ULTRA-WIDEBAND SLOTTED DISC ANTENNA COM- PATIBLE WITH COGNITIVE RADIO APPLICATIONS. IPN. Av. IPN 2508, San Pedro Zacatenco, Mexico City 07360, Mexico

Similar documents
Recon UWB Antenna for Cognitive Radio

PRINTED BLUETOOTH AND UWB ANTENNA WITH DUAL BAND-NOTCHED FUNCTIONS

A Compact Dual Band-Notched Ultrawideband Antenna with λ/4 Stub and Open Slots

RECONFIGURABLE 460 MHz TO 12 GHz ANTENNA WITH INTEGRATED NARROWBAND SLOT

Ultra-Wideband Antenna Using Inverted L Shaped Slots for WLAN Rejection Characteristics

A Broadband Omnidirectional Antenna Array for Base Station

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

Implementation of a Cognitive Radio Front- End Using Rotatable Controlled Reconfigurable Antennas

International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials Proceedings. Copyright IEEE.

NOVEL PLANAR INVERTED CONE RING MONOPOLE ANTENNA FOR UWB APPLICATIONS

SIZE REDUCTION AND BANDWIDTH ENHANCEMENT OF A UWB HYBRID DIELECTRIC RESONATOR AN- TENNA FOR SHORT-RANGE WIRELESS COMMUNICA- TIONS

Monopole Plannar Antenna Using Switchable Slot Structures

A Pattern Reconfigurable Antenna for WLAN and WiMAX Systems

A Comparison Between Different Cognitive Radio Antenna Systems

A CSRR Loaded Patch Antenna for Cognitive Radio Application

A COMPACT UWB MONOPOLE ANTENNA WITH WIMAX AND WLAN BAND REJECTIONS

Miniature Multiband Antenna for WLAN and X-Band Satellite Communication Applications

A Fractal Slot Antenna for Ultra Wideband Applications with WiMAX Band Rejection

A Frequency Reconfigurable Monopole Antenna with Switchable Symmetric Slot Strcture

A New Compact Printed Triple Band-Notched UWB Antenna

Conclusion and Future Scope

DESIGN OF DUAL BAND NOTCHED ULTRA WIDEBAND ANTENNA USING (U-W) SHAPED SLOTS

Compact UWB Planar Antenna with Triple Band EMI Reduction Characteristics for WiMAX/WLAN/X-Band Satellite Downlink Frequency

A COMPACT DUAL INVERTED C-SHAPED SLOTS ANTENNA FOR WLAN APPLICATIONS

Performance Analysis of Different Ultra Wideband Planar Monopole Antennas as EMI sensors

Research Article A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection

Small-Size Monopole Antenna with Dual Band-Stop Function for Ultra-Wideband Wireless Communications

A DUAL-BAND CIRCULAR SLOT ANTENNA WITH AN OFFSET MICROSTRIP-FED LINE FOR PCS, UMTS, IMT-2000, ISM, BLUETOOTH, RFID AND WLAN APPLI- CATIONS

A Compact Wideband Slot Antenna for Universal UHF RFID Reader

Analysis and Design of Microstrip Patch Antenna For Triple Band Applications

SMALL SEMI-CIRCLE-LIKE SLOT ANTENNA FOR ULTRA-WIDEBAND APPLICATIONS

UTM-LOGO WIDEBAND PRINTED MONOPOLE AN- TENNA SURROUNDED WITH CIRCULAR RING PATCH

A Compact Wide Slot Antenna for Ultra-Wideband Applications. Electrical Engineering Department, University of Missouri, Columbia, Missouri 65211, USA

DUAL TRIDENT UWB PLANAR ANTENNA WITH BAND NOTCH FOR WLAN

Ultra Wide Band Compact Antenna with Dual U- Shape Slots for Notch-Band Application

Offset-fed UWB antenna with multi-slotted ground plane. Sun, YY; Islam, MT; Cheung, SW; Yuk, TI; Azim, R; Misran, N

Chapter 7 Design of the UWB Fractal Antenna

A Compact Broadband Printed Circular Slot Antenna with Stair Shaped Ground Plane

Dual Band Fractal Antenna Design For Wireless Application

FourPortsWidebandPatternDiversityMIMOAntenna

NUMERICAL AND EXPERIMENTAL INVESTIGATION OF A NOVEL ULTRAWIDEBAND BUTTERFLY SHAPED PRINTED MONOPOLE ANTENNA WITH BANDSTOP FUNCTION

