Design of Circular Monopole Antenna for Ultra Wide Band Application

Similar documents
A Modified Elliptical Slot Ultra Wide Band Antenna

CPW- fed Hexagonal Shaped Slot Antenna for UWB Applications

A Low-Cost Microstrip Antenna for 3G/WLAN/WiMAX and UWB Applications

International Journal of Modern Trends in Engineering and Research e-issn No.: , Date: 2-4 July, 2015

Study of the Effect of Substrate Materials on the Performance of UWB Antenna

Parametric Analysis of Planar Circular Monopole Antenna for UWB Communication Systems

Offset-fed UWB antenna with multi-slotted ground plane. Sun, YY; Islam, MT; Cheung, SW; Yuk, TI; Azim, R; Misran, N

Design of Rectangular-Cut Circular Disc UWB Antenna with Band-Notched Characteristics

SIZE REDUCTION AND BANDWIDTH ENHANCEMENT OF A UWB HYBRID DIELECTRIC RESONATOR AN- TENNA FOR SHORT-RANGE WIRELESS COMMUNICA- TIONS

New Design of CPW-Fed Rectangular Slot Antenna for Ultra Wideband Applications

Performance Analysis of Different Ultra Wideband Planar Monopole Antennas as EMI sensors

International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials Proceedings. Copyright IEEE.

A Stopband Control Technique for Conversion of CPW-Fed Wideband Antenna to UWB

A COMPACT MODIFIED DISC MONOPOLE ANTENNA FOR SUPER-WIDEBAND APPLICATIONS WITH ENHANCED GAIN

Design of Star-Shaped Microstrip Patch Antenna for Ultra Wideband (UWB) Applications

Recon UWB Antenna for Cognitive Radio

International Journal of Modern Trends in Engineering and Research e-issn No.: , Date: April, 2016

NOVEL PLANAR INVERTED CONE RING MONOPOLE ANTENNA FOR UWB APPLICATIONS

Fractal Hexagonal Disc Shaped Ultra Wideband Antenna

Investigation on Octagonal Microstrip Antenna for RADAR & Space-Craft applications

Compact Ultra-Wideband Antenna With Dual Band Notched Characteristic

Chapter 7 Design of the UWB Fractal Antenna

Design of a Circularly Polarised Dual Band Notched Ultra Wideband Antenna with Fractal DGS for S-Band and C-Band Applications

Design of a Wideband CPW Fed Monopole Antenna with Fractal Elements for Wireless Applications

Design of CPW-Fed Triangular Shaped UWB Antenna for Multiband Applications

A COMPACT CPW-FED UWB SLOT ANTENNA WITH CROSS TUNING STUB

Ultra-Wideband Antenna Using Inverted L Shaped Slots for WLAN Rejection Characteristics

DESIGN OF A NOVEL MICROSTRIP-FED DUAL-BAND SLOT ANTENNA FOR WLAN APPLICATIONS

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

Quasi Self Complementary (QSC) Ultra-Wide Band (UWB) Antenna Integrated with Bluetooth

UWB ANTENNA WITH DUAL BAND REJECTION FOR WLAN/WIMAX BANDS USING CSRRs

Hexagonal Boundary Fractal Antenna with WLAN Band Rejection

International Journal of Applied Sciences, Engineering and Management ISSN , Vol. 04, No. 06, November 2015, pp

DUAL-BAND LOW PROFILE DIRECTIONAL ANTENNA WITH HIGH IMPEDANCE SURFACE REFLECTOR

A New Compact Printed Triple Band-Notched UWB Antenna

DESIGN AND SIMULATION OF WIDE BAND L-SHAPED ANTENNA

Effect of Height on Edge Tapered Rectangular Patch Antenna using Parasitic Stubs and Slots

Single, Dual and Tri-Band-Notched Ultrawideband (UWB) Antenna Using Metallic Strips

ISSN: [Sherke* et al., 5(12): December, 2016] Impact Factor: 4.116

International Journal of Microwaves Applications Available Online at

SMALL SEMI-CIRCLE-LIKE SLOT ANTENNA FOR ULTRA-WIDEBAND APPLICATIONS

A Compact Dual Band-Notched Ultrawideband Antenna with λ/4 Stub and Open Slots

A Pattern Reconfigurable Antenna for WLAN and WiMAX Systems

A Linearly Polarized Patch Antenna for Ultra-Wideband Applications

Research Article A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection

NUMERICAL AND EXPERIMENTAL INVESTIGATION OF A NOVEL ULTRAWIDEBAND BUTTERFLY SHAPED PRINTED MONOPOLE ANTENNA WITH BANDSTOP FUNCTION

