Slot Tapered Vivaldi Antenna with Corrugated Edges

Similar documents
Compact Vivaldi Antenna With Balun Feed For Uwb

A 3 20GHz Vivaldi Antenna with Modified Edge

Design and Development of Tapered Slot Vivaldi Antenna for Ultra Wideband Applications

Comparative Analysis of Rectangular Microstrip Patch Array Antenna with Different Feeding Techniques

HYBRID ARRAY ANTENNA FOR BROADBAND MILLIMETER-WAVE APPLICATIONS

VIVALDI ANTENNA SIMULATION ON DEFINING PARAMETERS, PARAMETRIC STUDY AND RESULTS

Keywords UWB, Microwave imaging, wireless communications, Ground Penetrating Radar, Remote Sensing, Phased Arrays, Tapered Slot Vivaldi Antenna.

Compact Elliptically Tapered Slot Antenna with Nonuniform Corrugations for Ultra-wideband Applications

PAPER High Gain Antipodal Fermi Antenna with Low Cross Polarization

DIELECTRIC LOADED EXPONENTIALLY TAPERED SLOT ANTENNA FOR WIRELESS COMMUNICATIONS AT 60 GHz

CPW- fed Hexagonal Shaped Slot Antenna for UWB Applications

High Permittivity Design of Rectangular and Cylindrical Dielectric Resonator Antenna for C-Band Applications

COMPACT UWB MIMO SLOT ANTENNA WITH DEFECTED GROUND STRUCTURE

A Printed Vivaldi Antenna with Improved Radiation Patterns by Using Two Pairs of Eye-Shaped Slots for UWB Applications

Design of Microstrip Patch Antenna for GPS Applications using EBG Structures

ANALYSIS OF ELECTRICALLY SMALL SIZE CONICAL ANTENNAS. Y. K. Yu and J. Li Temasek Laboratories National University of Singapore Singapore

A Compact Microstrip Antenna for Ultra Wideband Applications

A Compact Dual Band-Notched Ultrawideband Antenna with λ/4 Stub and Open Slots

New Design of CPW-Fed Rectangular Slot Antenna for Ultra Wideband Applications

Research Article A Multibeam Antenna Array Based on Printed Rotman Lens

Gain Enhancement of Pyramidal Horn Antenna using EBG Technique

A Numerical Study of the Antipodal Vivaldi Antenna Design for Ultra Wideband Applications

Design of Rectangular-Cut Circular Disc UWB Antenna with Band-Notched Characteristics

Broadband transition between substrate integrated waveguide and rectangular waveguide based on ridged steps

Ultra-Wideband Patch Antenna for K-Band Applications

ISSN: [Sherke* et al., 5(12): December, 2016] Impact Factor: 4.116

Couple-fed Circular Polarization Bow Tie Microstrip Antenna

BROADBAND AND HIGH-GAIN PLANAR VIVALDI AN- TENNAS BASED ON INHOMOGENEOUS ANISOTROPIC ZERO-INDEX METAMATERIALS

Effect of Height on Edge Tapered Rectangular Patch Antenna using Parasitic Stubs and Slots

Design of Microstrip Patch Antenna with Defected Ground Structure for Ultra Wide Band (UWB) Application

R. Zhang, G. Fu, Z.-Y. Zhang, and Q.-X. Wang Key Laboratory of Antennas and Microwave Technology Xidian University, Xi an, Shaanxi , China

Microstrip Patch Antenna Design for WiMAX

New Compact Pentagonal Microstrip Patch Antenna for Wireless Communications Applications

Inset Fed Microstrip Patch Antenna for X-Band Applications

SMALL SEMI-CIRCLE-LIKE SLOT ANTENNA FOR ULTRA-WIDEBAND APPLICATIONS

Quasi Self Complementary (QSC) Ultra-Wide Band (UWB) Antenna Integrated with Bluetooth

Ultrawideband Elliptical Microstrip Antenna Using Different Taper Lines for Feeding

A Review on Substrate Integrated Waveguide and its Microstrip Interconnect

DESIGN OF DUAL BAND NOTCHED ULTRA WIDEBAND ANTENNA USING (U-W) SHAPED SLOTS

SIZE REDUCTION AND BANDWIDTH ENHANCEMENT OF A UWB HYBRID DIELECTRIC RESONATOR AN- TENNA FOR SHORT-RANGE WIRELESS COMMUNICA- TIONS