Design of a Wideband Sleeve Antenna with Symmetrical Ridges

Quasi Self Complementary (QSC) Ultra-Wide Band (UWB) Antenna Integrated with Bluetooth

A COMPACT MODIFIED DISC MONOPOLE ANTENNA FOR SUPER-WIDEBAND APPLICATIONS WITH ENHANCED GAIN

Antenna Ultra Wideband Enhancement by Non-Uniform Matching

A Stopband Control Technique for Conversion of CPW-Fed Wideband Antenna to UWB

International Journal of Modern Trends in Engineering and Research e-issn No.: , Date: 2-4 July, 2015

DESIGN OF A PLANAR MONOPOLE ULTRA WIDE BAND PATCH ANTENNA

Research Article A Compact CPW-Fed UWB Antenna with Dual Band-Notched Characteristics

Design of Rectangular-Cut Circular Disc UWB Antenna with Band-Notched Characteristics

UWB ANTENNA WITH DUAL BAND REJECTION FOR WLAN/WIMAX BANDS USING CSRRs

COMPACT WIDE-SLOT TRI-BAND ANTENNA FOR WLAN/WIMAX APPLICATIONS

A Linearly Polarized Patch Antenna for Ultra-Wideband Applications

MODERN AND future wireless systems are placing

SELF-COMPLEMENTARY CIRCULAR DISK ANTENNA FOR UWB APPLICATIONS

Fractal Hexagonal Disc Shaped Ultra Wideband Antenna

Design of Internal Dual Band Printed Monopole Antenna Based on Peano-type Fractal Geometry for WLAN USB Dongle

Compact Triple-Band Monopole Antenna with Inverted-L Slots and SRR for WLAN/WiMAX Applications

A Reconfigurable Micro-strip Patch Antenna for Various Wireless and Cognitive Radio Applications

A NEW INNOVATIVE ANTENNA CONCEPT FOR BOTH NARROW BAND AND UWB APPLICATIONS. Neuroscience, CIN, University of Tuebingen, Tuebingen, Germany

DESIGN OF A NOVEL WIDEBAND LOOP ANTENNA WITH PARASITIC RESONATORS. Microwaves, Xidian University, Xi an, Shaanxi, China

A CPW-FED ULTRA-WIDEBAND PLANAR INVERTED CONE ANTENNA

A NOVEL DUAL-BAND PATCH ANTENNA FOR WLAN COMMUNICATION. E. Wang Information Engineering College of NCUT China

Compact UWB antenna with dual band-notches for WLAN and WiMAX applications

A Compact Microstrip Antenna for Ultra Wideband Applications

Design and Application of Triple-Band Planar Dipole Antennas

A dual-band antenna for wireless USB dongle applications

Parametric Analysis of Planar Circular Monopole Antenna for UWB Communication Systems

DESIGN OF TRI-BAND PRINTED MONOPOLE ANTENNA FOR WLAN AND WIMAX APPLICATIONS

DUAL PORT COGNITIVE RADIO ANTENNA USING TUNABLE BAND PASS FILTER

ISSN: [Sherke* et al., 5(12): December, 2016] Impact Factor: 4.116

PRINTED UWB ANTENNA FOR WIMAX /WLAN

Design of UWB Monopole Antenna With EBG Structure And Ground With Rectangular Slots

IMPROVING FREQUENCY RESPONSE OF MICROSTRIP FILTERS USING DEFECTED GROUND AND DEFECTED MICROSTRIP STRUCTURES

DRAFT. Design and Measurements of a Five Independent Band Patch Antenna for Different Wireless Applications

STUDY ON THE PLANAR CIRCULARLY POLARIZED ANTENNAS WITH SWASTIKA SLOT

Improvement of Antenna Radiation Efficiency by the Suppression of Surface Waves

A Compact Dual-Band CPW-Fed Planar Monopole Antenna for GHz Frequency Band, WiMAX and WLAN Applications

R. Zhang, G. Fu, Z.-Y. Zhang, and Q.-X. Wang Key Laboratory of Antennas and Microwave Technology Xidian University, Xi an, Shaanxi , China

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

IEEE Antennas and Wireless Propagation Letters. Copyright Institute of Electrical and Electronics Engineers.