A CPW-FED ULTRA-WIDEBAND PLANAR INVERTED CONE ANTENNA

Conclusion and Future Scope

Printed Egg Curved Slot Antennas for Wideband Applications

Design and Implementation of Pentagon Patch Antennas with slit for Multiband Wireless Applications

A DUAL-BAND CIRCULAR SLOT ANTENNA WITH AN OFFSET MICROSTRIP-FED LINE FOR PCS, UMTS, IMT-2000, ISM, BLUETOOTH, RFID AND WLAN APPLI- CATIONS

Design of CPW Fed Ultra wideband Fractal Antenna and Backscattering Reduction

Design of Frequency Reconfigurable Antenna with Circular Patch

Engineering, L.B.Reddy Nagar, Mylavaram, Krishna Dt, AP

BANDWIDTH AND GAIN ENHANCEMENT OF A SLOTTED BOWTIE ANTENNA USING PARTIAL SUBSTRATE REMOVAL

CPW FED SLOT COUPLED WIDEBAND AND MULTIBAND ANTENNAS FOR WIRELESS APPLICATIONS

Investigate the Performance of Various Shapes of Planar Monopole Antenna on Modified Ground Plane Structures for L frequency Band Applications

Design of Z-Shape Microstrip Antenna with I- Slot for Wi-Max/Satellite Application

PRINTED BLUETOOTH AND UWB ANTENNA WITH DUAL BAND-NOTCHED FUNCTIONS

TRIPLE-BAND OMNI-DIRECTIONAL ANTENNA FOR WLAN APPLICATION

Design of Integrated Triple Band Notched for Ultra-Wide Band Microstrip Antenna

Band Notched Rectangular Patch Antenna with Polygon slot

A Compact Band-selective Filter and Antenna for UWB Application

DESIGN OF A PLANAR MONOPOLE ULTRA WIDE BAND PATCH ANTENNA

A Compact Wide Slot Antenna for Ultra-Wideband Applications. Electrical Engineering Department, University of Missouri, Columbia, Missouri 65211, USA

Research Article Design Aspects of Printed Monopole Antennas for Ultra-Wide Band Applications

A COMPACT UWB MONOPOLE ANTENNA WITH WIMAX AND WLAN BAND REJECTIONS

DUAL WIDEBAND SPLIT-RING MONOPOLE ANTENNA DESIGN FOR WIRELESS APPLICATIONS

A CPW-fed triangular monopole antenna with staircase ground for UWB applications

NOVEL DESIGN BROADBAND CPW-FED MONOPOLE ANTENNA WITH TRAPEZIUM SHAPED-STUB FOR COMMUNICATION SYSTEM

A Novel Rectangular Ring Planar Monopole Antennas for Ultra-Wideband Applications

BANDWIDTH ENHANCED MICROSTRIP PATCH ANTENNA FOR UWB APPLICATIONS

DESIGN OF TRI-BAND PRINTED MONOPOLE ANTENNA FOR WLAN AND WIMAX APPLICATIONS

Efficient Design and Analysis of an Ultra Wideband Planar Antenna with band rejection in WLAN Frequencies

Design of UWB Monopole Antenna for Oil Pipeline Imaging

Circular Patch Antenna with CPW fed and circular slots in ground plane.

A NOVEL NOTCHED ULTRA WIDEBAND PATCH ANTENNA FOR MOBILE MICROCELLULAR NETWORK

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

A Planar Ultra-Wideband Antenna with Multiple Band-Notch Characteristics

Design of an Ultra Wideband (UWB) Circular Disc Monopole Antenna

Serrated Circular Fractal Coplanar Wave Guide Fed Antennas for Wideband and Ultra Wideband Applications

Monopole Antenna for Bluetooth and Ultra Wideband Applications with Notched WiMAX Band on Teflon

Application of protruded Γ-shaped strips at the feed-line of UWB microstrip antenna to create dual notched bands

Ultra Wide Band Compact Antenna with Dual U- Shape Slots for Notch-Band Application

HYBRID ARRAY ANTENNA FOR BROADBAND MILLIMETER-WAVE APPLICATIONS

Compact Triple-Band Monopole Antenna with Inverted-L Slots and SRR for WLAN/WiMAX Applications