Research Article A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection

Recon UWB Antenna for Cognitive Radio

Progress In Electromagnetics Research Letters, Vol. 25, 77 85, 2011

CIRCULARLY POLARIZED SLOTTED APERTURE ANTENNA WITH COPLANAR WAVEGUIDE FED FOR BROADBAND APPLICATIONS

Compact Ultra-Wideband Antenna With Dual Band Notched Characteristic

Compact UWB antenna with dual band-notches for WLAN and WiMAX applications

Rectangular Patch Antenna to Operate in Flame Retardant 4 Using Coaxial Feeding Technique

BANDWIDTH AND GAIN ENHANCEMENT OF A SLOTTED BOWTIE ANTENNA USING PARTIAL SUBSTRATE REMOVAL

Design of Micro Strip Patch Antenna Array

A Millimeter Wave Center-SIW-Fed Antenna For 60 GHz Wireless Communication

Wideband Bow-Tie Slot Antennas with Tapered Tuning Stubs

Single, Dual and Tri-Band-Notched Ultrawideband (UWB) Antenna Using Metallic Strips

Comparative Analysis of Dual, Quad and Octa Element Patch Array Antenna

Effect of Open Stub Slots for Enhancing the Bandwidth of Rectangular Microstrip Antenna

NOVEL PLANAR ANTENNA WITH A BROADSIDE RADIATION

Wideband Double-Layered Dielectric-Loaded Dual-Polarized Magneto-Electric Dipole Antenna

Isolation Improvement of Dual Feed Patch Antenna by Assimilating Metasurface Ground

Performance Analysis of Different Ultra Wideband Planar Monopole Antennas as EMI sensors

Omnidirectional planar Antennas for PCS-Band Applications using Fiberglass Substrates.

Study of the Effect of Substrate Materials on the Performance of UWB Antenna

Wide Slot Antenna with Y Shape Tuning Element for Wireless Applications

Chapter 7 Design of the UWB Fractal Antenna

H And U-Slotted Rectangular Microstrip Patch Antenna

Broadband Circular Polarized Antenna Loaded with AMC Structure

A Compact Band-selective Filter and Antenna for UWB Application

Bandpass-Response Power Divider with High Isolation

A Broadband Planar Quasi-Yagi Antenna with a Modified Bow-Tie Driver for Multi-Band 3G/4G Applications

NOVEL DESIGN BROADBAND CPW-FED MONOPOLE ANTENNA WITH TRAPEZIUM SHAPED-STUB FOR COMMUNICATION SYSTEM

TRIPLE-BAND OMNI-DIRECTIONAL ANTENNA FOR WLAN APPLICATION

Microstrip Patch Antenna Design for WiMAX

A 30 GHz PLANAR ARRAY ANTENNA USING DIPOLE- COUPLED-LENS. Campus UAB, Bellaterra 08193, Barcelona, Spain

ON THE DESIGN OF ULTRA WIDE BAND RECTAN- GULAR SLOT ANTENNA EXCITED BY A FLARED MI- CROSTRIP FEED LINE

DESIGN OF SEVERAL POWER DIVIDERS USING CPW- TO-MICROSTRIP TRANSITION

High gain W-shaped microstrip patch antenna

Design and Development of a 2 1 Array of Slotted Microstrip Line Fed Shorted Patch Antenna for DCS Mobile Communication System

Design of Star-Shaped Microstrip Patch Antenna for Ultra Wideband (UWB) Applications

Designing of Rectangular Microstrip Patch Antenna for C-Band Application

A Wideband Dual-polarized Modified Bowtie Antenna for 2G/3G/LTE Base-station Applications

PRINTED UWB ANTENNA FOR WIMAX /WLAN

DESIGN OF A NOVEL MICROSTRIP-FED DUAL-BAND SLOT ANTENNA FOR WLAN APPLICATIONS

Design & Analysis of a Modified Circular Microstrip Patch Antenna with Circular Polarization and Harmonic Suppression

A NOVEL COMPACT ARCHIMEDEAN SPIRAL ANTENNA WITH GAP-LOADING

(WiMAX) and 5-6 GHz (WLAN). In comparison with the previous antenna designs reported in [8, 9], the proposed antenna is more compact, and has a smalle