Band Notched Rectangular Patch Antenna with Polygon slot

Design of Integrated Triple Band Notched for Ultra-Wide Band Microstrip Antenna

Application of protruded Γ-shaped strips at the feed-line of UWB microstrip antenna to create dual notched bands

Multi Resonant Stacked Micro Strip Patch Antenna Designs for IMT, WLAN & WiMAX Applications

Single, Dual and Tri-Band-Notched Ultrawideband (UWB) Antenna Using Metallic Strips

Antenna System Combining Sensing and Communication Tasks for Cognitive Radio Front-Ends

BROADBAND SERIES-FED DIPOLE PAIR ANTENNA WITH PARASITIC STRIP PAIR DIRECTOR

DUAL BAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

Design of Circular Monopole Antenna for Ultra Wide Band Application

Design of Star-Shaped Microstrip Patch Antenna for Ultra Wideband (UWB) Applications

A Dual-Band Two Order Filtering Antenna

A NOVEL COMPACT ARCHIMEDEAN SPIRAL ANTENNA WITH GAP-LOADING

A New UWB Antenna with Band-Notched Characteristic

TRIPLE-BAND OMNI-DIRECTIONAL ANTENNA FOR WLAN APPLICATION

A MINIATURIZED INTERNAL WIDEBAND ANTENNA FOR WIRELESS USB DONGLE APPLICATION

A folded loop antenna with four resonant modes

Multiband Printed Monopole Slot Antenna For Mobile Phone

Efficient Design and Analysis of an Ultra Wideband Planar Antenna with band rejection in WLAN Frequencies

DUAL WIDEBAND SPLIT-RING MONOPOLE ANTENNA DESIGN FOR WIRELESS APPLICATIONS

Transcription:

Progress In Electromagnetics Research Letters, Vol. 34, 53 63, 2012 ULTRA-WIDEBAND SLOTTED DISC ANTENNA COM- PATIBLE WITH COGNITIVE RADIO APPLICATIONS E. Gomez-Nuñez 1, H. Jardon-Aguilar 1, J. A. Tirado-Mendez 2, *, and R. Flores-Leal 1 1 Telecommunications Section, Research and Advanced Studies Center- IPN. Av. IPN 2508, San Pedro Zacatenco, Mexico City 07360, Mexico 2 Postgraded Studies and Research Section, ESIME-IPN. Av. IPN S/N, Door 3. EMC-Lab. Edif. 5. Unidad Adolfo Lopez Mateos, Mexico City 07300, Mexico Abstract In this paper, a new ultra-wideband (UWB) disc antenna compatible with cognitive radio is presented. The proposed antenna is developed to operate from 0.77 to 11.23 GHz. It consists of a circular disc radiator with a rectangular slot on the patch and the implementation of the bevel technique on the ground plane. A prototype of the antenna has been constructed and shows adequate impedance matching, radiation pattern and gain for cognitive radio applications. 1. INTRODUCTION Cognitive radio is a communications system that can change its parameters based on interaction with the environment in which it operates [1], providing the capability to select and use the best available channel or share the spectrum in an opportunistic manner. One of the most novel features of the transceiver for a cognitive radio system is the ability of sensing and using various bands of interest which requires specific hardware technologies such as antennas, which can work efficiently in different bands. A single antenna is proposed in [2 4] to be employed in cognitive radio systems that can be tuned or use multiple antennas which are matched in different bands. However, these options are not the most appropriate when high integration in small terminals is desired and working in several bands with fast response, because the reconfigurable Received 29 May 2012, Accepted 31 July 2012, Scheduled 21 August 2012 * Corresponding author: Jose Alfredo Tirado-Mendez (jatirado@cinvestav.mx).