Microstrip Patch Antenna Design for WiMAX

A PERTURBED CIRCULAR MONOPOLE ANTENNA WITH CIRCULAR POLARIZATION FOR ULTRA WIDEBAND APPLICATIONS

Irregular Pentagonal Patch Antenna For L Band Application

SELF-COMPLEMENTARY CIRCULAR DISK ANTENNA FOR UWB APPLICATIONS

Analysis and Design of Microstrip Patch Antenna For Triple Band Applications

Wideband High Gain Fractal Antenna for Wireless Applications

Kent Academic Repository

H. Sabri and Z. Atlasbaf Faculty of Engineering, Department of Electrical Engineering Tarbiat Modares University (TMU) Tehran, Iran

Compact UWB Planar Antenna with Triple Band EMI Reduction Characteristics for WiMAX/WLAN/X-Band Satellite Downlink Frequency

COMPACT TRIPLE-BAND MONOPOLE ANTENNA WITH C-SHAPED AND S-SHAPED MEANDER STRIPS FOR WLAN/WIMAX APPLICATIONS

MULTI-STATE UWB CIRCULAR PATCH ANTENNA BASED ON WIMAX AND WLAN NOTCH FILTERS OPERATION

Available online at ScienceDirect. The 4th International Conference on Electrical Engineering and Informatics (ICEEI 2013)

PULSE PRESERVING CAPABILITIES OF PRINTED CIRCULAR DISK MONOPOLE ANTENNAS WITH DIFFERENT SUBSTRATES

CHAPTER 4 DESIGN OF BROADBAND MICROSTRIP ANTENNA USING PARASITIC STRIPS WITH BAND-NOTCH CHARACTERISTIC

Transcription:

Design of Circular Monopole Antenna for Ultra Wide Band Application Dristi Mistry 1, Falguni Raval 2 1 MTECH(C.S.E.) V. T. Patel Department of E. &. C. Engineering, Charotar University of Science and Technology, Changa,Gujarat, India. 2Assistant Prof., V. T. Patel Department of E. &. C. Engineering, Charotar University of Science and Technology, Changa, Gujarat, India. ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract: Now a days communication technology is constantly spreading in everyday life. The agile progress in wireless communication is increased accomplishment in ultra wideband antennas. This paper gives a simple design of ultra wideband circular monopole antenna. The parameters which are afflicted on the performance of the antenna are researched. The parameters are affected on antenna results are radius of monopole, feed gap which is a distance between feed point of circular monopole and transmission line and width of ground plane. This antenna is designed and simulated by using Ansoft High Frequency Structure Simulator (HFSS). The simulation of this antenna achieves good agreement with ultra wideband requirement. 2. DESIGN OF ANTENNA UBW system has many advantages like it can transmit high data rate information, low power consumption and low interference and immunity to multipath fading. On top of this it has wide bandwidth and economics advantages and hence UWB system is widely used in biomedical system, radio communication and medical imaging [5-7]. Traditional UWB antennas having log periodic geometries or spiral radiate each frequency component from different part of antenna results in distortion to radiated signal and theses antenna are known as a dispersive. [9] Later on, UWB antennas with simple structure, fabrication and adequate radiation characteristics have been proposed [10,11]. These antennas are broadband dipoles with circular, pentagonal, elliptical, square and hexagonal configurations [12]. In this paper, a circular monopole antenna is proposed and investigated. The geometric antenna dimensions are maintained to obtain an ultra wide band width response with a bandwidth of 10 GHz and acceptable radiation pattern properties. In addition to these, the antenna can cover more application such that (GSM1900, PCS1900, DCS, 2.45/5.2/5.8- GHz-ISM, WCDMA/UMTS(3G), UWB (3.1 10.6 GHz) etc. Key Words: Ultra wideband, HFSS, Network Analyzer, Circular slit, Jeans, efficiency, return loss, textile material 1. INTRODUCTION The fast growing technology and development in wide band wireless technology system has increased the use of Ultra Wideband (UWB) antennas. After releasing a 10-dB bandwidth of 7.5 GHz (3.1-10.6 GHz) by Federal Communication Commission, UWB technology has quickly attracted the attention of academia and industries in the wireless technology [1]. A selected antenna is capable if it can give required efficiency and radiation properties over an ultra wideband bandwidth allocated by federal Communication Commission. [2-4] The recommended circular monopole antenna is depicted in Fig. 1. The radius of circular monopole is R=12.5 mm and a microstrip feed line are printed on same side of subtract with characteristics impedance of 50 Ω and the width of line is fixed at 2.6mm to achieve this impedance. In this design FR4 is used as a subtract with 1.6mm thickness and 4.4 relative permittivity. L is symbolised as a length of the dielectric subtract which is constant as 50mm and W is denoted as width of the dielectric substrate which is varied for the batter result. On the other side of the dielectric substrate, the partial conducting ground plane is designed, which only covered the section of microstip feed line, the length of ground plane is represented as Lg= 20mm as shown in Fig. 2. h is indicate the feed gap, it is a distance between the feed point of circular monopole and transmission line Here the width of the subtract and width of the ground plane are same. 2016, IRJET Impact Factor value: 4.45 ISO 9001:2008 Certified Journal Page 2785