A COMPACT UWB MONOPOLE ANTENNA WITH WIMAX AND WLAN BAND REJECTIONS

A PERTURBED CIRCULAR MONOPOLE ANTENNA WITH CIRCULAR POLARIZATION FOR ULTRA WIDEBAND APPLICATIONS

Serrated Circular Fractal Coplanar Wave Guide Fed Antennas for Wideband and Ultra Wideband Applications

Design of Narrow Slotted Rectangular Microstrip Antenna

Ultra-Wideband Antenna Using Inverted L Shaped Slots for WLAN Rejection Characteristics

International Journal of Modern Trends in Engineering and Research e-issn No.: , Date: April, 2016

International Journal of Microwaves Applications Available Online at

RECTANGULAR SLOT ANTENNA WITH PATCH STUB FOR ULTRA WIDEBAND APPLICATIONS AND PHASED ARRAY SYSTEMS

International Journal of Engineering Trends and Technology (IJETT) Volume 11 Number 5 - May National Institute of Technology, Warangal, INDIA *

Antenna Design for Ultra Wideband Application Using a New Multilayer Structure

Design of Microstrip Array Antenna for WiMAX and Ultra-Wideband Applications

A Wideband Widebeam Tapered Slot Array Antenna for Active Electronically Scanned Array Antenna

SIERPINSKI CARPET FRACTAL ANTENNA ARRAY USING MITERED BEND FEED NETWORK FOR MULTI-BAND APPLICATIONS

Design and Analysis of Microstrip Patch Antenna Array using Different Substrates for X-Band Applications

Design of Vivaldi Microstrip Antenna for Ultra- Wideband Radar Applications

Research Article A Compact CPW-Fed UWB Antenna with Dual Band-Notched Characteristics

Design of a Dual Band Rectangular Microstrip Antenna

Transcription:

, pp.142-149 http://dx.doi.org/10.14257/astl.2017.147.22 Slot Tapered Vivaldi Antenna with Corrugated Edges Dr. K. Srinivasa Naik 1, D. Madhusudan 1 and Dr. S. Aruna 2 1,2 Department of ECE 1 Vignan s Institute of Information Technology, Visakhapatnam, Andhra Pradesh nivas97033205@gmail.com 2 Assistant Professor, AU College of Engineering, Visakhapatnam, Andhra Pradesh aruna9490564519@gmail.com Abstract. This paper consist a style of Vivaldi antenna by variable the structural parameters properly to balance pattern, come loss performance by minimizing size. The Linear Tapered Slot Vivaldi Antenna has been changed by adding appropriate size corrugations on its edges to regulate the complicated mutual coupling at high scan angles. The Vivaldi antenna is built exploitation substrate of relative permittivity 3.27 and height 0.3807mm. The antenna is intended at frequency of 12GHz with dimensions of 41.97mm 72.92mm 0.3807mm. The simulation result showed that the projected antenna provides waveband from 3.1 GHz to 20 GHz at loss -10dB and HPBW varies around close to 900. The antenna includes a smaller size, with improved HPBW and it will meet the necessities of UWB system Keywords: Ultra-wideband (UWB), Half power beam width (HPBW), corrugations and return loss. 1 Introduction In modern communication system, ultra-wideband antenna have to make happy (by meeting a need or reaching a goal) the different needed things, such as sending more information, transmitting and receiving quality of the information. There are many other kinds of ultra-wideband antenna available such as Bow tie, Helical, Spiral, Logoccasional, Horn and Biconical. Vivaldi antenna is selected because of its superior broad band (features/ qualities/ traits), good impedance matching to the feed line, good energy and easy manufacturing process [3-4]. Vivaldi antenna is a kind of travelling wave and non-period antenna with UWB property, which can be made of microstrip so that it is widely used in many applications and as phased rows [1]. Vivaldi structure is proposed by Gibson in 1979 [2]. Vivaldi antenna maintains symmetrical E plane, and H plane patterns and the planar structure is also symmetrical. The UWB antenna must maintain not only wide impedance radio frequency but also wide immediate radio frequency. For ultra-wideband signal, the US Federal Communications Commission (FCC) defined frequency band as 3.1 to 10.6 GHz over which maximum power is radiated. The performance with a rippled surface vivaldi antenna will play an important role for the UWB Communication system. Vivaldi antenna with (a rippled surface structures are being developed for radar and communication systems [5]. Maksimovitch et al, ISSN: 2287-1233 ASTL Copyright 2017 SERSC