54 Gomez-Nuñez et al. antennas need an external tuning circuit and, as shown in [5 7], have additional power consumption. This takes time to adjust the system to a desired band. Also, the complexity and number of components required for the integration into the terminal are increased. The implementation of multiple antennas raises cost, power consumption, and increases space for each additional element [8, 9]. Another option is to use a multiband antenna. This alternative is presented in [10, 11]. However, this type of antennas increases the complexity of designing and manufacturing when the number of bands is large. In this paper, to overcome many of the disadvantages explained above, the proposed antenna is an UWB antenna, which radiator is based on a circular patch, since it is easier to design and manufacture due to the simplicity of the geometry. However, to achieve matching all over the frequencies of interest, the antenna geometry is modified in order to obtain the required impedance. Although, most of the UWB antennas for communication systems are designed to operate from 3.1 to 10.6 GHz, since this is the band the Federal Communications Commission has established for ultra-wideband systems. The proposed antenna works from 0.77 to 11.23 GHz, so a cognitive radio can use several bands as do: GSM 800, GSM 900, GSM 1800, GSM 1900, WLAN-2.4, WLAN-5.2, or another standard that works in this range. The proposed UWB antenna is based on a disc monopole, because this is the radiator shape that is the most commonly used to develop monopole antennas for UWB communications systems. Some results of operating as monopole, the antenna has a wide bandwidth, omnidirectional pattern, linear polarization and are simple structures easy to manufacture [12]. One of the most important parameters in a disc monopole is the radius of the disc, because it determines the lower cutoff frequency. In [13] the numerical analysis is presented in order to obtain the lower edge from the radio of the disc. In the proposed UWB antenna, the disc monopole radiator has been modified, as well as the ground plane in order to obtain the desired features, as will be shown in the next sections. 2. ANTENNA DESIGN The monopole is depicted in Fig. 1. As mentioned above, the geometry of the proposed UWB antenna is based on a disc monopole antenna, which was designed according to [13], for a lower cutoff frequency of 0.62 GHz, where an antenna of size W = 120 mm by L = 150 mm

Progress In Electromagnetics Research Letters, Vol. 34, 2012 55 Figure 1. Geometry of the new UWB disc antenna. is obtained, with a disc of radius R = 50 mm, a microstrip feeding of dimensions W f = 3.4 mm by L f = 46 mm, and a ground plane of size W g = 120 mm by L g = 46 mm. However, the present antenna is mismatched at lower frequencies which are of interest in cognitive radio applications. To overcome this disadvantage, a rectangular slot of size L c = 103.4 mm by W c = 2.6 mm is introduced, crossing all the circular disc, and smoothing the edges that connect the outer side of the radiator with the rectangular slot, forming a circle of radius R c = 19 mm. This technique was introduced in order to modify the current flow on the patch without abrupt changes, obtaining an improvement in the impedance matching at lower frequencies. The radiator remains physically connected to the feeding line by two thin lines of dimensions: 1.029 mm long by 0.4 mm wide. In order to enhance the impedance matching at higher frequencies, so as to get the maximum bandwidth and cover the band designated by the FCC for UWB systems, the bevel technique is implemented on the ground plane. This approach improves the impedance matching at lower or higher frequencies depending on the shape of the defect. However, it also can impact the impedance matching in other bands. Therefore, after a parametric process employing CST Microwave Studio software [14], the optimal size to get this goal without affecting the rest of the bandwidth of interest are W b1 = 3 mm, W b2 = 3.2 mm, L b = 26.3 mm. To compare simulation and experimental results, the monopole was fabricated on a RF35A substrate of thickness 1.524 mm, with a

56 Gomez-Nuñez et al. (a) (b) Figure 2. Fabricated prototype of the proposed UWB antenna. (a) Front view. (b) Back view. relative permittivity of 3.5. The dimensions of the rectangular slot, radius of smoothed edges, and the defect on the ground plane, are the results of an optimization of the antenna achieved by computer simulation, in order to find the best performance for cognitive radio applications. The simulation procedure is done by using the CST software, which employs the finite integration technique for electromagnetic computation [14]. To obtain more actual results, in the simulation process, an SMA connector was introduced as the feeding port the antenna. The prototype of the antenna is shown in Fig. 2. 3. SIMULATION AND EXPERIMENTAL RESULTS The measured and simulated port couplings of the proposed UWB antenna are presented in Fig. 3. In the simulation, the proposed antenna has a bandwidth from 0.77 to 11.23 GHz. However, the measurement results shows the antenna operating from 0.78 to 10.43 GHz, although the antenna does not achieve the bandwidth obtained by simulations, this continues to be an excellent device for cognitive radio applications because it has a good impedance matching for all the bands of interest. The disagreement in the simulation and measurements is mainly due to the quality of the SMA connector employed in the construction, which is guaranteed till 10 GHz, approximately, according to the manufacturer. After that frequency, the impedance of the connector is not well established.