Fig -1: Geometry of proposed circular monopole antenna Fig.-3: Return loss due to variation of radius of patch As seen from the previous figure, the radius of circular monopole set as R=12.5mm gives the wider bandwidth compare with the other radius. The other parameter which is affected on the performance of antenna is feed gap. To achieve the optimum value of it the feed gap is going to be changed. 3.2 Effect of Feedgap length (h) Fig.-2: Ground plane geometry 3. RESULTS AND DISCUSSION The design parameters of antenna like radius of circular monopole, length of feed gap and width of ground plane are Fig. 4 illustrates the simulated result of return loss with the different feed gaps as h= 0, 0.5, 1.5, and 2 mm when width of ground plane and dielectric subtract W is fixed at 50 mm. In Fig.-4 it is observed that when the feed gap is varied the bandwidth of antenna is also significantly changed. The reason of it is the effect of impedance matching on the feed gap [10]. When the feed gap is varied, the ground plane, serves as an impedance matching circuit, tunes the input impedance and the operating bandwidth. [11]. The optimised feed gap value is found h= 1.5 mm. affected on the performance of antenna. So, for the optimum design of antenna these parameters are going to vary to get wider band. The process to achieve optimum design of UWB antenna is as below. 3.1 Effect of the Patch Radius(R) The first step towards the optimization is to vary the radius of circular monopole as R=10, 11, 12, 12.5 mm. For that width of ground plane W is constant as 50 mm and feed gap (h) = 1.5 mm. The return losses simulated in HFSS at different radius shows in fig.-3. Fig.-4: Return loss due to variation of feed gap. 2016, IRJET Impact Factor value: 4.45 ISO 9001:2008 Certified Journal Page 2786

3.3 Effect of the Width of Substact Width of Transmission line 2.6 mm One of the main parameter to design the natenna is width of ground plane and subtract. It is affected on the performance of the antenna To analyzed the effect the width of ground plane is varied. The different values of the width are: 30, 40, 50 and 60mm. To enhance the bandwidth we varied the subtract width. The different values of the width are: 30, 40, 50 and 60mm. Length of Ground plane Length of feed gap 20 mm 1.5 mm These simulations were performed using the Ansoft High Frequency Structure Simulation (HFSS), [13]. The return loss curve of the optimal design illustrate in Fig. 6. The proposed antenna design resonates from 1.2 GHz to 8.02 GHz, which gives bandwidth of 6.82GHz. Fig.-5: Return loss due to variation of ground plane width The simulation results depict that the performance of antenna is heavily depend on width of ground plane, because the current is mainly distributed and transmitted on the upper edge of the subtract along the y-direction. From the fig.-5 the widest bandwidth achieved at W=50mm. which is equivalent to double the diameter of the circular monopole. Fig.-6: Return loss of optimum design The simulated radiation pattern at 2 GHz, 3 GHz, 5GHz and 7 GHz shown in fig 7 to 10. Finally the optimum obtained dimensions are summarized in table 1. Table -1: Dimension of Optimum design of Circular monopole UWB antenna Optimized parameters Parameters Dimensions Subtract Height Width of Subtract 1.6 mm 50 mm Fig.-7: Radiation Pattern at 2 GHz Length of Subtract 50 mm Radius of Patch 12.5 mm 2016, IRJET Impact Factor value: 4.45 ISO 9001:2008 Certified Journal Page 2787