introduced corrugations in vivaldi antenna with increased antenna radio frequency. The radiation characteristics have been improved by the use of a comb structure etched along the antenna edges combined with resistive films [6]. In the present paper, Vivaldi antenna is designed for reduced size and increase in impedance radio frequency. A linear slot with thinner at the end (tapered) antenna is designed for a frequency band 3.1 to 20 GHz. 2 Design of Tapered Slot Vivaldi Antenna 2.1 Tapered Slot Antenna Design Tapered slot Vivaldi antenna is a kind of antenna that receives signals from one direction. It's basically a flared slot line, created on a single metallization layer and supported by a dielectric. The shape of the Vivaldi antenna used in the present paper has linear tapered slot which impacts the frequency range of the antenna. The opening of the taper is for high frequency matching and wide end of taper is for lower frequency matching. The design of tapered slot Vivaldi antenna is a trade-off between the antenna size and its radio frequency. Slot line starts to radiate significantly under the condition of s w = λ 0 2 Where, sw is width of the slot. In practical conditions, the antenna does not radiate at a single point for a given frequency, but from a small section along the line of the flare. The taper profile is the combination of three linear lines, one linear region for high frequency and others are for low frequency. Linear tapered slot antennas (LTSAs) are the best agreement between beam width and side lobe level. If the number of linear lines increases slowly the linear tapered slot becomes a exponential. At the same time, beam of the radiation pattern becomes narrow. Different tapered slots types are exist. The most common types are linear tapered (LTSA), exponentially tapered (VTSA) and constant width (CWSA). The beam widths of CWSAs are typically the smallest, followed by LTSAs and then VTSAs. Most TSA elements produce symmetric radiation patterns in the E and H planes. In this paper, corrugation is introduced at the sting of the projected antenna. By corrugating the sting of the projected antenna it's potential to suppress surface current on the longitudinal direction and resonant frequency is reduced. Within the array the corrugations scale back the coupling between 2 antennas [7]. (1) Copyright 2017 SERSC 143

Fig. 1. Structure of linear Vivaldi antenna 2.2 Feeding Circuit of Vivaldi Antenna A simple line feeding port is employed for Vivaldi antenna and at the tip of the feed a radial stub is employed, that is useful for resistivity matching. The tapered slot Vivaldi antenna is worked up via the microstrip to fit line transition. The transition construction exploits broadband options of a microstrip radial stub used as a virtual broadband short. The microstrip is just about shunted to the second half of the slot line metallization whereas the primary half is a ground metallization for the microstrip line, it's necessary to rework the resistivity of the input feeding microstrip line (50Ω) to the input resistivity (100Ω) of the transition [8-10]. The tapered slot Vivaldi antenna with feeding circuits is shown in Fig. 2. Fig. 2. Feed structure of proposed antenna 144 Copyright 2017 SERSC

Table 1. Dimension of the Linear Vivaldi Antenna Width, W Length, L l1 l2 l3 Cavity diameter, r G W50 W100 Radius of the microstrip stub, Rstub 72.92mm 41.97mm 3mm 16mm 27mm 2.9mm 1.5mm 0.9021mm 0.2668mm 3.5mm 3 Results and Analysis Linear Tapered Slot Vivaldi antenna designed in the present paper is shown in Fig. 1. The parameters of the Vivaldi antenna are given in Table I. It has 0.017 mm thickness copper fins on the both sides of a Roger TTM3. The total length is 72.92mm by assuming a lower cut-off frequency at 3GHz. The width is 41.97mm which is sufficiently wide to reduce the reflection. The Tapered slot Vivaldi antenna designed with substrates of Roger TMM3 (ε r =3.27, h=0.3807 mm, tan(δ) = 0) is simulated with HFSS 15. Simulated results leads to Fig. 3 shows that this tapered slot Vivaldi antenna presents sensible UWB characteristics in terms of resistivity information measure, come loss is below -10 sound unit between three.1 GHz and twenty GHz. VSWR represents of the antenna s fitness; thus, it's vital that the VSWR be below a pair of across the complete UWB spectrum (3.1 20 GHz). The simulated result presented in Fig 3 clearly shows that the VSWR curve for this antenna is less than 2 over the frequency range of 3.1GHz 20 GHz. Fig. 3. Return loss of the linear Vivaldi Antenna (in db). Copyright 2017 SERSC 145