Progress In Electromagnetics Research Letters, Vol. 34, 2012 57 Figure 3. Measured and simulated port matchings of the proposed antenna. Figure 4. Comparison of measured port matchings of conventional and proposed antennas. Currently, the cognitive radio system is not standardized [15]; the idea is to include the largest possible number of frequency bands. With these results, it is observed that the proposed prototype improves the bandwidth offered by other UWB antennas designed for Cognitive Radio such as [16 20], allowing to include a greater number of bands in the system. This antenna can be well employed in many communications systems, including cognitive radio applications. Moreover, due to the omnidirectional pattern, which is a characteristic in monopole antennas, the proposed prototype can also be employed as an electromagnetic spectrum sensor, giving the advantage of using just one antenna, instead of several devices for different frequencies.

58 Gomez-Nuñez et al. To show another advantage of the proposed antenna, a comparison of the measured port matching to a conventional disc monopole with the same dimensions is made. The conventional monopole radius is 50 mm, and the feeding line is 46 mm long by 3.4 mm wide. Results are observed in Fig. 4, where a best performance is seen for the antenna developed in this work. As observed in Fig. 4, the frequency behavior of the proposed antenna is better than that got by the conventional disc monopole. At lower frequencies, the conventional disc monopole is mismatched, and it is coupled from 4.5 to 10 GHz, approximately. Even more, there is also a mismatching at 8 GHz. As a result of employing the slots on the radiator and on the ground plane, the antenna proposed in this work achieves a wider bandwidth. It is worth it to note that in the proposed antenna, the slot in the ground plane is etched to (a) (b) (c) Figure 5. Current distribution at (a) 1.8 GHz, (b) 2.4 GHz, (c) 5.2 GHz and (d) 10 GHz. (d)

Progress In Electromagnetics Research Letters, Vol. 34, 2012 59 overcome the mismatching at higher frequencies generated by the slot on the radiator. This means, there must be a trade-off between the dimensions, and geometry of both slots in order to get the best performance and the wider possible bandwidth of the device. Figure 5 shows the current distribution on the radiator at different frequencies. The analysis was set to 1.8, 2.4, 5.2 and 10 GHz. From this figure, it is seen that the current distribution keeps stable at different frequencies, keeping the biggest level on the edges of the radiator, and a small intensity at the center of the patch. In this kind of UWB antennas, the current distribution is arc-like and flows along the edge of the antenna as explained before [16]. The changes in the current distribution make changes in the radiation pattern, especially at higher frequencies. Then, the slots, etched in the radiator and the ground plane, are intended to reduce the effects in order to match the antenna and make the radiation pattern more stable. The radiation patterns of the prototype have been simulated

60 Gomez-Nuñez et al. Figure 6. The radiation patterns simulated and measured.

Progress In Electromagnetics Research Letters, Vol. 34, 2012 61 Figure 7. Maximum gain values on the x-z plane. and measured at 900 MHz, 1.8 GHz, 2.4 GHz, 5.2 GHz and 10 GHz, and are depicted in Fig. 6. In these figures, at the XZ plane, quasi-omnidirectional patterns are obtained, so the prototype has an excellent performance compared to other planar antennas [17 21], which generally are not omnidirectional in all the bands. In Fig. 7 the maximum gain values taken every 200 MHz on the XZ plane are depicted, where there is a good performance of the antenna in the bands of interest, achieving the possibility to transmit with less power compared to other antennas [18, 20]. The peak average gain of the antenna over the bandwidth is around 4.3 dbi. 4. CONCLUSIONS A new UWB disc antenna compatible with cognitive radio applications is presented. The antenna is simple to manufacture and requires no adjustments or extra circuits to operate. It is based on a disc monopole radiator that has been modified with a rectangular slot on the patch with smoothed edges, and the implementation of the bevel technique on the ground plane, in order to improve the coupling in lower and higher frequencies, respectively, getting a quasi-omnidirectional UWB antenna which operates from 0.77 to 10.5 GHz. The proposed antenna design was fabricated, and the measurements show that there is a good impedance matching for all the bands of interest and a nearly omnidirectional radiation pattern all over the bandwidth, improving the results presented by other antennas designed for the same application. From the above results, it may be concluded that the proposed prototype has a performance suitable for cognitive radio applications.