show that as the frequency is increased, slightly notches. The Gain of the antenna presented in table 2. Table -2: Gain of Circular monopole UWB Antenna Frequency Gain 2 GHz 1.6 mm 3 GHz 50 mm 5 Ghz 50 mm 7 GHz 12.5 mm Fig.-8: Radiation Pattern at 3 GHz 4. CONCLUSIONS Fig -9: Radiation pattern at 5 GHz In this paper the different parameters of antenna are varied to check the effect of those parameters on the antenna. The width of ground plane, radius of patch and feed gap are varied to observe the response. By doing all this here can conclude that the bandwidth of the antenna is depending upon the width of ground plane, radius of circular monopole and feed gap. The optimum feed gap value is 1.5 mm and the width of ground plane should double of the diameter of circular monopole. The antenna gives the widest bandwidth with circular monopole radius dimension R=12.5mm and partial ground plane width dimension W= 50 mm. A circular monopole antenna was proposed having a bandwidth from 1.2 to 8.02 GHz, which is very large bandwidth, which is covered the S, C, and X bands. It has been shown that the performance of this antenna in terms of its frequency domain characteristics is mostly dependent on the circular monopole radius, ground plane width and feed gap. It is demonstrated by simulation that the proposed antennas can yield an ultra wide bandwidth, and that the radiation patterns are nearly omni-directional over the entire -10 db return loss bandwidth. This antenna can be used in many application including 3G, Wi-Fi, Wi-MAX, as well as UWB applications. REFERENCES Fig.-10: Radiation pattern at 7 GHz It is noticed that, the simulated H-plane patterns are nearly omni-directional. The simulated E-plane patterns [1] FCC Report and Order for Part 15 acceptance of UltraWideband (UWB) systems from 3.1 10.6 GHz, February, 2002, FCC website. [2] Ammanii, M., and Zhi Ning Chen. "Wideband monopole antennas for multi-band wireless systems." IEEE Antennas and Propagation Magazine 45.2 (2003). [3] Agrawall, Narayan Prasad, Girish Kumar, and K. P. Ray. "Wide-band planar monopole 2016, IRJET Impact Factor value: 4.45 ISO 9001:2008 Certified Journal Page 2788

antennas." Antennas and Propagation, IEEE Transactions on 46.2 (1998): 294-295. [4] Liang, Jianxin, et al. "Study of a printed circular disc monopole antenna for UWB systems." Antennas and Propagation, IEEE Transactions on 53.11 (2005): 3500-3504. [5] Quintero, G., and A. K. Skrivervik. "Analysis of planar UWB elliptical dipoles fed by a coplanar stripline." Ultra-Wideband, 2008. ICUWB 2008. IEEE International Conference on. Vol. 1. IEEE, 2008. [6] Powell, Johnna, and Anantha Chandrakasan. "Differential and single ended elliptical antennas for 3.1-10.6 GHz ultra wideband communication."antennas and Propagation Society International Symposium, 2004. IEEE. Vol. 3. IEEE, 2004. [7] Liang, Jianxin, et al. "CPW-fed circular disc monopole antenna for UWB applications." Antenna Technology: Small Antennas and Novel Metamaterials, 2005. IWAT 2005. IEEE International Workshop on. IEEE, 2005. [8] Liang, J., et al. "Analysis and design of UWB disc monopole antennas."ultra Wideband Communications Technologies and System Design, 2004. IEE Seminar on. IET, 2004.. [9] Ammanii, M., and Zhi Ning Chen. "Wideband monopole antennas for multi-band wireless systems." IEEE Antennas and Propagation Magazine 45.2 (2003). [10] Chen, Zhi Ning, and Michael Yan Wah Chia. Broadband planar antennas: design and applications. John Wiley & Sons, 2006. [11] Antonino-Daviu, E., et al. "Wideband double-fed planar monopole antennas."electronics Letters 39.23 (2003). [12] Ansoft High Frequency Structure Simulation (HFSS), Ver. 9.2 Ansoft Corporation. [13] Balanis C. A., Antenna Theory: Analysis and Design, John Wiley and Sons, New York, 2004. [14] Osman, Mai A. Rahman, et al. "Design, implementation and performance of ultra-wideband textile antenna." Progress In Electromagnetics Research B27 (2011): 307-325. [15] Loni, Janabeg, Shahanaz Ayub, and Vinod Kumar Singh. "Performance analysis of Microstrip Patch Antenna by varying slot size for UMTS application." Communication Systems and Network Technologies (CSNT), 2014 Fourth International Conference on. IEEE, 2014. 2016, IRJET Impact Factor value: 4.45 ISO 9001:2008 Certified Journal Page 2789