Fig. 4. Simulated VSWR of Vivaldi Antenna. Fig. 5 shows the value of real and imaginary impedance between 3.1 to 20 GHz for the Vivaldi antenna. The figure shows a good matching of the antennas to the feed line and proposed antenna have the values of impedance real part near 50 ohm and value of imaginary part near zero ohm. Fig. 5. Impedance plot for the Vivaldi antenna The E-plane and H-plane radiation patterns for the frequencies of 10 and 12 GHz are shown in Fig. 5. The x-y plane is the E-plane while the x-z plane is the H-plane. The HPBW is almost in between 90 0 to 100 0 at 10 GHz, 12 GHz. The designed antennas can be used in the entire UWB frequency band with a fractional bandwidth of 146% from 3.1 up to 20 GHz. It exhibits a voltage standing wave of less than 2.0 in a frequency range from 3.1 to 20 GHz. 146 Copyright 2017 SERSC

Fig. 5(a). Radiation Pattern at 12 GHz (phi=00) Fig. 5(b). E-field at 12 GHz (phi=0 0 and phi=90 0 ) Fig. 5(c). Radiation Pattern at 10 GHz (phi=00) Copyright 2017 SERSC 147

Fig. 5(d). E-field at 10 GHz (phi=0 0 and phi=90 0 ) 3 Conclusion In this paper, the impact of the antenna exploitation furrowed structure on the taperedslot antenna characteristics has been studied. And conjointly reduced size is intended that has sensible resistivity information measure of a linear tapered slot antenna. The aspect lobes of the pattern also are improved. The antenna has sensible beam dimension for array scanning and improved come loss. The projected antenna is often simply integrated with a tabular circuit. References 1. Farzaneh Taringou, David Dousset, Jens Bornemann and Ke Wu, Broadband CPW Feed for Millimeter-Wave SIW-Based Antipodal Linearly Tapered Slot Antennas, IEEE Transactions on Antennas and Propagation, vol. 61, no. 4, pp. 1756-1762, April 2013. 2. J. H. Shafieha, J. Noorinia, and Ch. Ghobadi, "Probing the Feed Line Parameters in Vivaldi Notch Antennas", Progress In Electromagnetics Research B, Vol. 1, pp. 237 252, 2008. 3. Joon Shin and Daniel H. Schaubert, A Parameter Study of Stripline-Fed Vivaldi Notch- Antenna Arrays, IEEE Transactions on Antennas and Propagation, vol. 47, NO. 5, pp. 879-886, May 1999. 4. P. J. Gibson, The vivaldi aerial, Proceedings of the 9th European Microwave Conference, pp. 101 105, 1979. 5. W. C. K. F. Lee, Advances in microstrip and printed antennas, J. Wiley & sons, pp. 433-513, 1997. 6. Maksimovitch Ye. S., Mikhnev V. A., and Vainikainen P., Radiation properties of ultrawideband printed-board antennas: simulations and experimental verification, Ultrawideband and Ultra short Impulse Signals, Sevastopol, Ukraine, pp. 160-162, 15-19 September, 2008. 148 Copyright 2017 SERSC

7. Yongwei Zhang, K. Brown, Bunny Ear Combline Antennas for Compact WideBand Dual Polarized Aperture Array, IEEE Transactions on Antennas and Propagation, vol. 59, no. 8, pp. 3071-3075, august 2011. 8. J. B. Knorr, Slot-Line Transitions, IEEE Transactions on Microwave Theory and Techniques, pp. 548-554, May 1974. 9. B. Schuppert, Microstrip / Slotline Transitions: Modeling and Experimental Investigation, IEEE Transactions on Microwave Theory and Techniques, vol. 36, no. 08, pp. 1272-1281, Aug. 1988. 10. Robert A. Scholtz, David M. Pozar, Won Namgoong, Ultra-Wideband Radio, EURASIP Journal on Applied Signal Processing 2005:3, pp. 252 272, 12 May 2004. 11. Daniel Valderas, Juan Ignacio Sancho, David Puente, Ultra-wideband Antennas: Design and Applications, Imperial college press, 2011. 12. C. A. Balanis, Antenna Theory Analysis and Design, 2ed edition. J. Wiley & Sons, 1997. 13. Z. N. C. a. M. Y. W. Chia, Broadband Planar Antennas: Design and Applications, John Wiley & Sons, Ltd, pp. 180-190, 2006. 14. J. N. M. M. P. Černý, Optimization of Tapered Slot Vivaldi Antenna for UWB Application, Faculty of Electrical Engineering, 2007. Copyright 2017 SERSC 149