 0 Signal Power (db) B. Wooley, Stanford, 2004 52

DAC Performance Technology Supply: Modulators and Filters Other Center Frequency Bandwidth Peak SNDR Dynamic Range Peak Out-of-Band Noise Suppression 1-p, 5-m 0.25-µm CMOS 1.5 V 2.5 V 50 MHz 6.25MHz 76 db 85 db 46 db Mirror for -6dB input 90 db down Active Area 2.1 mm 2 Power: Modulators and Filters Thermometer Decoders Current Source Array 30 mw 70 mw 115 mw B. Wooley, Stanford, 2004 53

Summary Cascades of first- and second-order noise-shaping modulator stages can be used for A/D and D/A conversion lowpass and bandpass data conversion dynamic range enhancement at low oversampling ratios If properly designed, advantages include no potential instability decorrelation of quantization noise and input low sensitivity to analog precision B. Wooley, Stanford, 2004 54

What s ahead? Challenges in data conversion interface design Impact of technology scaling on analog; ITRS presents problems w.r.t. leakage, output resistance and gain Demand for increased performance driven by increased use of digital signal processing Still room for innovation in architecture and circuits Some ongoing research Very low voltage (V DD 1.2V) oversampling A/D and D/A conversion Oversampling D/A conversion for DSL Continuous-time oversampling modulators for broadband applications B. Wooley, Stanford, 2004 55