62 Gomez-Nuñez et al. ACKNOWLEDGMENT This work was supported by project CONACyT 127856. REFERENCES 1. Akyildiz, I. F., W. Y. Lee, M. C. Vuran, and S. Mohanty, NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey, Comp. Networks J., Vol. 50, 2127 2159. Sep. 2006. 2. Mitola, J., Introduction in Cognitive Radio Architecture: The Engineering Foundations of Radio XML, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2005. 3. Arslan, H., Cognitive Radio, Software Defined Radio, and Adaptive Wireless Systems, Springer, The Netherland, 2007. 4. Fett, B. A., Cognitive Radio Technology, 2nd Edition, Elsevier, USA, 2009. 5. Oh, S.-H., H. Song, J. T. Aberle, B. Bakkaloglu, and C. Chakrabarti, Automatic antenna-tuning unit for softwaredefined and cognitive radio, Wireless Communications & Mobile Computing, Vol. 7, No. 9, 85 88, Nov. 2007. 6. Abu Tarboush, H. F., S. Khan, R. Nilavalan, H. S. Al-Raweshidy, and D. Budimir, Reconfigurable wideband patch antenna for cognitive radio, 2009 Loughborough Antennas and Propagation Conference, 141 144, Nov. 2009. 7. Hall, P. S., P. Gardner, J. Kelly, E. Ebrahimi, M. R. Hamid, F. Ghanem, F. J. Herraiz-Martinez, and D. Segovia-Vargas, Reconfigurable antenna challenges for future radio systems, 2009 Berlin EuCAP Antennas and Propagation Conference, 949 955, Jun. 2009. 8. Neihart, N. M., S. Roy, and D. J. Allstot, A parallel, multi-resolution sensing technique for multiple antenna cognitive radios, ISCAS 2007 IEEE International Symposium on Circuits and Systems, 2530 2533, May 2007. 9. Zhang, R. and Y.-C. Liang, Exploiting multi-antennas for opportunistic spectrum sharing in cognitive radio networks, IEEE Journal of Selected Topics in Signal Processing, Vol. 2, No. 1, 88 102, Feb. 2008. 10. Wu, T., R. L. Li, S. Y. Eom, K. Lim, S. I. Jeon, J. Laskar, and M. M. Tentzeris, A multiband/scalable reconfigurable antenna for cognitive radio base stations, 2008 IEEE Antennas and Propagation Society International Symposium, 1 4, Jul. 2008.

Progress In Electromagnetics Research Letters, Vol. 34, 2012 63 11. Harada, H., A software defined cognitive radio prototype, IEEE PIMRC 2007 18th International Symposium on Personal, Indoor and Mobile Radio Communications, 1 5, Sep. 2007. 12. Liang, J., C. C. Chiau, X. Chen, and C. G. Parini, Study of a printed circular disc monopole antenna for UWB systems, IEEE Transactions on Antennas and Propagation, Vol. 53, No. 11, 3500 3504, Nov. 2005. 13. Sim, C.-Y.-D., W.-T Chung, and C.-H. Lee, A circular-disc monopole antenna with band-rejection function for ultrawideband application, Microwave and Optical Technology Letters, Vol. 51, No. 6, 1607 1613, Jun. 2009. 14. Computer Simulation Technology (CST) Microwave Studio, Electromagnetic Field Simulation software, Darmstadt, Germany, www.cst.com. 15. Grayver, E., Standardization efforts for software-defined radio, 2010 IEEE Aerospace Conference, 1 8, Mar. 2010. 16. Cai, Y., H. Cui, and Z. Feng, The research of the frequency dependency of UWB antenna radiation pattern, Proceeding of 2010 IEEE International Conference on Ultra-wideband, 1 4, 2010. 17. Kelly, J. R., E. Ebrahimi, P. S. Hall, P. Gardner, and F. Ghanem, Combined wideband and narrowband antennas for cognitive radio applications, 2008 IET Seminar on Cognitive Radio and Software Defined Radios: Technologies and Techniques, 1 4, Sep. 2008. 18. Ghanem, F., P. S. Hall, and J. R. Kelly, Two port frequency reconfigurable antenna for cognitive radios, Electronics Letters, Vol. 45, No. 11, 534 536, May 2009. 19. Ebrahimi, E. and P. S. Hall, A dual port wide-narrowband antenna for cognitive radio, EuCAP 2009 3rd European Conference on Antennas and Propagation, 809 812, Mar. 2009. 20. Rao, P. H., Antenna configurations for software defined radio and cognitive radio communication architecture, ICWCSC 2010. International Conference on Wireless Communication and Sensor Computing, 1 4, Jan. 2010. 21. Ebrahimi, E. and P. S. Hall, Integrated wide-narrow band antenna for multiband applications, Microwave and Optical Technology Letters, Vol. 52, No. 2, 425 430, Feb. 2010.